Pub Date : 2024-05-14DOI: 10.3390/geosciences14050135
Etsuo Uchida, Takumi Yokokura, S. Niki, Takafumi Hirata
This paper presents the integration of magnetic susceptibility measurements and whole-rock geochemical compositional and Nd–Sr isotopic ratio analyses for granite samples collected from the Ranong, Lam Pi, Ban Lam Ru, and Phuket granite bodies in the Western Granitoid Belt of Thailand. In addition, U–Pb dating was performed on zircons extracted from the samples. All samples are proper granites based on their mineralogical and geochemical characteristics. Two samples collected from the Lam Pi granite body were classified as magnetite-series and I-type. The remaining granite samples were classified as ilmenite-series and S- or A-type. Furthermore, all granites were classified as syn-collision granites. Excluding the magnetite-series samples from the Lam Pi granite body, the other samples exhibit enrichment in incompatible elements, such as Nb, Sn, Ta, Pb, Bi, Th, U, Ce, Rb, and Cs. Zircon U–Pb dating yielded ages of ca. 60 Ma for the magnetite-series granites from the Lam Pi granite body, whereas ages of 88–84 Ma were obtained for the other granite bodies. Initial Nd–Sr isotopic ratios indicate a higher contribution of mantle material in the Lam Pi magnetite-series granites and a higher contribution of continental crust material in the other granites. Based on these compositional and zircon U–Pb age data, it is inferred that the 88–84 Ma granites formed as a result of the thickening of the continental crust owing to the collision between the Sibumasu and the West Burma blocks. In contrast, the ca. 60 Ma Lam Pi magnetite-series granites are thought to have been generated via partial melting of the mantle wedge associated with the subduction of the Neo-Tethyan oceanic crust beneath the West Burma Block.
本文介绍了对从泰国西部花岗岩带的拉农、林皮、班林鲁和普吉花岗岩体采集的花岗岩样本进行的磁感应强度测量和全岩地球化学成分及钕锶同位素比分析的整合。此外,还对从样品中提取的锆石进行了铀-铅年代测定。根据其矿物学和地球化学特征,所有样本都是合适的花岗岩。从 Lam Pi 花岗岩体采集的两个样本被归类为磁铁矿系列和 I 型。其余的花岗岩样本被归类为ilmenite-系列和S型或A型。此外,所有花岗岩都被归类为同步碰撞花岗岩。除 Lam Pi 花岗岩体的磁铁矿系列样本外,其他样本均富含不相容元素,如 Nb、Sn、Ta、Pb、Bi、Th、U、Ce、Rb 和 Cs。根据锆石 U-Pb 测定法,Lam Pi 花岗岩体的磁铁矿系列花岗岩的年龄约为 60 Ma,而其他花岗岩体的年龄则为 88-84 Ma。最初的钕-锶同位素比率表明,在南皮磁铁矿系列花岗岩中,地幔物质所占比例较高,而在其他花岗岩中,大陆地壳物质所占比例较高。根据这些成分和锆石 U-Pb 年龄数据,可以推断 88-84 Ma 花岗岩是由于锡布马苏块体和西缅甸块体碰撞导致大陆地壳增厚而形成的。相比之下,约60Ma的Lam Pi磁铁矿系列花岗岩则被认为是与西缅甸地块下的新泰西洋地壳俯冲有关的地幔楔部分熔融而形成的。
{"title":"Geochemical Characteristics and U–Pb Dating of Granites in the Western Granitoid Belt of Thailand","authors":"Etsuo Uchida, Takumi Yokokura, S. Niki, Takafumi Hirata","doi":"10.3390/geosciences14050135","DOIUrl":"https://doi.org/10.3390/geosciences14050135","url":null,"abstract":"This paper presents the integration of magnetic susceptibility measurements and whole-rock geochemical compositional and Nd–Sr isotopic ratio analyses for granite samples collected from the Ranong, Lam Pi, Ban Lam Ru, and Phuket granite bodies in the Western Granitoid Belt of Thailand. In addition, U–Pb dating was performed on zircons extracted from the samples. All samples are proper granites based on their mineralogical and geochemical characteristics. Two samples collected from the Lam Pi granite body were classified as magnetite-series and I-type. The remaining granite samples were classified as ilmenite-series and S- or A-type. Furthermore, all granites were classified as syn-collision granites. Excluding the magnetite-series samples from the Lam Pi granite body, the other samples exhibit enrichment in incompatible elements, such as Nb, Sn, Ta, Pb, Bi, Th, U, Ce, Rb, and Cs. Zircon U–Pb dating yielded ages of ca. 60 Ma for the magnetite-series granites from the Lam Pi granite body, whereas ages of 88–84 Ma were obtained for the other granite bodies. Initial Nd–Sr isotopic ratios indicate a higher contribution of mantle material in the Lam Pi magnetite-series granites and a higher contribution of continental crust material in the other granites. Based on these compositional and zircon U–Pb age data, it is inferred that the 88–84 Ma granites formed as a result of the thickening of the continental crust owing to the collision between the Sibumasu and the West Burma blocks. In contrast, the ca. 60 Ma Lam Pi magnetite-series granites are thought to have been generated via partial melting of the mantle wedge associated with the subduction of the Neo-Tethyan oceanic crust beneath the West Burma Block.","PeriodicalId":509137,"journal":{"name":"Geosciences","volume":"3 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140980013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-12DOI: 10.3390/geosciences14050132
Hemayatullah Ahmadi, Anayatullah Popalzai, A. Bekbotayeva, G. Omarova, S. Assubayeva, Yalkunzhan Arshamov, E. Pekkan
Land use/land cover (LULC) changes significantly impact spatiotemporal groundwater levels, posing a challenge for sustainable water resource management. This study investigates the long-term (2000–2022) influence of LULC dynamics, particularly urbanization, on groundwater depletion in Kabul, Afghanistan, using geospatial techniques. A time series of Landsat imagery (Landsat 5, 7 ETM+, and 8 OLI/TIRS) was employed to generate LULC maps for five key years (2000, 2005, 2010, 2015, and 2022) using a supervised classification algorithm based on Support Vector Machines (SVMs). Our analysis revealed a significant expansion of urban areas (70%) across Kabul City between 2000 and 2022, particularly concentrated in Districts 5, 6, 7, 11, 12, 13, 15, 17, and 22. Urbanization likely contributes to groundwater depletion through increased population growth, reduced infiltration of precipitation, and potential overexploitation of groundwater resources. The CA-Markov model further predicts continued expansion in built-up areas over the next two decades (2030s and 2040s), potentially leading to water scarcity, land subsidence, and environmental degradation in Kabul City. The periodic assessment of urbanization dynamics and prediction of future trends are considered the novelty of this study. The accuracy of the generated LULC maps was assessed for each year (2000, 2005, 2010, 2015, and 2022), achieving overall accuracy values of 95%, 93.8%, 85%, 95.6%, and 93%, respectively. These findings provide a valuable foundation for the development of sustainable management strategies for Kabul’s surface water and groundwater resources, while also guiding future research efforts.
{"title":"Assessing the Impacts of Landuse-Landcover (LULC) Dynamics on Groundwater Depletion in Kabul, Afghanistan’s Capital (2000–2022): A Geospatial Technology-Driven Investigation","authors":"Hemayatullah Ahmadi, Anayatullah Popalzai, A. Bekbotayeva, G. Omarova, S. Assubayeva, Yalkunzhan Arshamov, E. Pekkan","doi":"10.3390/geosciences14050132","DOIUrl":"https://doi.org/10.3390/geosciences14050132","url":null,"abstract":"Land use/land cover (LULC) changes significantly impact spatiotemporal groundwater levels, posing a challenge for sustainable water resource management. This study investigates the long-term (2000–2022) influence of LULC dynamics, particularly urbanization, on groundwater depletion in Kabul, Afghanistan, using geospatial techniques. A time series of Landsat imagery (Landsat 5, 7 ETM+, and 8 OLI/TIRS) was employed to generate LULC maps for five key years (2000, 2005, 2010, 2015, and 2022) using a supervised classification algorithm based on Support Vector Machines (SVMs). Our analysis revealed a significant expansion of urban areas (70%) across Kabul City between 2000 and 2022, particularly concentrated in Districts 5, 6, 7, 11, 12, 13, 15, 17, and 22. Urbanization likely contributes to groundwater depletion through increased population growth, reduced infiltration of precipitation, and potential overexploitation of groundwater resources. The CA-Markov model further predicts continued expansion in built-up areas over the next two decades (2030s and 2040s), potentially leading to water scarcity, land subsidence, and environmental degradation in Kabul City. The periodic assessment of urbanization dynamics and prediction of future trends are considered the novelty of this study. The accuracy of the generated LULC maps was assessed for each year (2000, 2005, 2010, 2015, and 2022), achieving overall accuracy values of 95%, 93.8%, 85%, 95.6%, and 93%, respectively. These findings provide a valuable foundation for the development of sustainable management strategies for Kabul’s surface water and groundwater resources, while also guiding future research efforts.","PeriodicalId":509137,"journal":{"name":"Geosciences","volume":"123 25","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140986234","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-11DOI: 10.3390/geosciences14050131
P. Cianfarra, Danilo Morelli, Francesco Salvini
Regional-scale swarms of subparallel linear topographic features, known as lineament domains, are a common feature of planetary surfaces. Lineament domains are superficial manifestations of the crustal stress field trajectory. Notably, one of the effects of active tectonics is seismicity. Italy is one of the most seismically active regions in the Mediterranean, with many destructive earthquakes that have occurred in past centuries. Here, we assess the seismic meaning of the main lineament domain in the tectonically active region of Central Italy. We describe the use of an automated analysis of satellite imagery coupled with spatial grid analysis to identify three lineament domains of the Central Apennines. Spatial and azimuthal comparisons of the main lineament domain (i.e., the Apennine Domain), with the known locations of earthquakes (moment magnitude of Mw > 5.5) that occurred during the past century, revealed the most seismically active tectonic areas and their spatial distributions. Further, we present a conceptual seismo-geodynamic model for the Central Apennines, which is characterized by regional arching and explains the presence of an extensional tectonic regime in the upper crustal layer of the active Apennines fold-and-thrust belt.
{"title":"Geostatistical Analysis of Lineament Domains: The Study Case of the Apennine Seismic Province of Italy","authors":"P. Cianfarra, Danilo Morelli, Francesco Salvini","doi":"10.3390/geosciences14050131","DOIUrl":"https://doi.org/10.3390/geosciences14050131","url":null,"abstract":"Regional-scale swarms of subparallel linear topographic features, known as lineament domains, are a common feature of planetary surfaces. Lineament domains are superficial manifestations of the crustal stress field trajectory. Notably, one of the effects of active tectonics is seismicity. Italy is one of the most seismically active regions in the Mediterranean, with many destructive earthquakes that have occurred in past centuries. Here, we assess the seismic meaning of the main lineament domain in the tectonically active region of Central Italy. We describe the use of an automated analysis of satellite imagery coupled with spatial grid analysis to identify three lineament domains of the Central Apennines. Spatial and azimuthal comparisons of the main lineament domain (i.e., the Apennine Domain), with the known locations of earthquakes (moment magnitude of Mw > 5.5) that occurred during the past century, revealed the most seismically active tectonic areas and their spatial distributions. Further, we present a conceptual seismo-geodynamic model for the Central Apennines, which is characterized by regional arching and explains the presence of an extensional tectonic regime in the upper crustal layer of the active Apennines fold-and-thrust belt.","PeriodicalId":509137,"journal":{"name":"Geosciences","volume":"122 32","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140987552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-11DOI: 10.3390/geosciences14050130
Hang Thi Thuy Tran, Quang Hao Nguyen, Ty Huu Pham, Giang Thi Huong Ngo, Nho Tran Dinh Pham, Tung Gia Pham, Chau Thi Minh Tran, Thang Nam Ha
Bathymetry data is indispensable for a variety of aquatic field studies and benthic resource inventories. Determining water depth can be accomplished through an echo sounding system or remote estimation utilizing space-borne and air-borne data across diverse environments, such as lakes, rivers, seas, or lagoons. Despite being a common option for bathymetry mapping, the use of satellite imagery faces challenges due to the complex inherent optical properties of water bodies (e.g., turbid water), satellite spatial resolution limitations, and constraints in the performance of retrieval models. This study focuses on advancing the remote sensing based method by harnessing the non-linear learning capabilities of the machine learning (ML) model, employing advanced feature selection through a meta-heuristic algorithm, and using image extraction techniques (i.e., band ratio, gray scale morphological operation, and morphological multi-scale decomposition). Herein, we validate the predictive capabilities of six ML models: Random Forest (RF), Support Vector Machine (SVM), CatBoost (CB), Extreme Gradient Boost (XGB), Light Gradient Boosting Machine (LGBM), and KTBoost (KTB) models, both with and without the application of meta-heuristic optimization (i.e., Dragon Fly, Particle Swarm Optimization, and Grey Wolf Optimization), to accurately ascertain water depth. This is achieved using a diverse input dataset derived from multi-spectral Landsat 9 imagery captured on a cloud-free day (19 September 2023) in a shallow, turbid lagoon. Our findings indicate the superior performance of LGBM coupled with Particle Swamp Optimization (R2 = 0.908, RMSE = 0.31 m), affirming the consistency and reliability of the feature extraction and selection-based framework, while offering novel insights into the expansion of bathymetric mapping in complex aquatic environments.
{"title":"Novel Learning of Bathymetry from Landsat 9 Imagery Using Machine Learning, Feature Extraction and Meta-Heuristic Optimization in a Shallow Turbid Lagoon","authors":"Hang Thi Thuy Tran, Quang Hao Nguyen, Ty Huu Pham, Giang Thi Huong Ngo, Nho Tran Dinh Pham, Tung Gia Pham, Chau Thi Minh Tran, Thang Nam Ha","doi":"10.3390/geosciences14050130","DOIUrl":"https://doi.org/10.3390/geosciences14050130","url":null,"abstract":"Bathymetry data is indispensable for a variety of aquatic field studies and benthic resource inventories. Determining water depth can be accomplished through an echo sounding system or remote estimation utilizing space-borne and air-borne data across diverse environments, such as lakes, rivers, seas, or lagoons. Despite being a common option for bathymetry mapping, the use of satellite imagery faces challenges due to the complex inherent optical properties of water bodies (e.g., turbid water), satellite spatial resolution limitations, and constraints in the performance of retrieval models. This study focuses on advancing the remote sensing based method by harnessing the non-linear learning capabilities of the machine learning (ML) model, employing advanced feature selection through a meta-heuristic algorithm, and using image extraction techniques (i.e., band ratio, gray scale morphological operation, and morphological multi-scale decomposition). Herein, we validate the predictive capabilities of six ML models: Random Forest (RF), Support Vector Machine (SVM), CatBoost (CB), Extreme Gradient Boost (XGB), Light Gradient Boosting Machine (LGBM), and KTBoost (KTB) models, both with and without the application of meta-heuristic optimization (i.e., Dragon Fly, Particle Swarm Optimization, and Grey Wolf Optimization), to accurately ascertain water depth. This is achieved using a diverse input dataset derived from multi-spectral Landsat 9 imagery captured on a cloud-free day (19 September 2023) in a shallow, turbid lagoon. Our findings indicate the superior performance of LGBM coupled with Particle Swamp Optimization (R2 = 0.908, RMSE = 0.31 m), affirming the consistency and reliability of the feature extraction and selection-based framework, while offering novel insights into the expansion of bathymetric mapping in complex aquatic environments.","PeriodicalId":509137,"journal":{"name":"Geosciences","volume":" 630","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140989587","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-09DOI: 10.3390/geosciences14050129
Silvia Curioni, Paola Gattinoni, Giovanni Leonelli
Monitoring systems are recognized worldwide as fundamental tools for landslide risk management. However, monitoring can be difficult when dealing with large slopes in forested areas. In these situations, dendrogeomorphology can offer a low-cost and low-impact alternative for providing distributed information with an annual temporal resolution. The present study is a first attempt to integrate dendrometric and dendrogeomorphic data into a numerical finite difference model, in order to simulate the stress–strain behavior of the tree-slope system. By using a parametrical approach, the capability of the numerical model to effectively reproduce the tree stem anomalies (i.e., tilting angle, J-shaped feature, and internal stresses causing tree-ring growth anomalies such as eccentric growth and reaction wood) was verified, and the target parameters for the model calibration were identified based on a sensitivity analysis, which emphasized the relevance of the wood deformability; moreover, the interpretation of results allowed to point out different peculiarities (in terms of type of deformation, falling direction, and distribution of internal stresses) for different slope conditions (kinematics and depth of the failure surface) and different zones of the landslide (head scarp, main body, and toe). Afterwards, the modeling approach was applied to the Val Roncaglia landslide (Northen Italy), which involves a complex roto-translational kinematics, characterized by multiple sliding surfaces. The simulated stem anomalies showed good agreement with the ones arising from onsite dendrometric surveys, and they confirmed the conceptual model of the landslide, enabling the planning of further specific investigations. Moreover, the capability of the model in reproducing the tilting angle of trees, if correlated to their eccentricity, could provide a quite long time series (over more than 50–60 years) of the landslide reactivation and allow the use of dendrochronological data for the model calibration, thereby enhancing slope dynamic monitoring and landslide risk management.
监测系统是全世界公认的山体滑坡风险管理的基本工具。然而,在处理森林地区的大型斜坡时,监测可能会很困难。在这种情况下,树枝地貌学可以提供一种低成本、低影响的替代方法,提供具有年度时间分辨率的分布式信息。本研究首次尝试将树枝测量数据和树枝地貌数据整合到有限差分数值模型中,以模拟树木-斜坡系统的应力-应变行为。通过使用参数方法,数值模型能够有效地再现树干异常(即通过敏感性分析,确定了模型校准的目标参数,强调了木材变形能力的相关性;此外,通过对结果的解释,可以指出不同斜坡条件(运动学和崩塌面深度)和不同滑坡区域(坡顶、坡体和坡脚)的不同特点(变形类型、崩塌方向和内应力分布)。随后,将建模方法应用于 Val Roncaglia 滑坡(意大利北部),该滑坡具有复杂的旋转-横向运动学特征,并有多个滑动面。模拟的茎干异常现象与现场地形测量的异常现象非常吻合,证实了滑坡的概念模型,有助于规划进一步的具体调查。此外,该模型能够再现树木的倾斜角度,如果与树木的偏心率相关联,则可以提供一个相当长的滑坡再激活时间序列(超过 50-60 年),并允许使用树木年代学数据对模型进行校准,从而加强斜坡动态监测和滑坡风险管理。
{"title":"Integrating Dendrogeomorphology into Stress–Strain Numerical Models: An Opportunity to Monitor Slope Dynamic","authors":"Silvia Curioni, Paola Gattinoni, Giovanni Leonelli","doi":"10.3390/geosciences14050129","DOIUrl":"https://doi.org/10.3390/geosciences14050129","url":null,"abstract":"Monitoring systems are recognized worldwide as fundamental tools for landslide risk management. However, monitoring can be difficult when dealing with large slopes in forested areas. In these situations, dendrogeomorphology can offer a low-cost and low-impact alternative for providing distributed information with an annual temporal resolution. The present study is a first attempt to integrate dendrometric and dendrogeomorphic data into a numerical finite difference model, in order to simulate the stress–strain behavior of the tree-slope system. By using a parametrical approach, the capability of the numerical model to effectively reproduce the tree stem anomalies (i.e., tilting angle, J-shaped feature, and internal stresses causing tree-ring growth anomalies such as eccentric growth and reaction wood) was verified, and the target parameters for the model calibration were identified based on a sensitivity analysis, which emphasized the relevance of the wood deformability; moreover, the interpretation of results allowed to point out different peculiarities (in terms of type of deformation, falling direction, and distribution of internal stresses) for different slope conditions (kinematics and depth of the failure surface) and different zones of the landslide (head scarp, main body, and toe). Afterwards, the modeling approach was applied to the Val Roncaglia landslide (Northen Italy), which involves a complex roto-translational kinematics, characterized by multiple sliding surfaces. The simulated stem anomalies showed good agreement with the ones arising from onsite dendrometric surveys, and they confirmed the conceptual model of the landslide, enabling the planning of further specific investigations. Moreover, the capability of the model in reproducing the tilting angle of trees, if correlated to their eccentricity, could provide a quite long time series (over more than 50–60 years) of the landslide reactivation and allow the use of dendrochronological data for the model calibration, thereby enhancing slope dynamic monitoring and landslide risk management.","PeriodicalId":509137,"journal":{"name":"Geosciences","volume":" 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140997163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-08DOI: 10.3390/geosciences14050128
D. Ruban, N. Yashalova
Global geoparks, i.e., the members of the UNESCO Global Geopark (UGGp) network, possess highly valuable geoheritage resources, which can be used for the purposes of not only education and tourism, but also science. Five examples from four Latin American countries (Chile, Ecuador, Mexico, and Peru) were employed to realize the importance of these global geoparks as facilitators of international research. Journal articles devoted to these geoparks were selected with the major bibliographical databases, and the information from them was analyzed quantitatively. Particularly, the numbers of articles published before and after the UGGp membership, paying significant and marginal attention to geoparks, and published by international teams were calculated; the general themes of the articles were outlined. It was established that the total number of publications grew after the UGGp membership of these geoparks, but not steadily. The established dynamics of publishing are unstable and differ between the geoparks. Geoparks of Mexico (Mixteca Alta) and Peru (Colca y Volcanes de Andagua) are notable examples because they started to facilitate international research before the UGGp membership. Many articles consider geoparks only marginally (nonetheless, there are also articles paying significant attention to geoparks, especially in the cases of two Mexican geoparks). The author teams are often not restricted to Latin America. The research themes are rather diverse (geoheritage, geology, ecology, innovations, society, technology), although the majority of the publications are geoheritage-focused. Of special interest is the Colca y Volcanes de Andagua global geopark, which has been considered in the innovation-focused article. Generally, our results indicate a moderate importance of the considered global geoparks to international research activity and the incomplete exploitation of their scientific potential. Two Mexican geoparks (Comarca Minera and Mixteca Alta) seem to be the most successful in the facilitation of international research. Indeed, the scientific utility of global geoparks should be strengthened.
全球地质公园,即教科文组织全球地质公园(UGGp)网络的成员,拥有非常宝贵的地 质遗产资源,不仅可用于教育和旅游目的,还可用于科学目的。通过四个拉丁美洲国家(智利、厄瓜多尔、墨西哥和秘鲁)的五个实例,我们认识到了这些全球地质公园作为国际研究促进者的重要性。从主要的文献数据库中选取了有关这些地质公园的期刊文章,并对其中的信息进行了定量分析。特别是计算了在加入 UGGp 之前和之后发表的文章数量、对地质公园的重要关注和次要关注以及由国际团队发表的文章数量,并概述了这些文章的一般主题。结果表明,在这些地质公园加入 UGGp 之后,发表文章的总数有所增加,但并不稳定。已确定的出版动态并不稳定,各地质公园之间也存在差异。墨西哥地质公园(Mixteca Alta)和秘鲁地质公园(Colca y Volcanes de Andagua)是明显的例子,因为它们在加入地质公园联盟之前就开始促进国际研究。许多文章对地质公园只是略加考虑(尽管如此,也有一些文章对地质公园给予了极大的关注,特别是墨西哥的两个地质公园)。作者团队通常不局限于拉丁美洲。研究主题相当多样(地质遗产、地质学、生态学、创新、社会、技术),尽管大多数出版物都以地质遗产为重点。特别值得关注的是科尔卡和安达瓜火山(Colca y Volcanes de Andagua)世界地质公园,这篇文章以创新为重点。总体而言,我们的研究结果表明,所考虑的全球地质公园对国际研究活动的重要性一般,其科学潜力尚未得到充分开发。两个墨西哥地质公园(Comarca Minera 和 Mixteca Alta)在促进国际研究方面似乎最为成功。事实上,应加强全球地质公园的科学效用。
{"title":"Scientific Utility of Selected Latin American Global Geoparks: A Literature-Based Case Study","authors":"D. Ruban, N. Yashalova","doi":"10.3390/geosciences14050128","DOIUrl":"https://doi.org/10.3390/geosciences14050128","url":null,"abstract":"Global geoparks, i.e., the members of the UNESCO Global Geopark (UGGp) network, possess highly valuable geoheritage resources, which can be used for the purposes of not only education and tourism, but also science. Five examples from four Latin American countries (Chile, Ecuador, Mexico, and Peru) were employed to realize the importance of these global geoparks as facilitators of international research. Journal articles devoted to these geoparks were selected with the major bibliographical databases, and the information from them was analyzed quantitatively. Particularly, the numbers of articles published before and after the UGGp membership, paying significant and marginal attention to geoparks, and published by international teams were calculated; the general themes of the articles were outlined. It was established that the total number of publications grew after the UGGp membership of these geoparks, but not steadily. The established dynamics of publishing are unstable and differ between the geoparks. Geoparks of Mexico (Mixteca Alta) and Peru (Colca y Volcanes de Andagua) are notable examples because they started to facilitate international research before the UGGp membership. Many articles consider geoparks only marginally (nonetheless, there are also articles paying significant attention to geoparks, especially in the cases of two Mexican geoparks). The author teams are often not restricted to Latin America. The research themes are rather diverse (geoheritage, geology, ecology, innovations, society, technology), although the majority of the publications are geoheritage-focused. Of special interest is the Colca y Volcanes de Andagua global geopark, which has been considered in the innovation-focused article. Generally, our results indicate a moderate importance of the considered global geoparks to international research activity and the incomplete exploitation of their scientific potential. Two Mexican geoparks (Comarca Minera and Mixteca Alta) seem to be the most successful in the facilitation of international research. Indeed, the scientific utility of global geoparks should be strengthened.","PeriodicalId":509137,"journal":{"name":"Geosciences","volume":" 122","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141000564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-06DOI: 10.3390/geosciences14050127
Vittoria Vandelli, P. Migoń, Ylva Palmgren, E. Spyrou, G. Saitis, Maria Eleni Andrikopoulou, Paola Coratza, M. Medjkane, Carmen Prieto, Konstantinos Kalovrektis, C. Lissak, Alexandros Papadopoulos, Nikos Papastamatiou, N. Evelpidou, O. Maquaire, Sarantos Psycharis, A. Stroeven, Mauro Soldati
Virtual reality is a technological development that, among others, has revolutionized Earth sciences. Its advantages include an opportunity to examine places otherwise difficult or impossible to access and it may also become an important component of education, fostering a better understanding of processes and landforms, geohazard awareness, and an appreciation of geoheritage. This paper reports on the GeoVT project, which aims to create a platform to build and disseminate Virtual Field Trips (VFTs) focused on geomorphology, natural hazards associated with geomorphological processes, and geoheritage sites. To put the GeoVT project in context, an overview of applications of VR in geosciences is provided. This paper subsequently proceeds with a presentation of the project and the GeoVT Authoring application, which is an innovative platform designed to help teachers and students, followed by brief presentations of a number of VFTs developed within the project. They address themes such as fluvial landforms and valley development, coastal landforms, evidence of past glaciation, coastal erosion, wildfire effects, mud volcanoes, and landslides.
{"title":"Towards Enhanced Understanding and Experience of Landforms, Geohazards, and Geoheritage through Virtual Reality Technologies in Education: Lessons from the GeoVT Project","authors":"Vittoria Vandelli, P. Migoń, Ylva Palmgren, E. Spyrou, G. Saitis, Maria Eleni Andrikopoulou, Paola Coratza, M. Medjkane, Carmen Prieto, Konstantinos Kalovrektis, C. Lissak, Alexandros Papadopoulos, Nikos Papastamatiou, N. Evelpidou, O. Maquaire, Sarantos Psycharis, A. Stroeven, Mauro Soldati","doi":"10.3390/geosciences14050127","DOIUrl":"https://doi.org/10.3390/geosciences14050127","url":null,"abstract":"Virtual reality is a technological development that, among others, has revolutionized Earth sciences. Its advantages include an opportunity to examine places otherwise difficult or impossible to access and it may also become an important component of education, fostering a better understanding of processes and landforms, geohazard awareness, and an appreciation of geoheritage. This paper reports on the GeoVT project, which aims to create a platform to build and disseminate Virtual Field Trips (VFTs) focused on geomorphology, natural hazards associated with geomorphological processes, and geoheritage sites. To put the GeoVT project in context, an overview of applications of VR in geosciences is provided. This paper subsequently proceeds with a presentation of the project and the GeoVT Authoring application, which is an innovative platform designed to help teachers and students, followed by brief presentations of a number of VFTs developed within the project. They address themes such as fluvial landforms and valley development, coastal landforms, evidence of past glaciation, coastal erosion, wildfire effects, mud volcanoes, and landslides.","PeriodicalId":509137,"journal":{"name":"Geosciences","volume":"4 8","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141011453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-03DOI: 10.3390/geosciences14050125
Luis Bustos-Espinoza, Patricio Torres-Ramírez, Sergio Figueroa, Pablo S. González, Marcelo A. Pavez, Rodolfo Jerez, G. Saldías, Claudio Espinoza, Alexander Galán
Concepción Bay is a socio-economic and ecologically important embayment whose hydrographic variability has been historically regulated by wind-modulated seasonal upwelling events during spring–summer and by freshwater from precipitation and river discharges during fall–winter. This system is subject to several anthropogenic and environmental strains due to the intense port activity and the increasing occurrence of extreme natural events. This study determines a new hydrographic regime and characterizes and analyzes the biogeochemical response of the water column to changes in rainfall and upwelling patterns. Despite the intrusion of nitrate-rich upwelled waters that enhance biological productivity remains more intense during spring–summer, the system remains fertilized year-long due to the occurrence of persistent upwelling pulses during fall–winter. The hydrographic structure presented a two-layer water column that was stratified thermally in spring–summer and primarily by freshwater inputs in fall–winter. Nevertheless, the regular pattern of the rainfall has changed (a decrease in precipitation and an increased frequency of extreme rainfall events), together with recurrent upwelling-favorable wind pulses during the non-upwelling season. This new regime has altered the seasonality of the physicochemical conditions and the structure of the microplanktonic communities, with productive and sanitary implications affecting the biogeochemical status of CB.
{"title":"Biogeochemical Response of the Water Column of Concepción Bay, Chile, to a New Regime of Atmospheric and Oceanographic Variability","authors":"Luis Bustos-Espinoza, Patricio Torres-Ramírez, Sergio Figueroa, Pablo S. González, Marcelo A. Pavez, Rodolfo Jerez, G. Saldías, Claudio Espinoza, Alexander Galán","doi":"10.3390/geosciences14050125","DOIUrl":"https://doi.org/10.3390/geosciences14050125","url":null,"abstract":"Concepción Bay is a socio-economic and ecologically important embayment whose hydrographic variability has been historically regulated by wind-modulated seasonal upwelling events during spring–summer and by freshwater from precipitation and river discharges during fall–winter. This system is subject to several anthropogenic and environmental strains due to the intense port activity and the increasing occurrence of extreme natural events. This study determines a new hydrographic regime and characterizes and analyzes the biogeochemical response of the water column to changes in rainfall and upwelling patterns. Despite the intrusion of nitrate-rich upwelled waters that enhance biological productivity remains more intense during spring–summer, the system remains fertilized year-long due to the occurrence of persistent upwelling pulses during fall–winter. The hydrographic structure presented a two-layer water column that was stratified thermally in spring–summer and primarily by freshwater inputs in fall–winter. Nevertheless, the regular pattern of the rainfall has changed (a decrease in precipitation and an increased frequency of extreme rainfall events), together with recurrent upwelling-favorable wind pulses during the non-upwelling season. This new regime has altered the seasonality of the physicochemical conditions and the structure of the microplanktonic communities, with productive and sanitary implications affecting the biogeochemical status of CB.","PeriodicalId":509137,"journal":{"name":"Geosciences","volume":"78 9","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141016172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-03DOI: 10.3390/geosciences14050126
Georgios Lazaridis, E. Katrivanos, Despoina Dora, Lambrini Papadopoulou, Ilias Lazos, A. Chatzipetros
Caves serve as time capsules, preserving significant markers of tectonic activity and offering insights into geological history. Fault geometries and past activations found in caves can be correlated with known deformational events in the broader area, temporally delimiting the speleogenesis. More specifically, cave passage formation is suggested to be affected by the regional stress-field. The Asprorema Cave in Northern Greece is a typical example of a fracture guided cave, with passage geometry influenced by relative sidewall movements, revealing these discontinuities as faults. This study constructs the timeframe and conceptual model of speleogenesis in relation to tectonic events, geomorphological evolution and hydrological zones, and verifies its relation to the stress-field. Active tectonics, mineralogy and cave geomorphology are investigated. Results suggest syntectonic speleogenesis under phreatic and epiphreatic conditions. The absence of corrosion on fault slip surfaces implies recent activations post cave’s shift to the vadose zone. Structural analysis identifies three main neotectonic phases: NNW-SSE striking faults (oldest group of structures), NE-SW striking faults with dextral strike-slip movement (post-middle Miocene), and NE-SW striking normal faults indicating extensional stress-regime (Quartenary). The last two phases affect cave passage shape causing wall displacement, highlighting passage formation along discontinuities perpendicular to the horizontal minimum stress axis.
{"title":"Evaluating the Relation of Cave Passage Formation to Stress-Field: Spatio-Temporal Correlation of Speleogenesis with Active Tectonics in Asprorema Cave (Mt. Pinovo, Greece)","authors":"Georgios Lazaridis, E. Katrivanos, Despoina Dora, Lambrini Papadopoulou, Ilias Lazos, A. Chatzipetros","doi":"10.3390/geosciences14050126","DOIUrl":"https://doi.org/10.3390/geosciences14050126","url":null,"abstract":"Caves serve as time capsules, preserving significant markers of tectonic activity and offering insights into geological history. Fault geometries and past activations found in caves can be correlated with known deformational events in the broader area, temporally delimiting the speleogenesis. More specifically, cave passage formation is suggested to be affected by the regional stress-field. The Asprorema Cave in Northern Greece is a typical example of a fracture guided cave, with passage geometry influenced by relative sidewall movements, revealing these discontinuities as faults. This study constructs the timeframe and conceptual model of speleogenesis in relation to tectonic events, geomorphological evolution and hydrological zones, and verifies its relation to the stress-field. Active tectonics, mineralogy and cave geomorphology are investigated. Results suggest syntectonic speleogenesis under phreatic and epiphreatic conditions. The absence of corrosion on fault slip surfaces implies recent activations post cave’s shift to the vadose zone. Structural analysis identifies three main neotectonic phases: NNW-SSE striking faults (oldest group of structures), NE-SW striking faults with dextral strike-slip movement (post-middle Miocene), and NE-SW striking normal faults indicating extensional stress-regime (Quartenary). The last two phases affect cave passage shape causing wall displacement, highlighting passage formation along discontinuities perpendicular to the horizontal minimum stress axis.","PeriodicalId":509137,"journal":{"name":"Geosciences","volume":"15 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141014815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-02DOI: 10.3390/geosciences14050124
Stefania Amici, M. Buongiorno, A. Sciarra, Adriano Mazzini
Imaging spectroscopy allows us to identify surface materials by analyzing the spectra resulting from the light–material interaction. In this preliminary study, we analyze a pair of hyperspectral cubes acquired by PRISMA (on 20 April 2021) and EO1- Hyperion (on 4 July 2015) over the Indonesian Lusi mud eruption. We show the potential suitability of using the two sensors for characterizing the mineralogical features in demanding “wet and muddy” environments such as Lusi. We use spectral library reflectance spectra like Illite Chlorite from the USGS spectral library, which are known to be associated with Lusi volcanic products, to identify minerals. In addition, we have measured the reflectance spectra and composition of Lusi sampled mud collected in November 2014. Finally, we compare them with reflectance spectra from EO1-Hyperion and PRISMA. The use of hyperspectral sensors at improved SNR, such as PRISMA, has shown the potential to determine the mineral composition of Lusi PRISMA data, which allowed the distinction of areas with different turbidities as well. Artifacts in the VNIR spectral region of the L2 PRISMA reflectance product were found, suggesting that future work needs to take into account an independent atmospheric correction rather than using the L2D PRISMA product.
{"title":"Mud Spectral Characteristics from the Lusi Eruption, East Java, Indonesia Using Satellite Hyperspectral Data","authors":"Stefania Amici, M. Buongiorno, A. Sciarra, Adriano Mazzini","doi":"10.3390/geosciences14050124","DOIUrl":"https://doi.org/10.3390/geosciences14050124","url":null,"abstract":"Imaging spectroscopy allows us to identify surface materials by analyzing the spectra resulting from the light–material interaction. In this preliminary study, we analyze a pair of hyperspectral cubes acquired by PRISMA (on 20 April 2021) and EO1- Hyperion (on 4 July 2015) over the Indonesian Lusi mud eruption. We show the potential suitability of using the two sensors for characterizing the mineralogical features in demanding “wet and muddy” environments such as Lusi. We use spectral library reflectance spectra like Illite Chlorite from the USGS spectral library, which are known to be associated with Lusi volcanic products, to identify minerals. In addition, we have measured the reflectance spectra and composition of Lusi sampled mud collected in November 2014. Finally, we compare them with reflectance spectra from EO1-Hyperion and PRISMA. The use of hyperspectral sensors at improved SNR, such as PRISMA, has shown the potential to determine the mineral composition of Lusi PRISMA data, which allowed the distinction of areas with different turbidities as well. Artifacts in the VNIR spectral region of the L2 PRISMA reflectance product were found, suggesting that future work needs to take into account an independent atmospheric correction rather than using the L2D PRISMA product.","PeriodicalId":509137,"journal":{"name":"Geosciences","volume":"5 11","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141021154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}