Pub Date : 2024-05-01DOI: 10.3390/geosciences14050123
Fariha Rahman, Avipriyo Chakraborty, Sadik Khan, Rakesh Salunke
Due to cyclic wetting and drying, the hydro-mechanical behavior of unsaturated soil is impacted significantly. In order to assess the soil strength parameters, knowing the unsaturated behavior is important. Soil moisture content is an important parameter that can define the shear strength of the soil. Most of the highway slopes of Mississippi are built on highly expansive clay. During summer, the evaporation of moisture in the soil leads to shrinkage and the formation of desiccation cracks, while during rainfall, the soil swells due to the infiltration of water. In addition to this, the rainwater gets trapped in these cracks and creates perched conditions, leading to the increased moisture content and reduced shear strength of slope soil. The increased precipitation due to climate change is causing failure conditions on many highway slopes of Mississippi. Vetiver, a perennial grass, can be a transformative solution to reduce the highway slope failure challenges of highly plastic clay. The grass has deep and fibrous roots, which provide additional shear strength to the soil. The root can uptake a significant amount of water from the soil, keeping the moisture balance of the slope. The objective of the current study is to assess the changes in moisture contents of a highway slope in Mississippi after the Vetiver plantation. Monitoring equipment, such as rain gauges and moisture sensors, were installed to monitor the rainfall of the area and the moisture content of the soil. The data showed that the moisture content conditions were improved with the aging of the grass. The light detection and ranging (LiDAR) analysis was performed to validate the field data obtained from different sensors, and it was found that there was no significant slope movement after the Vetiver plantation. The study proves the performance of the Vetiver grass in improving the unsaturated soil behavior and stability of highway slopes built on highly expansive clay.
{"title":"Impact of Vetiver Plantation on Unsaturated Soil Behavior and Stability of Highway Slope","authors":"Fariha Rahman, Avipriyo Chakraborty, Sadik Khan, Rakesh Salunke","doi":"10.3390/geosciences14050123","DOIUrl":"https://doi.org/10.3390/geosciences14050123","url":null,"abstract":"Due to cyclic wetting and drying, the hydro-mechanical behavior of unsaturated soil is impacted significantly. In order to assess the soil strength parameters, knowing the unsaturated behavior is important. Soil moisture content is an important parameter that can define the shear strength of the soil. Most of the highway slopes of Mississippi are built on highly expansive clay. During summer, the evaporation of moisture in the soil leads to shrinkage and the formation of desiccation cracks, while during rainfall, the soil swells due to the infiltration of water. In addition to this, the rainwater gets trapped in these cracks and creates perched conditions, leading to the increased moisture content and reduced shear strength of slope soil. The increased precipitation due to climate change is causing failure conditions on many highway slopes of Mississippi. Vetiver, a perennial grass, can be a transformative solution to reduce the highway slope failure challenges of highly plastic clay. The grass has deep and fibrous roots, which provide additional shear strength to the soil. The root can uptake a significant amount of water from the soil, keeping the moisture balance of the slope. The objective of the current study is to assess the changes in moisture contents of a highway slope in Mississippi after the Vetiver plantation. Monitoring equipment, such as rain gauges and moisture sensors, were installed to monitor the rainfall of the area and the moisture content of the soil. The data showed that the moisture content conditions were improved with the aging of the grass. The light detection and ranging (LiDAR) analysis was performed to validate the field data obtained from different sensors, and it was found that there was no significant slope movement after the Vetiver plantation. The study proves the performance of the Vetiver grass in improving the unsaturated soil behavior and stability of highway slopes built on highly expansive clay.","PeriodicalId":509137,"journal":{"name":"Geosciences","volume":"45 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141046112","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fires are a growing problem even in temperate climate areas, such as those in Central Italy, due to climate change leading to longer and longer periods of drought. Thus, knowing the fire susceptibility of an area is crucial for good planning and taking appropriate countermeasures. In this context, it was decided to use only causal factors of a geomorphological and environmental nature in order to obtain a fire susceptibility analysis that can also be applied to climatically under-sampled areas. Vector data of fires in Central Italy from 2005 to 2023 were collected, and the correct areal extent was calculated for each. At the same time, six factors were selected that could have an influence on fire development, such as ecological units, topographic wetness index (TWI), geology, slope, exposure, and altitude. The model was obtained by means of the weight of evidence statistical method, which takes into account past data by reinterpreting them in a future-oriented way on the basis of the identified factors and classes. The model was validated with a test sample and shows an area under the curve (AUC) value of 0.72 with a reliability that can be described as good considering the total absence of climatic factors that are known to play a major role in fire development. Furthermore, the identified causal factors were divided into classes, and these were carefully weighted in order to define their relative influence in the study area. Particularly Ecological Units with characteristic and well-defined contrast (C) values, which could lead to a more complete definition of forests that tend to increase fire susceptibility and those that tend to decrease it, allowing the latter to be exploited as a hazard mitigation agent.
{"title":"Analysis of Wildfire Susceptibility by Weight of Evidence, Using Geomorphological and Environmental Factors in the Marche Region, Central Italy","authors":"Matteo Gentilucci, Maurizio Barbieri, Hamed Younes, Hadji Rihab, Gilberto Pambianchi","doi":"10.3390/geosciences14050112","DOIUrl":"https://doi.org/10.3390/geosciences14050112","url":null,"abstract":"Fires are a growing problem even in temperate climate areas, such as those in Central Italy, due to climate change leading to longer and longer periods of drought. Thus, knowing the fire susceptibility of an area is crucial for good planning and taking appropriate countermeasures. In this context, it was decided to use only causal factors of a geomorphological and environmental nature in order to obtain a fire susceptibility analysis that can also be applied to climatically under-sampled areas. Vector data of fires in Central Italy from 2005 to 2023 were collected, and the correct areal extent was calculated for each. At the same time, six factors were selected that could have an influence on fire development, such as ecological units, topographic wetness index (TWI), geology, slope, exposure, and altitude. The model was obtained by means of the weight of evidence statistical method, which takes into account past data by reinterpreting them in a future-oriented way on the basis of the identified factors and classes. The model was validated with a test sample and shows an area under the curve (AUC) value of 0.72 with a reliability that can be described as good considering the total absence of climatic factors that are known to play a major role in fire development. Furthermore, the identified causal factors were divided into classes, and these were carefully weighted in order to define their relative influence in the study area. Particularly Ecological Units with characteristic and well-defined contrast (C) values, which could lead to a more complete definition of forests that tend to increase fire susceptibility and those that tend to decrease it, allowing the latter to be exploited as a hazard mitigation agent.","PeriodicalId":509137,"journal":{"name":"Geosciences","volume":"82 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140665417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-24DOI: 10.3390/geosciences14050114
Yangkang Chen, Alexandros Savvaidis, O.M. Saad, Daniel Siervo, Guo-Chin Dino Huang, Yunfeng Chen, I. Grigoratos, Sergey Fomel, Caroline Breton
West Texas has been a seismically active region in the past decade due to the injection of industrial wastewater and hydrocarbon exploitation. The newly founded Texas seismological network has provided a catalog that characterizes the intense seismicity down to a magnitude of 1.5 Ml. However, there are numerous small-magnitude events (Ml < 1.0) occurring every day that are not analyzed and reported, due to the prohibitively high workload to manually verify the picks from automatic picking methods. We propose to apply an advanced deep learning method, the earthquake compact convolutional transformer (EQCCT), to unleash our power in analyzing hundreds of small earthquakes per day in West Texas. The EQCCT method is embedded in an integrated-detection-and-location framework to output a highly complete earthquake catalog, given a list of available seismic stations, in a seamless way. The EQCCT has enabled us to detect and locate 50-times more earthquakes (mostly smaller than magnitude 1) than we previously could. We applied the EQCCT-embedded detection and location workflow to the Culberson and Mentone earthquake zone (CMEZ) in West Texas and detected thousands of earthquakes per month for consecutively three months. Further relocation of the new catalog revealed an unprecedentedly high-resolution and precise depiction of shallow and deep basement-rooted faults. The highly complete catalog also offers significant insights into the seismo-tectonic status of the CMEZ. Association with nearby injection activities also revealed a strong correlation between the rate of injected fluid volume and the number of small earthquakes.
{"title":"Thousands of Induced Earthquakes per Month in West Texas Detected Using EQCCT","authors":"Yangkang Chen, Alexandros Savvaidis, O.M. Saad, Daniel Siervo, Guo-Chin Dino Huang, Yunfeng Chen, I. Grigoratos, Sergey Fomel, Caroline Breton","doi":"10.3390/geosciences14050114","DOIUrl":"https://doi.org/10.3390/geosciences14050114","url":null,"abstract":"West Texas has been a seismically active region in the past decade due to the injection of industrial wastewater and hydrocarbon exploitation. The newly founded Texas seismological network has provided a catalog that characterizes the intense seismicity down to a magnitude of 1.5 Ml. However, there are numerous small-magnitude events (Ml < 1.0) occurring every day that are not analyzed and reported, due to the prohibitively high workload to manually verify the picks from automatic picking methods. We propose to apply an advanced deep learning method, the earthquake compact convolutional transformer (EQCCT), to unleash our power in analyzing hundreds of small earthquakes per day in West Texas. The EQCCT method is embedded in an integrated-detection-and-location framework to output a highly complete earthquake catalog, given a list of available seismic stations, in a seamless way. The EQCCT has enabled us to detect and locate 50-times more earthquakes (mostly smaller than magnitude 1) than we previously could. We applied the EQCCT-embedded detection and location workflow to the Culberson and Mentone earthquake zone (CMEZ) in West Texas and detected thousands of earthquakes per month for consecutively three months. Further relocation of the new catalog revealed an unprecedentedly high-resolution and precise depiction of shallow and deep basement-rooted faults. The highly complete catalog also offers significant insights into the seismo-tectonic status of the CMEZ. Association with nearby injection activities also revealed a strong correlation between the rate of injected fluid volume and the number of small earthquakes.","PeriodicalId":509137,"journal":{"name":"Geosciences","volume":"62 30","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140664119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-24DOI: 10.3390/geosciences14050113
Federico Mantovani, F. Elter
Sardinia (Italy) represents one of the most comprehensive cross-sections of the Variscan orogen. The metamorphic and structural complexity characterizing its axial zone still presents many unresolved issues in the current state of knowledge. The data presented from the structural study of the entire axial zone of this area have allowed the authors to propose a subdivision into two new structural complexes. In particular, a younger complex is identified as the New Gneiss Complex, containing remnants of an older and higher-grade metamorphic complex defined as the Old Gneiss Complex. The structural and geometric relationships between the two complexes suggest the redefinition of the axial zone of Sardinia as part of the intracontinental East Variscan Shear Zone/medium-temperature Regional Mylonitic Complex. Comparable relationships are also highlighted in many other areas of the Variscan chain (e.g., Morocco, Corsica, Maures Massif, and Argentera Massif). Extending this new structural interpretation to other axial zones of the South European Variscan orogen could provide new hints for reconstructing the collision boundaries between Gondwana and Laurussia in the late Carboniferous to the early Permian periods.
{"title":"The East Variscan Shear Zone (EVSZ) and Its Regional Mylonitic Complex: A New Geodynamic Interpretation of the Variscan Axial Zone in Sardinia (Italy)?","authors":"Federico Mantovani, F. Elter","doi":"10.3390/geosciences14050113","DOIUrl":"https://doi.org/10.3390/geosciences14050113","url":null,"abstract":"Sardinia (Italy) represents one of the most comprehensive cross-sections of the Variscan orogen. The metamorphic and structural complexity characterizing its axial zone still presents many unresolved issues in the current state of knowledge. The data presented from the structural study of the entire axial zone of this area have allowed the authors to propose a subdivision into two new structural complexes. In particular, a younger complex is identified as the New Gneiss Complex, containing remnants of an older and higher-grade metamorphic complex defined as the Old Gneiss Complex. The structural and geometric relationships between the two complexes suggest the redefinition of the axial zone of Sardinia as part of the intracontinental East Variscan Shear Zone/medium-temperature Regional Mylonitic Complex. Comparable relationships are also highlighted in many other areas of the Variscan chain (e.g., Morocco, Corsica, Maures Massif, and Argentera Massif). Extending this new structural interpretation to other axial zones of the South European Variscan orogen could provide new hints for reconstructing the collision boundaries between Gondwana and Laurussia in the late Carboniferous to the early Permian periods.","PeriodicalId":509137,"journal":{"name":"Geosciences","volume":"23 20","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140663518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-24DOI: 10.3390/geosciences14050115
Marco Del Fabbro, P. Paronuzzi, A. Bolla
Heterogeneous rock masses that include rhythmic alternations of marl, shale, marly limestone, sandstone, siltstone, and argillite, such as Flysch, are particularly prone to generating colluvial deposits on gentle slopes, which are often subject to failures triggered by heavy rainfall. Flysch-derived colluvial soils are made up of highly heterogeneous sediments ranging from clayey loam to rock fragments, and they have been studied more rarely than homogeneous soils. In this work, we present a geotechnical and hydraulic characterisation performed both in situ and in the laboratory on flysch-derived colluvial soils that were involved in a channelised landslide in the pre-alpine area of the Friuli Venezia Giulia region (NE Italy). The investigated soils were characterised by the average values of the grain size composition of about 25% gravel, 20% sand, 30% silt, and 25% clay. The loamy matrix presented low-to-medium values of the liquid and plastic limits, as well as of the plasticity index (LL = 40%, PL = 23%, and PI = 17%, respectively). The values of the peak friction angle for natural intact samples were 33° < ϕ’p < 38°, whereas the residual friction angle fell to 23–24° at great depths and high vertical stresses, for a prevailing silty–clayey matrix. Variable head permeability tests were performed both in situ and in the laboratory, showing that the values of the vertical and horizontal permeability were very close and in the range 1 × 10−4–1 × 10−6 m/s. The soil permeability measured in the field was generally higher than the hydraulic conductivity calculated on laboratory samples. The proposed geotechnical and hydrological characterisation of flysch-derived colluvial soils can be of fundamental importance before the use of more thorough analyses/models aimed at forecasting the possible occurrence of slope failures and evaluating the related landslide hazard. The reported geotechnical and hydraulic parameters of flysch-derived colluvial materials can represent a useful reference for rainfall infiltration modelling and slope stability analyses of colluvial covers that are subject to intense and/or prolonged precipitation. However, when facing engineering problems involving colluvial soils, particularly those coming from flysch rock masses, the intrinsic variability in their grain size composition, consistency, and plasticity characteristics is a key feature and attention should be paid to the proper assumption of the corresponding geotechnical and hydraulic parameters.
{"title":"Geotechnical Characterisation of Flysch-Derived Colluvial Soils from a Pre-Alpine Slope Affected by Recurrent Landslides","authors":"Marco Del Fabbro, P. Paronuzzi, A. Bolla","doi":"10.3390/geosciences14050115","DOIUrl":"https://doi.org/10.3390/geosciences14050115","url":null,"abstract":"Heterogeneous rock masses that include rhythmic alternations of marl, shale, marly limestone, sandstone, siltstone, and argillite, such as Flysch, are particularly prone to generating colluvial deposits on gentle slopes, which are often subject to failures triggered by heavy rainfall. Flysch-derived colluvial soils are made up of highly heterogeneous sediments ranging from clayey loam to rock fragments, and they have been studied more rarely than homogeneous soils. In this work, we present a geotechnical and hydraulic characterisation performed both in situ and in the laboratory on flysch-derived colluvial soils that were involved in a channelised landslide in the pre-alpine area of the Friuli Venezia Giulia region (NE Italy). The investigated soils were characterised by the average values of the grain size composition of about 25% gravel, 20% sand, 30% silt, and 25% clay. The loamy matrix presented low-to-medium values of the liquid and plastic limits, as well as of the plasticity index (LL = 40%, PL = 23%, and PI = 17%, respectively). The values of the peak friction angle for natural intact samples were 33° < ϕ’p < 38°, whereas the residual friction angle fell to 23–24° at great depths and high vertical stresses, for a prevailing silty–clayey matrix. Variable head permeability tests were performed both in situ and in the laboratory, showing that the values of the vertical and horizontal permeability were very close and in the range 1 × 10−4–1 × 10−6 m/s. The soil permeability measured in the field was generally higher than the hydraulic conductivity calculated on laboratory samples. The proposed geotechnical and hydrological characterisation of flysch-derived colluvial soils can be of fundamental importance before the use of more thorough analyses/models aimed at forecasting the possible occurrence of slope failures and evaluating the related landslide hazard. The reported geotechnical and hydraulic parameters of flysch-derived colluvial materials can represent a useful reference for rainfall infiltration modelling and slope stability analyses of colluvial covers that are subject to intense and/or prolonged precipitation. However, when facing engineering problems involving colluvial soils, particularly those coming from flysch rock masses, the intrinsic variability in their grain size composition, consistency, and plasticity characteristics is a key feature and attention should be paid to the proper assumption of the corresponding geotechnical and hydraulic parameters.","PeriodicalId":509137,"journal":{"name":"Geosciences","volume":"32 18","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140663760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-21DOI: 10.3390/geosciences14040111
P. Northrup, Ryan Tappero, T. Glotch, George J. Flynn, Mehmet Yesiltas, Yoko Kebukawa, Leonard Flores, M. Gemma, Gavin Piccione
The Hayabusa2 space mission recently retrieved 5.4 g of material from asteroid Ryugu, providing the first direct access to pristine material from a carbonaceous asteroid. This study employs a novel combination of non-invasive synchrotron X-ray techniques to examine microscale chemistry (elemental distributions and element-specific chemical speciation and local structure) inside Ryugu grains without physically cutting the samples. Manganese primarily occurs in carbonate: Mn-bearing dolomite with minor earlier ankerite. Iron sulfides present as large single grains and as smaller particles in the finer-grained matrix are both predominantly pyrrhotite. At the 5 μm scale, Fe sulfides do not show the mineralogical heterogeneity seen in many carbonaceous meteorites but exhibit some heterogeneous localized oxidation. Iron is present often as intergrowths of oxide and sulfide, indicating incomplete replacement. Trace selenium substitutes for S in pyrrhotite. Copper is present as Fe-poor Cu sulfide. These results demonstrate multiple episodes of fluid alteration on the parent body, including partial oxidation, and help constrain the sequence or evolution of fluids and processes that resulted in the current grain-scale mineralogical composition of Ryugu materials.
{"title":"Chemistry in Retrieved Ryugu Asteroid Samples Revealed by Non-Invasive X-ray Microanalyses: Pink-Beam Fluorescence CT and Tender-Energy Absorption Spectroscopy","authors":"P. Northrup, Ryan Tappero, T. Glotch, George J. Flynn, Mehmet Yesiltas, Yoko Kebukawa, Leonard Flores, M. Gemma, Gavin Piccione","doi":"10.3390/geosciences14040111","DOIUrl":"https://doi.org/10.3390/geosciences14040111","url":null,"abstract":"The Hayabusa2 space mission recently retrieved 5.4 g of material from asteroid Ryugu, providing the first direct access to pristine material from a carbonaceous asteroid. This study employs a novel combination of non-invasive synchrotron X-ray techniques to examine microscale chemistry (elemental distributions and element-specific chemical speciation and local structure) inside Ryugu grains without physically cutting the samples. Manganese primarily occurs in carbonate: Mn-bearing dolomite with minor earlier ankerite. Iron sulfides present as large single grains and as smaller particles in the finer-grained matrix are both predominantly pyrrhotite. At the 5 μm scale, Fe sulfides do not show the mineralogical heterogeneity seen in many carbonaceous meteorites but exhibit some heterogeneous localized oxidation. Iron is present often as intergrowths of oxide and sulfide, indicating incomplete replacement. Trace selenium substitutes for S in pyrrhotite. Copper is present as Fe-poor Cu sulfide. These results demonstrate multiple episodes of fluid alteration on the parent body, including partial oxidation, and help constrain the sequence or evolution of fluids and processes that resulted in the current grain-scale mineralogical composition of Ryugu materials.","PeriodicalId":509137,"journal":{"name":"Geosciences","volume":"116 23","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140678515","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Despite evacuation on foot being recommended by authorities, evacuation in practice is assumed to include evacuation on foot and evacuation by car, as a certain amount of evacuation by car is to be expected. We developed a tsunami evacuation training application operating on smartphones and tablets, and a tsunami evacuation training simulator to evaluate the effect of this application. We then conducted an experiment in Nishio City to evaluate the application. We found that the subjects were able to quickly grasp the attention targets that were present near them but had difficulty grasping attention targets that were far away. This suggests that participants need to be trained repeatedly on distant objects of attention to be able to locate them instantaneously.
{"title":"New Tsunami Evacuation Training Methods: A Tsunami Evacuation Training Application","authors":"Toshiya Arakawa, Fumiaki Obayashi, Kazunobu Kobayashi, T. Itamiya, Shintaro Uno, Shigeyuki Yamabe, Takahiro Suzuki","doi":"10.3390/geosciences14040110","DOIUrl":"https://doi.org/10.3390/geosciences14040110","url":null,"abstract":"Despite evacuation on foot being recommended by authorities, evacuation in practice is assumed to include evacuation on foot and evacuation by car, as a certain amount of evacuation by car is to be expected. We developed a tsunami evacuation training application operating on smartphones and tablets, and a tsunami evacuation training simulator to evaluate the effect of this application. We then conducted an experiment in Nishio City to evaluate the application. We found that the subjects were able to quickly grasp the attention targets that were present near them but had difficulty grasping attention targets that were far away. This suggests that participants need to be trained repeatedly on distant objects of attention to be able to locate them instantaneously.","PeriodicalId":509137,"journal":{"name":"Geosciences","volume":"118 17","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140680465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-19DOI: 10.3390/geosciences14040109
Nicholas D. Diaz, Yoo-Jik Lee, Baukje L. M. Kothuis, Ismael Pagán-Trinidad, S. Jonkman, Samuel D. Brody
Floods are consistently ranked as the most financially devastating natural disasters worldwide. Recent flood events in the Netherlands, Caribbean, and US have drawn attention to flood risks resulting from pluvial and fluvial sources. Despite shared experiences with flooding, these regions employ distinct approaches and flood management strategies due to differences in governance and scale—offering a three-site case study comparison. A key, yet often lacking, factor for flood risk and damage assessments at the parcel level is building elevation compared to flood elevation. First-floor elevations (FFEs) are a critical element in the vulnerability of a building flooding. US-based flood insurance policies require FFEs; however, data availability limitations exist. Drone-based FFEs were measured in all locations to assess the flood vulnerabilities of structures. Flood vulnerability profiles revealed 64% of buildings were vulnerable to a form of inundation, with 40% belonging to “moderate” or “major” inundation, and inundation elevation means (IEMs) of −0.55 m, 0.19 m, and 0.71 m within the US, Netherlands, and Puerto Rico sites, respectively. Spatial statistics revealed FFEs were more responsible for flood vulnerabilities in the US site while topography was more responsible in the Netherlands and Puerto Rico sites. Additional findings in the Puerto Rico site reveal FFEs and next highest floor elevations (NHFEs) vulnerable to future sea level rise (SLR) flood elevations. The findings within the Netherlands provide support for developing novel multi-layered flood risk reduction strategies that include building elevation. We discuss future work recommendations and how the different sites could benefit significantly from strengthening FFE requirements.
{"title":"Mapping the Flood Vulnerability of Residential Structures: Cases from The Netherlands, Puerto Rico, and the United States","authors":"Nicholas D. Diaz, Yoo-Jik Lee, Baukje L. M. Kothuis, Ismael Pagán-Trinidad, S. Jonkman, Samuel D. Brody","doi":"10.3390/geosciences14040109","DOIUrl":"https://doi.org/10.3390/geosciences14040109","url":null,"abstract":"Floods are consistently ranked as the most financially devastating natural disasters worldwide. Recent flood events in the Netherlands, Caribbean, and US have drawn attention to flood risks resulting from pluvial and fluvial sources. Despite shared experiences with flooding, these regions employ distinct approaches and flood management strategies due to differences in governance and scale—offering a three-site case study comparison. A key, yet often lacking, factor for flood risk and damage assessments at the parcel level is building elevation compared to flood elevation. First-floor elevations (FFEs) are a critical element in the vulnerability of a building flooding. US-based flood insurance policies require FFEs; however, data availability limitations exist. Drone-based FFEs were measured in all locations to assess the flood vulnerabilities of structures. Flood vulnerability profiles revealed 64% of buildings were vulnerable to a form of inundation, with 40% belonging to “moderate” or “major” inundation, and inundation elevation means (IEMs) of −0.55 m, 0.19 m, and 0.71 m within the US, Netherlands, and Puerto Rico sites, respectively. Spatial statistics revealed FFEs were more responsible for flood vulnerabilities in the US site while topography was more responsible in the Netherlands and Puerto Rico sites. Additional findings in the Puerto Rico site reveal FFEs and next highest floor elevations (NHFEs) vulnerable to future sea level rise (SLR) flood elevations. The findings within the Netherlands provide support for developing novel multi-layered flood risk reduction strategies that include building elevation. We discuss future work recommendations and how the different sites could benefit significantly from strengthening FFE requirements.","PeriodicalId":509137,"journal":{"name":"Geosciences","volume":" 37","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140686061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-19DOI: 10.3390/geosciences14040106
Hsin-Fu Yeh, Xin-Yu Lin, C. Huang, Hsin-Yu Chen
Understanding drought evolution and its driving factors is crucial for effective water resource management and forecasting. This study enhances the analysis of drought probability by constructing bivariate distributions, providing a more realistic perspective than single-characteristic approaches. Additionally, a meteorological drought migration model is established to explore spatiotemporal paths and related characteristics of major drought events in the Choushui River alluvial fan. The results reveal a significant increase in the probability of southward-moving drought events after 1981. Before 1981, drought paths were diverse, while after 1981, these paths became remarkably similar, following a trajectory from north to south. This is primarily attributed to the higher rainfall in the northern region of the Choushui River alluvial fan from February to April, leading to a consistent southward movement of drought centroids. This study proposes that climate change is a primary factor influencing changes in the spatiotemporal paths of drought. It implies that changes in rainfall patterns and climate conditions can be discerned through the meteorological drought migration model. As a result, it provides the potential for simplifying drought-monitoring methods. These research findings provide further insight into the dynamic process of drought in the Choushui River alluvial fan and serve as valuable references for future water resource management.
{"title":"A Meteorological Drought Migration Model for Assessing the Spatiotemporal Paths of Drought in the Choushui River Alluvial Fan, Taiwan","authors":"Hsin-Fu Yeh, Xin-Yu Lin, C. Huang, Hsin-Yu Chen","doi":"10.3390/geosciences14040106","DOIUrl":"https://doi.org/10.3390/geosciences14040106","url":null,"abstract":"Understanding drought evolution and its driving factors is crucial for effective water resource management and forecasting. This study enhances the analysis of drought probability by constructing bivariate distributions, providing a more realistic perspective than single-characteristic approaches. Additionally, a meteorological drought migration model is established to explore spatiotemporal paths and related characteristics of major drought events in the Choushui River alluvial fan. The results reveal a significant increase in the probability of southward-moving drought events after 1981. Before 1981, drought paths were diverse, while after 1981, these paths became remarkably similar, following a trajectory from north to south. This is primarily attributed to the higher rainfall in the northern region of the Choushui River alluvial fan from February to April, leading to a consistent southward movement of drought centroids. This study proposes that climate change is a primary factor influencing changes in the spatiotemporal paths of drought. It implies that changes in rainfall patterns and climate conditions can be discerned through the meteorological drought migration model. As a result, it provides the potential for simplifying drought-monitoring methods. These research findings provide further insight into the dynamic process of drought in the Choushui River alluvial fan and serve as valuable references for future water resource management.","PeriodicalId":509137,"journal":{"name":"Geosciences","volume":" 24","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140685337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-19DOI: 10.3390/geosciences14040108
A. Nardi, Paolo Bagiacchi, Antonio Piersanti
Today, we have satellite images of Mars with a resolution of up to 24 cm per pixel. The planet has a thin atmosphere compared to Earth’s, but its surface is revealing itself to be active and complex. The use of images is an increasingly precise means of investigation for the study of transient phenomena that occur on the surface of the planet. We have developed a dating code that could be useful in the study of such phenomena. Thanks to this dating code, it is possible to immediately understand what season is in progress in the observed area starting from the terrestrial reference date of the photos taken by the orbiters. Some intermediate parameters of this calculation, such as the Martian year and the day of the year, can be equally useful for similar investigations. Satellite study of transient phenomena observable on the surface of Mars can range from geology (wind erosion and sedimentation) to meteorology (wind and phase transitions) to indigenous or non-indigenous biology.
{"title":"IMD: A Dating Code to Facilitate the Study of Transient Phenomena on the Surface of Mars","authors":"A. Nardi, Paolo Bagiacchi, Antonio Piersanti","doi":"10.3390/geosciences14040108","DOIUrl":"https://doi.org/10.3390/geosciences14040108","url":null,"abstract":"Today, we have satellite images of Mars with a resolution of up to 24 cm per pixel. The planet has a thin atmosphere compared to Earth’s, but its surface is revealing itself to be active and complex. The use of images is an increasingly precise means of investigation for the study of transient phenomena that occur on the surface of the planet. We have developed a dating code that could be useful in the study of such phenomena. Thanks to this dating code, it is possible to immediately understand what season is in progress in the observed area starting from the terrestrial reference date of the photos taken by the orbiters. Some intermediate parameters of this calculation, such as the Martian year and the day of the year, can be equally useful for similar investigations. Satellite study of transient phenomena observable on the surface of Mars can range from geology (wind erosion and sedimentation) to meteorology (wind and phase transitions) to indigenous or non-indigenous biology.","PeriodicalId":509137,"journal":{"name":"Geosciences","volume":" 76","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140683511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}