Pub Date : 2024-06-07DOI: 10.3390/geosciences14060158
Tamás János Katona
The safety regulations require periodic reviews of the site hazards when operating nuclear power plants. If any indications of Quaternary fault activity are revealed, the fault displacement hazard should be evaluated. Signs of paleo-liquefaction were recently found at the nuclear site of Paks, Hungary, indicating the late-Pleistocene activity of the fault crossing the site. Except for this, there are no historical or instrumental records of earthquakes at the fault, and the micro-seismic and GPS monitoring results do not indicate activity either. Despite a thorough site investigation of over 40 years, the indications are uncertain and insufficient for defining the fault activity, as required for a probabilistic fault displacement hazard analysis. This paper develops and applies a simplified conservative hazard evaluation method of average fault displacement that allows an in-time decision regarding the safety relevance of the hazard. Geometrical simplification is possible since the fault crosses the site. The fault’s activity is evaluated using magnitude–frequency relations of the area sources developed for probabilistic seismic hazard analysis. The total probability theorem is applied, and different strike-slip fault scaling relations are considered while calculating the probability of non-zero surface displacement, fault rupture length, and average displacement. The fault displacement hazard curve is defined and compared with earlier studies for the same site. Since the late recognition of active faults cannot be excluded at several operating plant sites, the methodology can be applied in the future beyond a single application for the Paks site in Hungary.
{"title":"Conservative Evaluation of Fault Displacement Hazard for a Nuclear Site in Case of Insufficient Data on the Fault Activity","authors":"Tamás János Katona","doi":"10.3390/geosciences14060158","DOIUrl":"https://doi.org/10.3390/geosciences14060158","url":null,"abstract":"The safety regulations require periodic reviews of the site hazards when operating nuclear power plants. If any indications of Quaternary fault activity are revealed, the fault displacement hazard should be evaluated. Signs of paleo-liquefaction were recently found at the nuclear site of Paks, Hungary, indicating the late-Pleistocene activity of the fault crossing the site. Except for this, there are no historical or instrumental records of earthquakes at the fault, and the micro-seismic and GPS monitoring results do not indicate activity either. Despite a thorough site investigation of over 40 years, the indications are uncertain and insufficient for defining the fault activity, as required for a probabilistic fault displacement hazard analysis. This paper develops and applies a simplified conservative hazard evaluation method of average fault displacement that allows an in-time decision regarding the safety relevance of the hazard. Geometrical simplification is possible since the fault crosses the site. The fault’s activity is evaluated using magnitude–frequency relations of the area sources developed for probabilistic seismic hazard analysis. The total probability theorem is applied, and different strike-slip fault scaling relations are considered while calculating the probability of non-zero surface displacement, fault rupture length, and average displacement. The fault displacement hazard curve is defined and compared with earlier studies for the same site. Since the late recognition of active faults cannot be excluded at several operating plant sites, the methodology can be applied in the future beyond a single application for the Paks site in Hungary.","PeriodicalId":509137,"journal":{"name":"Geosciences","volume":" 45","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141374317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-06DOI: 10.3390/geosciences14060154
Abdelkhiar Ait Ali, M. Charroud, J. Choukrad, Youssef Ouahzizi, Hicham Si Mhamdi, Nacir El Moutaouakkil, N. Saoud, A. Mechaqrane
The Middle Atlas hosts calcite veins of considerable economic value, being found in the Mahdi and Bou Naceur ridges in the eastern part of the Moroccan Middle Atlas. In this study, we aim to identify the fundamental factors controlling mineralization, which could be essential for the exploration of calcite minerals. Jurassic dolomites and limestones host calcite deposits. Mineralization is controlled by the NE-SW sinistral fault system of the Mahdi Ridge as well as by the NW-SE dextral fault system of the Bou Naceur Ridge. These veins exhibit a Riedel shear system. The edges of the veins display different textures, such as banded and brecciated calcite. At the heart of the veins are deposits of massive, automorphic, pure crystalline calcite. Geochemical analyses revealed carbonate rock dissolution and carbonate fluid infiltration, indicating the presence of a low-temperature hydrothermal system. These mineralizations are a response to the evolution of the geodynamic uplift of the Middle Atlas during the Neogene, which occurred during the Alpine orogeny.
{"title":"Identification, Characterization, and Deposit Model of Calcite Mineralization in the Middle Atlas Belts, Morocco","authors":"Abdelkhiar Ait Ali, M. Charroud, J. Choukrad, Youssef Ouahzizi, Hicham Si Mhamdi, Nacir El Moutaouakkil, N. Saoud, A. Mechaqrane","doi":"10.3390/geosciences14060154","DOIUrl":"https://doi.org/10.3390/geosciences14060154","url":null,"abstract":"The Middle Atlas hosts calcite veins of considerable economic value, being found in the Mahdi and Bou Naceur ridges in the eastern part of the Moroccan Middle Atlas. In this study, we aim to identify the fundamental factors controlling mineralization, which could be essential for the exploration of calcite minerals. Jurassic dolomites and limestones host calcite deposits. Mineralization is controlled by the NE-SW sinistral fault system of the Mahdi Ridge as well as by the NW-SE dextral fault system of the Bou Naceur Ridge. These veins exhibit a Riedel shear system. The edges of the veins display different textures, such as banded and brecciated calcite. At the heart of the veins are deposits of massive, automorphic, pure crystalline calcite. Geochemical analyses revealed carbonate rock dissolution and carbonate fluid infiltration, indicating the presence of a low-temperature hydrothermal system. These mineralizations are a response to the evolution of the geodynamic uplift of the Middle Atlas during the Neogene, which occurred during the Alpine orogeny.","PeriodicalId":509137,"journal":{"name":"Geosciences","volume":"146 1‐4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141381279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-06DOI: 10.3390/geosciences14060156
Emerzon Torres, Jonathan Dungca
Seismic events remain a significant threat, causing loss of life and extensive damage in vulnerable regions. Soil liquefaction, a complex phenomenon where soil particles lose confinement, poses a substantial risk. The existing conventional simplified procedures, and some current machine learning techniques, for liquefaction assessment reveal limitations and disadvantages. Utilizing the publicly available liquefaction case history database, this study aimed to produce a rule-based liquefaction triggering classification model using rough set-based machine learning, which is an interpretable machine learning tool. Following a series of procedures, a set of 32 rules in the form of IF-THEN statements were chosen as the best rule set. While some rules showed the expected outputs, there are several rules that presented attribute threshold values for triggering liquefaction. Rules that govern fine-grained soils emerged and challenged some of the common understandings of soil liquefaction. Additionally, this study also offered a clear flowchart for utilizing the rule-based model, demonstrated through practical examples using a borehole log. Results from the state-of-practice simplified procedures for liquefaction triggering align well with the proposed rule-based model. Recommendations for further evaluations of some rules and the expansion of the liquefaction database are warranted.
{"title":"Prediction of Soil Liquefaction Triggering Using Rule-Based Interpretable Machine Learning","authors":"Emerzon Torres, Jonathan Dungca","doi":"10.3390/geosciences14060156","DOIUrl":"https://doi.org/10.3390/geosciences14060156","url":null,"abstract":"Seismic events remain a significant threat, causing loss of life and extensive damage in vulnerable regions. Soil liquefaction, a complex phenomenon where soil particles lose confinement, poses a substantial risk. The existing conventional simplified procedures, and some current machine learning techniques, for liquefaction assessment reveal limitations and disadvantages. Utilizing the publicly available liquefaction case history database, this study aimed to produce a rule-based liquefaction triggering classification model using rough set-based machine learning, which is an interpretable machine learning tool. Following a series of procedures, a set of 32 rules in the form of IF-THEN statements were chosen as the best rule set. While some rules showed the expected outputs, there are several rules that presented attribute threshold values for triggering liquefaction. Rules that govern fine-grained soils emerged and challenged some of the common understandings of soil liquefaction. Additionally, this study also offered a clear flowchart for utilizing the rule-based model, demonstrated through practical examples using a borehole log. Results from the state-of-practice simplified procedures for liquefaction triggering align well with the proposed rule-based model. Recommendations for further evaluations of some rules and the expansion of the liquefaction database are warranted.","PeriodicalId":509137,"journal":{"name":"Geosciences","volume":"5 11","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141380555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-06DOI: 10.3390/geosciences14060157
S. Furlani, Mauro Agate, Eleonora de Sabata, Renato Chemello, V. Vaccher, Giulia Visconti, Fabrizio Antonioli
Tidal notches, long regarded as reliable indicators of mean sea level, have been extensively studied along carbonate coasts in the central Mediterranean Sea. Previous studies revealed a correlation between the genesis of tidal notches and tidal range, lithology, cliff foot depth, and wave energy. In the 2020 Geoswim campaigns at Lampedusa, the southernmost island of the Pelagie archipelago (Italy), and in Gozo Island (Malta), ‘anomalous’ tidal notches were identified. Unlike normal notches observed elsewhere, those in Lampedusa’s southern bays exhibited a particular behaviour —constantly deepening in the inner part of the bays, reaching a maximum depth of approximately 30 cm below sea level and narrowing inwards. Similar phenomena were previously observed near Marseille (France). As confirmed by the literature, all these areas are tectonically stable. Time-lapse images, alongside measurements of morphometric parameters, were collected during the survey. Our hypothesis indicates that a combination of marine factors influenced by local marine conditions driven by the local morphology of the small bays exposed to southern quadrants contribute to the formation of these unique landforms. The latter manifests higher lowering erosion rates slightly below the mean sea level in sheltered areas, challenging conventional notions about tidal notch formation.
{"title":"Dipping Tidal Notch (DTN): Exposed vs. Sheltered Morphometry","authors":"S. Furlani, Mauro Agate, Eleonora de Sabata, Renato Chemello, V. Vaccher, Giulia Visconti, Fabrizio Antonioli","doi":"10.3390/geosciences14060157","DOIUrl":"https://doi.org/10.3390/geosciences14060157","url":null,"abstract":"Tidal notches, long regarded as reliable indicators of mean sea level, have been extensively studied along carbonate coasts in the central Mediterranean Sea. Previous studies revealed a correlation between the genesis of tidal notches and tidal range, lithology, cliff foot depth, and wave energy. In the 2020 Geoswim campaigns at Lampedusa, the southernmost island of the Pelagie archipelago (Italy), and in Gozo Island (Malta), ‘anomalous’ tidal notches were identified. Unlike normal notches observed elsewhere, those in Lampedusa’s southern bays exhibited a particular behaviour —constantly deepening in the inner part of the bays, reaching a maximum depth of approximately 30 cm below sea level and narrowing inwards. Similar phenomena were previously observed near Marseille (France). As confirmed by the literature, all these areas are tectonically stable. Time-lapse images, alongside measurements of morphometric parameters, were collected during the survey. Our hypothesis indicates that a combination of marine factors influenced by local marine conditions driven by the local morphology of the small bays exposed to southern quadrants contribute to the formation of these unique landforms. The latter manifests higher lowering erosion rates slightly below the mean sea level in sheltered areas, challenging conventional notions about tidal notch formation.","PeriodicalId":509137,"journal":{"name":"Geosciences","volume":"74 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141377322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-06DOI: 10.3390/geosciences14060155
Uroš Barudžija, Josip Ivšinović, T. Malvić
The correct selection of the value of p is a complex and iterative procedure that requires experience in the interpretation of the obtained interpolated maps. Inverse Distance Weighting is a method applied to the porosities of the K and L hydrocarbon reservoirs discovered in the Neogene (Lower Pontian) subsurface sandstones in northern Croatia (Pannonian Basin System). They represent small and large data samples. Also, a standard statistical analysis of the data was made, followed by a qualitative–quantitative analysis of the maps, based on the selection of different values for the power distance exponent (p-value) for the K and L reservoir maps. According to the qualitative analysis, for a small data set, the p-value could be set at 1 or 2, giving the optimal result, while for a large data set, a p value of 3 or 4 could be applied. For quantitative analysis, in the case of a small data set, p = 2 is recommended, resulting in a root mean square error value of 0.03458, a mean absolute error of 0.02013 and a median absolute deviation of 0.00546. In contrast, a p-value of 3 or 4 is selected as appropriate for a large data set, with root mean square errors of 0.02435 and 0.02437, mean square errors of 0.01582 and 0.01509 and median absolute deviations 0.00896 and 0.00444. Eventually for a small data set, it is recommended to use a p-value of 2, and for a large data set, a p-value of 3 or 4.
正确选择 p 值是一个复杂的迭代过程,需要对所获得的插值图进行解释的经验。反距离加权法适用于在克罗地亚北部(潘诺尼亚盆地系统)新近纪(下庞提安)地下砂岩中发现的 K 和 L 油气藏的孔隙度。它们代表了小型和大型数据样本。此外,还对数据进行了标准统计分析,然后根据 K 和 L 储层图选择不同的幂距指数值(p 值),对储层图进行了定性-定量分析。根据定性分析,对于小数据集,可将 p 值设为 1 或 2,以获得最佳结果,而对于大数据集,可将 p 值设为 3 或 4。在定量分析中,如果数据集较小,建议 p = 2,得出的均方根误差值为 0.03458,平均绝对误差为 0.02013,中位绝对偏差为 0.00546。相反,对于大数据集,p 值为 3 或 4 比较合适,均方根误差分别为 0.02435 和 0.02437,均方误差分别为 0.01582 和 0.01509,绝对偏差中值分别为 0.00896 和 0.00444。最终,对于小数据集,建议使用 2 的 p 值,对于大数据集,建议使用 3 或 4 的 p 值。
{"title":"Selection of the Value of the Power Distance Exponent for Mapping with the Inverse Distance Weighting Method—Application in Subsurface Porosity Mapping, Northern Croatia Neogene","authors":"Uroš Barudžija, Josip Ivšinović, T. Malvić","doi":"10.3390/geosciences14060155","DOIUrl":"https://doi.org/10.3390/geosciences14060155","url":null,"abstract":"The correct selection of the value of p is a complex and iterative procedure that requires experience in the interpretation of the obtained interpolated maps. Inverse Distance Weighting is a method applied to the porosities of the K and L hydrocarbon reservoirs discovered in the Neogene (Lower Pontian) subsurface sandstones in northern Croatia (Pannonian Basin System). They represent small and large data samples. Also, a standard statistical analysis of the data was made, followed by a qualitative–quantitative analysis of the maps, based on the selection of different values for the power distance exponent (p-value) for the K and L reservoir maps. According to the qualitative analysis, for a small data set, the p-value could be set at 1 or 2, giving the optimal result, while for a large data set, a p value of 3 or 4 could be applied. For quantitative analysis, in the case of a small data set, p = 2 is recommended, resulting in a root mean square error value of 0.03458, a mean absolute error of 0.02013 and a median absolute deviation of 0.00546. In contrast, a p-value of 3 or 4 is selected as appropriate for a large data set, with root mean square errors of 0.02435 and 0.02437, mean square errors of 0.01582 and 0.01509 and median absolute deviations 0.00896 and 0.00444. Eventually for a small data set, it is recommended to use a p-value of 2, and for a large data set, a p-value of 3 or 4.","PeriodicalId":509137,"journal":{"name":"Geosciences","volume":"110 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141377686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-05DOI: 10.3390/geosciences14060153
P. Migoń
Geosites are windows into the geological past, which may be recorded in rocks and their properties, the fossil content, and landform produced by processes no longer operating. Since the histories of sedimentation, life, and landscape evolution are to a certain extent controlled by climatic conditions, some geosites may be used as illustrations of various themes linked to the issue of climate change. In this paper, a coherent systematic framework is proposed for how to look at geosites through the lens of climate change. Four major aspects of relevance are recognized: (i) geosites providing evidence of changing climatic conditions in the past; (ii) geosites providing evidence of an environment different than that of today at the place; (iii) geosites providing evidence of extreme weather events; and (iv) dynamic geosites, subject to change as a response to ongoing climate change. The use of geosites to raise awareness and educate the public about climate change faces various interpretation challenges. In particular, linking with ongoing climate change requires caution and balanced presentation as most geosites record changes which occurred without any anthropogenic component. The preferred focus should be on environmental instability in general rather than on any specific reasons for change.
{"title":"Geosites and Climate Change—A Review and Conceptual Framework","authors":"P. Migoń","doi":"10.3390/geosciences14060153","DOIUrl":"https://doi.org/10.3390/geosciences14060153","url":null,"abstract":"Geosites are windows into the geological past, which may be recorded in rocks and their properties, the fossil content, and landform produced by processes no longer operating. Since the histories of sedimentation, life, and landscape evolution are to a certain extent controlled by climatic conditions, some geosites may be used as illustrations of various themes linked to the issue of climate change. In this paper, a coherent systematic framework is proposed for how to look at geosites through the lens of climate change. Four major aspects of relevance are recognized: (i) geosites providing evidence of changing climatic conditions in the past; (ii) geosites providing evidence of an environment different than that of today at the place; (iii) geosites providing evidence of extreme weather events; and (iv) dynamic geosites, subject to change as a response to ongoing climate change. The use of geosites to raise awareness and educate the public about climate change faces various interpretation challenges. In particular, linking with ongoing climate change requires caution and balanced presentation as most geosites record changes which occurred without any anthropogenic component. The preferred focus should be on environmental instability in general rather than on any specific reasons for change.","PeriodicalId":509137,"journal":{"name":"Geosciences","volume":"55 37","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141383853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-04DOI: 10.3390/geosciences14060152
E. Sellami, Hassan Rhinane
Recently, the earth’s climate has changed considerably, leading to several hazards, including flash floods (FFs). This study aims to introduce an innovative approach to mapping and identifying FF exposure in the city of Tetouan, Morocco. To address this problem, the study uses different machine learning methods applied to remote sensing imagery within the Google Earth Engine (GEE) platform. To achieve this, the first phase of this study was to map land use and land cover (LULC) using Random Forest (RF), a Support Vector Machine (SVM), and Classification and Regression Trees (CART). By comparing the results of five composite methods (mode, maximum, minimum, mean, and median) based on Sentinel images, LULC was generated for each method. In the second phase, the precise LULC was used as a related factor to others (Stream Power Index (SPI), Topographic Position Index (TPI), Slope, Profile Curvature, Plan Curvature, Aspect, Elevation, and Topographic Wetness Index (TWI)). In addition to 2024 non-flood and flood points to predict and detect FF susceptibility, 70% of the dataset was used to train the model by comparing different algorithms (RF, SVM, Logistic Regression (LR), Multilayer Perceptron (MLP), and Naive Bayes (NB)); the rest of the dataset (30%) was used for evaluation. Model performance was evaluated by five-fold cross-validation to assess the model’s ability on new data using metrics such as precision, score, kappa index, recall, and the receiver operating characteristic (ROC) curve. In the third phase, the high FF susceptibility areas were analyzed for two-way validation with inundated areas generated from Sentinel-1 SAR imagery with coherent change detection (CDD). Finally, the validated inundation map was intersected with the LULC areas and population density for FF exposure and assessment. The initial results of this study in terms of LULC mapping showed that the most appropriate method in this research region is the use of an SVM trained on a mean composite. Similarly, the results of the FF susceptibility assessment showed that the RF algorithm performed best with an accuracy of 96%. In the final analysis, the FF exposure map showed that 2465 hectares were affected and 198,913 inhabitants were at risk. In conclusion, the proposed approach not only allows us to assess the impact of FF in this study area but also provides a versatile approach that can be applied in different regions around the world and can help decision-makers plan FF mitigation strategies.
{"title":"Google Earth Engine and Machine Learning for Flash Flood Exposure Mapping—Case Study: Tetouan, Morocco","authors":"E. Sellami, Hassan Rhinane","doi":"10.3390/geosciences14060152","DOIUrl":"https://doi.org/10.3390/geosciences14060152","url":null,"abstract":"Recently, the earth’s climate has changed considerably, leading to several hazards, including flash floods (FFs). This study aims to introduce an innovative approach to mapping and identifying FF exposure in the city of Tetouan, Morocco. To address this problem, the study uses different machine learning methods applied to remote sensing imagery within the Google Earth Engine (GEE) platform. To achieve this, the first phase of this study was to map land use and land cover (LULC) using Random Forest (RF), a Support Vector Machine (SVM), and Classification and Regression Trees (CART). By comparing the results of five composite methods (mode, maximum, minimum, mean, and median) based on Sentinel images, LULC was generated for each method. In the second phase, the precise LULC was used as a related factor to others (Stream Power Index (SPI), Topographic Position Index (TPI), Slope, Profile Curvature, Plan Curvature, Aspect, Elevation, and Topographic Wetness Index (TWI)). In addition to 2024 non-flood and flood points to predict and detect FF susceptibility, 70% of the dataset was used to train the model by comparing different algorithms (RF, SVM, Logistic Regression (LR), Multilayer Perceptron (MLP), and Naive Bayes (NB)); the rest of the dataset (30%) was used for evaluation. Model performance was evaluated by five-fold cross-validation to assess the model’s ability on new data using metrics such as precision, score, kappa index, recall, and the receiver operating characteristic (ROC) curve. In the third phase, the high FF susceptibility areas were analyzed for two-way validation with inundated areas generated from Sentinel-1 SAR imagery with coherent change detection (CDD). Finally, the validated inundation map was intersected with the LULC areas and population density for FF exposure and assessment. The initial results of this study in terms of LULC mapping showed that the most appropriate method in this research region is the use of an SVM trained on a mean composite. Similarly, the results of the FF susceptibility assessment showed that the RF algorithm performed best with an accuracy of 96%. In the final analysis, the FF exposure map showed that 2465 hectares were affected and 198,913 inhabitants were at risk. In conclusion, the proposed approach not only allows us to assess the impact of FF in this study area but also provides a versatile approach that can be applied in different regions around the world and can help decision-makers plan FF mitigation strategies.","PeriodicalId":509137,"journal":{"name":"Geosciences","volume":"9 33","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141265752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-02DOI: 10.3390/geosciences14060151
Abrar Ahmed, Magdi El-Emam, Naveed Ahmad, M. Attom
Soft to medium clay soil possesses major sources of damages to the pavement layers overlying them because of their potential failure under moisture changes and external heavy traffic load. In such situations, soil stabilization methods can be used to improve the soil properties and satisfy the desired engineering requirements. This study presents the use of sugarcane bagasse ash (SBA) and lime as chemical stabilizers for a clay soil subbase. Sugarcane bagasse ash and lime are used individually and as mixtures at varying percentages to stabilize a clay soil from Taxila, Pakistan. Various geotechnical laboratory tests such as Atterberg limits, compaction test, and California Bearing Ratio (CBR) are carried out on both pure and stabilized soils. These tests are performed at 2.5%, 5%, and 7.5% of either SBA or lime by weight of dry soil. In addition, mixtures of lime and SBA in ratios of 1:1, 2:1, 3:1, 1:2, and 1:3 are used in 5%, 7.5%, and 10% of dry soil weight, respectively. Results indicate that soil improved with 7.5% SBA showed a 28% increase in the liquid limit, while soil mixed with 2.5% lime in combination with 7.5% SBA showed an increase of 40% in the plastic limit. For the plasticity index, the soil mixed with 7.5% SBA showed an increase of 42%. Moreover, 2.5% lime in combination with 2.5% SBA showed the best improvement in soil consistency as this mixture reduced the soil plasticity from high to low according to the plasticity chart. Furthermore, 2.5% SBA in combination with 5% lime demonstrated the largest improvement on the CBR value, which is about a 69% increase above that of the pure soil. Finally, the cost analysis indicates a promising improvement method that reduces pavement cost, increases design life, and mitigates issues of energy consumption and pollution related to SBA as a solid waste material.
{"title":"Stabilization of Pavement Subgrade Clay Soil Using Sugarcane Ash and Lime","authors":"Abrar Ahmed, Magdi El-Emam, Naveed Ahmad, M. Attom","doi":"10.3390/geosciences14060151","DOIUrl":"https://doi.org/10.3390/geosciences14060151","url":null,"abstract":"Soft to medium clay soil possesses major sources of damages to the pavement layers overlying them because of their potential failure under moisture changes and external heavy traffic load. In such situations, soil stabilization methods can be used to improve the soil properties and satisfy the desired engineering requirements. This study presents the use of sugarcane bagasse ash (SBA) and lime as chemical stabilizers for a clay soil subbase. Sugarcane bagasse ash and lime are used individually and as mixtures at varying percentages to stabilize a clay soil from Taxila, Pakistan. Various geotechnical laboratory tests such as Atterberg limits, compaction test, and California Bearing Ratio (CBR) are carried out on both pure and stabilized soils. These tests are performed at 2.5%, 5%, and 7.5% of either SBA or lime by weight of dry soil. In addition, mixtures of lime and SBA in ratios of 1:1, 2:1, 3:1, 1:2, and 1:3 are used in 5%, 7.5%, and 10% of dry soil weight, respectively. Results indicate that soil improved with 7.5% SBA showed a 28% increase in the liquid limit, while soil mixed with 2.5% lime in combination with 7.5% SBA showed an increase of 40% in the plastic limit. For the plasticity index, the soil mixed with 7.5% SBA showed an increase of 42%. Moreover, 2.5% lime in combination with 2.5% SBA showed the best improvement in soil consistency as this mixture reduced the soil plasticity from high to low according to the plasticity chart. Furthermore, 2.5% SBA in combination with 5% lime demonstrated the largest improvement on the CBR value, which is about a 69% increase above that of the pure soil. Finally, the cost analysis indicates a promising improvement method that reduces pavement cost, increases design life, and mitigates issues of energy consumption and pollution related to SBA as a solid waste material.","PeriodicalId":509137,"journal":{"name":"Geosciences","volume":"106 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141388949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01DOI: 10.3390/geosciences14060150
Phornsuda Chomcheawchan, Veeraphat Pawana, P. Julphunthong, K. Kamdee, J. Laonamsai
This study innovatively assesses the Mun River flow components in Thailand, integrating artificial neural networks (ANNs) and isotopic (δ18O) end-member mixing analysis (IEMMA). It quantifies the contributions of the Upper Mun River (UMR) and Chi River (CR) to the overall flow, revealing a discrepancy in their estimated contributions. The ANN method predicts that the UMR and CR contribute approximately 70.5% and 29.5% respectively, while IEMMA indicates a more pronounced disparity with 84% from UMR and 16% from CR. This divergence highlights the distinct perspectives of ANN, focusing on hydrological data patterns, and IEMMA, emphasizing isotopic signatures. Despite discrepancies, both methods validate UMR as a significant contributor to the overall flow, highlighting their utility in hydrological research. The findings emphasize the complexity of river systems and advocate for an integrated approach of river flow analysis for a comprehensive understanding, crucial for effective water resource management and planning.
本研究结合人工神经网络(ANN)和同位素(δ18O)末端分子混合分析(IEMMA),对泰国濛江的流量成分进行了创新性评估。它量化了濛河上游(UMR)和池河(CR)对总流量的贡献,揭示了它们在估计贡献方面的差异。根据方差分析方法的预测,濛江上游和赤水河的贡献率分别约为 70.5%和 29.5%,而 IEMMA 显示的差异更为明显,濛江上游和赤水河的贡献率分别为 84%和 16%。这种差异凸显了 ANN 和 IEMMA 的不同视角,前者侧重于水文数据模式,后者则强调同位素特征。尽管存在差异,但这两种方法都验证了 UMR 对总流量的重要贡献,突出了它们在水文研究中的实用性。研究结果强调了河流系统的复杂性,提倡采用综合方法对河流流量进行分析,以获得全面的理解,这对有效的水资源管理和规划至关重要。
{"title":"Innovative Assessment of Mun River Flow Components through ANN and Isotopic End-Member Mixing Analysis","authors":"Phornsuda Chomcheawchan, Veeraphat Pawana, P. Julphunthong, K. Kamdee, J. Laonamsai","doi":"10.3390/geosciences14060150","DOIUrl":"https://doi.org/10.3390/geosciences14060150","url":null,"abstract":"This study innovatively assesses the Mun River flow components in Thailand, integrating artificial neural networks (ANNs) and isotopic (δ18O) end-member mixing analysis (IEMMA). It quantifies the contributions of the Upper Mun River (UMR) and Chi River (CR) to the overall flow, revealing a discrepancy in their estimated contributions. The ANN method predicts that the UMR and CR contribute approximately 70.5% and 29.5% respectively, while IEMMA indicates a more pronounced disparity with 84% from UMR and 16% from CR. This divergence highlights the distinct perspectives of ANN, focusing on hydrological data patterns, and IEMMA, emphasizing isotopic signatures. Despite discrepancies, both methods validate UMR as a significant contributor to the overall flow, highlighting their utility in hydrological research. The findings emphasize the complexity of river systems and advocate for an integrated approach of river flow analysis for a comprehensive understanding, crucial for effective water resource management and planning.","PeriodicalId":509137,"journal":{"name":"Geosciences","volume":"131 40","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141281965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We investigated the distribution patterns and evaluated the average contents of trace elements in the k7 seam of the Karaganda coal basin in Central Kazakhstan. This paper presents the results of studying the geochemistry of 34 elements in 85 samples of the k7 seam. The study employed a suite of advanced high-resolution analytical methods, including atomic emission spectrometry with inductively coupled plasma (ICP–OES) and mass spectrometry with inductively coupled plasma (ICP–MS), along with their processing and interpretation. It was determined that the concentrations of trace elements in the k7 seam are primarily associated with lithophile elements, revealing high concentrations of Li, V, Sc, Zr, Hf, and Ba. Additionally, increased concentrations of Nb, Ta, Se, Te, Ag, and Th were observed compared to the coal Clarke. Specific Nb(Ta)–Zr(Hf)–Li mineralization accompanied by a group of associated metals (Ba, V, Sc, etc.) was identified. The study revealed lateral and vertical heterogeneity of the rare elements’ distributions in coals, attributed to the formation dynamics of the coal basin. A correlation between Li and Al2O3 with a less positive relationship with K2O suggests the affinity of certain elements (Li, Ta, Nb, and Ba) to kaolinite. Clay layers showed increased radioactivity, with Th—13.2 ppm and U—2.6 ppm, indicating the possible presence of volcanogenic pyroclastic rocks characterized by radioactivity. Taken together, these data reveal the features of the rock composition of the source area, which is considered a mineralization source. According to geochemical data, it was found that the source area mainly consists of igneous felsic rocks, indicating that the formation occurred under conditions of a volcanic arc. This study’s novelty lies in estimating the average trace elements in the k7 seam, with elevated concentrations of certain elements that suggest promising prospects for industrial extraction from coals and coal wastes. These findings offer insights into considering coal as a potential source of raw material for rare metal production, guiding the industrial processing of key elements within coal. The potential extraction of metals from coal deposits, including from dumps, holds significance for industrial and commercial technologies, as processing critical coal elements can reduce disposal costs and mitigate their environmental impact.
{"title":"Trace Elements Distribution in the k7 Seam of the Karaganda Coal Basin, Kazakhstan","authors":"Aiman Kopobayeva, Irina Baidauletova, Altynay Amangeldikyzy, Nazym Askarova","doi":"10.3390/geosciences14060143","DOIUrl":"https://doi.org/10.3390/geosciences14060143","url":null,"abstract":"We investigated the distribution patterns and evaluated the average contents of trace elements in the k7 seam of the Karaganda coal basin in Central Kazakhstan. This paper presents the results of studying the geochemistry of 34 elements in 85 samples of the k7 seam. The study employed a suite of advanced high-resolution analytical methods, including atomic emission spectrometry with inductively coupled plasma (ICP–OES) and mass spectrometry with inductively coupled plasma (ICP–MS), along with their processing and interpretation. It was determined that the concentrations of trace elements in the k7 seam are primarily associated with lithophile elements, revealing high concentrations of Li, V, Sc, Zr, Hf, and Ba. Additionally, increased concentrations of Nb, Ta, Se, Te, Ag, and Th were observed compared to the coal Clarke. Specific Nb(Ta)–Zr(Hf)–Li mineralization accompanied by a group of associated metals (Ba, V, Sc, etc.) was identified. The study revealed lateral and vertical heterogeneity of the rare elements’ distributions in coals, attributed to the formation dynamics of the coal basin. A correlation between Li and Al2O3 with a less positive relationship with K2O suggests the affinity of certain elements (Li, Ta, Nb, and Ba) to kaolinite. Clay layers showed increased radioactivity, with Th—13.2 ppm and U—2.6 ppm, indicating the possible presence of volcanogenic pyroclastic rocks characterized by radioactivity. Taken together, these data reveal the features of the rock composition of the source area, which is considered a mineralization source. According to geochemical data, it was found that the source area mainly consists of igneous felsic rocks, indicating that the formation occurred under conditions of a volcanic arc. This study’s novelty lies in estimating the average trace elements in the k7 seam, with elevated concentrations of certain elements that suggest promising prospects for industrial extraction from coals and coal wastes. These findings offer insights into considering coal as a potential source of raw material for rare metal production, guiding the industrial processing of key elements within coal. The potential extraction of metals from coal deposits, including from dumps, holds significance for industrial and commercial technologies, as processing critical coal elements can reduce disposal costs and mitigate their environmental impact.","PeriodicalId":509137,"journal":{"name":"Geosciences","volume":"47 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141101985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}