Yuming Huang, Yuhu Guo, Renbo Su, Xingjian Han, Junhao Ding, Tianyu Zhang, Tao Liu, Weiming Wang, Guoxin Fang, Xu Song, Emily Whiting, Charlie Wang
This paper presents a learning based planner for computing optimized 3D printing toolpaths on prescribed graphs, the challenges of which include the varying graph structures on different models and the large scale of nodes & edges on a graph. We adopt an on-the-fly strategy to tackle these challenges, formulating the planner as a Deep Q-Network (DQN) based optimizer to decide the next 'best' node to visit. We construct the state spaces by the Local Search Graph (LSG) centered at different nodes on a graph, which is encoded by a carefully designed algorithm so that LSGs in similar configurations can be identified to re-use the earlier learned DQN priors for accelerating the computation of toolpath planning. Our method can cover different 3D printing applications by defining their corresponding reward functions. Toolpath planning problems in wire-frame printing, continuous fiber printing, and metallic printing are selected to demonstrate its generality. The performance of our planner has been verified by testing the resultant toolpaths in physical experiments. By using our planner, wire-frame models with up to 4.2k struts can be successfully printed, up to 93.3% of sharp turns on continuous fiber toolpaths can be avoided, and the thermal distortion in metallic printing can be reduced by 24.9%.
本文提出了一种基于学习的规划器,用于计算规定图形上的优化 3D 打印工具路径,其挑战包括不同模型上的不同图形结构以及图形上的大规模节点和边。我们采用即时策略来应对这些挑战,将规划器设计为基于深度 Q 网络(DQN)的优化器,以决定下一个要访问的 "最佳 "节点。我们通过以图上不同节点为中心的局部搜索图(LSG)来构建状态空间,并通过精心设计的算法对其进行编码,这样就可以识别出类似配置中的 LSG,从而重新使用先前学习的 DQN 先验,加快工具路径规划的计算速度。通过定义相应的奖励函数,我们的方法可以涵盖不同的 3D 打印应用。我们选择了线框打印、连续纤维打印和金属打印中的工具路径规划问题来证明其通用性。通过在物理实验中测试生成的工具路径,我们的规划器的性能得到了验证。通过使用我们的规划器,可以成功地打印出多达 4.2k 支杆的线框模型,在连续纤维工具路径上可以避免多达 93.3% 的急转弯,在金属打印中可以减少 24.9% 的热变形。
{"title":"Learning Based Toolpath Planner on Diverse Graphs for 3D Printing","authors":"Yuming Huang, Yuhu Guo, Renbo Su, Xingjian Han, Junhao Ding, Tianyu Zhang, Tao Liu, Weiming Wang, Guoxin Fang, Xu Song, Emily Whiting, Charlie Wang","doi":"10.1145/3687933","DOIUrl":"https://doi.org/10.1145/3687933","url":null,"abstract":"This paper presents a learning based planner for computing optimized 3D printing toolpaths on prescribed graphs, the challenges of which include the varying graph structures on different models and the large scale of nodes & edges on a graph. We adopt an on-the-fly strategy to tackle these challenges, formulating the planner as a <jats:italic>Deep Q-Network</jats:italic> (DQN) based optimizer to decide the next 'best' node to visit. We construct the state spaces by the <jats:italic>Local Search Graph</jats:italic> (LSG) centered at different nodes on a graph, which is encoded by a carefully designed algorithm so that LSGs in similar configurations can be identified to re-use the earlier learned DQN priors for accelerating the computation of toolpath planning. Our method can cover different 3D printing applications by defining their corresponding reward functions. Toolpath planning problems in wire-frame printing, continuous fiber printing, and metallic printing are selected to demonstrate its generality. The performance of our planner has been verified by testing the resultant toolpaths in physical experiments. By using our planner, wire-frame models with up to 4.2k struts can be successfully printed, up to 93.3% of sharp turns on continuous fiber toolpaths can be avoided, and the thermal distortion in metallic printing can be reduced by 24.9%.","PeriodicalId":50913,"journal":{"name":"ACM Transactions on Graphics","volume":"38 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142673067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chun Yuan, Haoyang Shi, Lei Lan, Yuxing Qiu, Cem Yuksel, Huamin Wang, Chenfanfu Jiang, Kui Wu, Yin Yang
This paper presents volumetric homogenization, a spatially varying homogenization scheme for knitwear simulation. We are motivated by the observation that macro-scale fabric dynamics is strongly correlated with its underlying knitting patterns. Therefore, homogenization towards a single material is less effective when the knitting is complex and non-repetitive. Our method tackles this challenge by homogenizing the yarn-level material locally at volumetric elements. Assigning a virtual volume of a knitting structure enables us to model bending and twisting effects via a simple volume-preserving penalty and thus effectively alleviates the material nonlinearity. We employ an adjoint Gauss-Newton formulation[Zehnder et al. 2021] to battle the dimensionality challenge of such per-element material optimization. This intuitive material model makes the forward simulation GPU-friendly. To this end, our pipeline also equips a novel domain-decomposed subspace solver crafted for GPU projective dynamics, which makes our simulator hundreds of times faster than the yarn-level simulator. Experiments validate the capability and effectiveness of volumetric homogenization. Our method produces realistic animations of knitwear matching the quality of full-scale yarn-level simulations. It is also orders of magnitude faster than existing homogenization techniques in both the training and simulation stages.
{"title":"Volumetric Homogenization for Knitwear Simulation","authors":"Chun Yuan, Haoyang Shi, Lei Lan, Yuxing Qiu, Cem Yuksel, Huamin Wang, Chenfanfu Jiang, Kui Wu, Yin Yang","doi":"10.1145/3687911","DOIUrl":"https://doi.org/10.1145/3687911","url":null,"abstract":"This paper presents volumetric homogenization, a spatially varying homogenization scheme for knitwear simulation. We are motivated by the observation that macro-scale fabric dynamics is strongly correlated with its underlying knitting patterns. Therefore, homogenization towards a single material is less effective when the knitting is complex and non-repetitive. Our method tackles this challenge by homogenizing the yarn-level material locally at volumetric elements. Assigning a virtual volume of a knitting structure enables us to model bending and twisting effects via a simple volume-preserving penalty and thus effectively alleviates the material nonlinearity. We employ an adjoint Gauss-Newton formulation[Zehnder et al. 2021] to battle the dimensionality challenge of such per-element material optimization. This intuitive material model makes the forward simulation GPU-friendly. To this end, our pipeline also equips a novel domain-decomposed subspace solver crafted for GPU projective dynamics, which makes our simulator hundreds of times faster than the yarn-level simulator. Experiments validate the capability and effectiveness of volumetric homogenization. Our method produces realistic animations of knitwear matching the quality of full-scale yarn-level simulations. It is also orders of magnitude faster than existing homogenization techniques in both the training and simulation stages.","PeriodicalId":50913,"journal":{"name":"ACM Transactions on Graphics","volume":"22 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142673124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We present a novel approach to generate developable strips along a space curve. The key idea of the new method is to use the rotation angle between the Frenet frame of the input space curve, and its Darboux frame of the curve on the resulting developable strip as a free design parameter, thereby revolving the strip around the tangential axis of the input space curve. This angle is not restricted to be constant but it can be any differentiable function defined on the curve, thereby creating a large design space of developable strips that share a common directrix curve. The range of possibilities for choosing the rotation angle is diverse, encompassing constant angles, linearly varying angles, sinusoidal patterns, and even solutions derived from initial value problems involving ordinary differential equations. This enables the potential of the proposed method to be used for a wide range of practical applications, spanning fields such as architectural design, industrial design, and papercraft modeling. In our computational and physical examples, we demonstrate the flexibility of the method by constructing, among others, toroidal and helical windmill blades for papercraft models, curved foldings, triply orthogonal structures, and developable strips featuring a log-aesthetic directrix curve.
{"title":"All you need is rotation: Construction of developable strips","authors":"Takashi Maekawa, Felix Scholz","doi":"10.1145/3687947","DOIUrl":"https://doi.org/10.1145/3687947","url":null,"abstract":"We present a novel approach to generate developable strips along a space curve. The key idea of the new method is to use the rotation angle between the Frenet frame of the input space curve, and its Darboux frame of the curve on the resulting developable strip as a free design parameter, thereby revolving the strip around the tangential axis of the input space curve. This angle is not restricted to be constant but it can be any differentiable function defined on the curve, thereby creating a large design space of developable strips that share a common directrix curve. The range of possibilities for choosing the rotation angle is diverse, encompassing constant angles, linearly varying angles, sinusoidal patterns, and even solutions derived from initial value problems involving ordinary differential equations. This enables the potential of the proposed method to be used for a wide range of practical applications, spanning fields such as architectural design, industrial design, and papercraft modeling. In our computational and physical examples, we demonstrate the flexibility of the method by constructing, among others, toroidal and helical windmill blades for papercraft models, curved foldings, triply orthogonal structures, and developable strips featuring a log-aesthetic directrix curve.","PeriodicalId":50913,"journal":{"name":"ACM Transactions on Graphics","volume":"10 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142673089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nicolas Moenne-Loccoz, Ashkan Mirzaei, Or Perel, Riccardo de Lutio, Janick Martinez Esturo, Gavriel State, Sanja Fidler, Nicholas Sharp, Zan Gojcic
Particle-based representations of radiance fields such as 3D Gaussian Splatting have found great success for reconstructing and re-rendering of complex scenes. Most existing methods render particles via rasterization, projecting them to screen space tiles for processing in a sorted order. This work instead considers ray tracing the particles, building a bounding volume hierarchy and casting a ray for each pixel using high-performance GPU ray tracing hardware. To efficiently handle large numbers of semi-transparent particles, we describe a specialized rendering algorithm which encapsulates particles with bounding meshes to leverage fast ray-triangle intersections, and shades batches of intersections in depth-order. The benefits of ray tracing are well-known in computer graphics: processing incoherent rays for secondary lighting effects such as shadows and reflections, rendering from highly-distorted cameras common in robotics, stochastically sampling rays, and more. With our renderer, this flexibility comes at little cost compared to rasterization. Experiments demonstrate the speed and accuracy of our approach, as well as several applications in computer graphics and vision. We further propose related improvements to the basic Gaussian representation, including a simple use of generalized kernel functions which significantly reduces particle hit counts.
{"title":"3D Gaussian Ray Tracing: Fast Tracing of Particle Scenes","authors":"Nicolas Moenne-Loccoz, Ashkan Mirzaei, Or Perel, Riccardo de Lutio, Janick Martinez Esturo, Gavriel State, Sanja Fidler, Nicholas Sharp, Zan Gojcic","doi":"10.1145/3687934","DOIUrl":"https://doi.org/10.1145/3687934","url":null,"abstract":"Particle-based representations of radiance fields such as 3D Gaussian Splatting have found great success for reconstructing and re-rendering of complex scenes. Most existing methods render particles via rasterization, projecting them to screen space tiles for processing in a sorted order. This work instead considers ray tracing the particles, building a bounding volume hierarchy and casting a ray for each pixel using high-performance GPU ray tracing hardware. To efficiently handle large numbers of semi-transparent particles, we describe a specialized rendering algorithm which encapsulates particles with bounding meshes to leverage fast ray-triangle intersections, and shades batches of intersections in depth-order. The benefits of ray tracing are well-known in computer graphics: processing incoherent rays for secondary lighting effects such as shadows and reflections, rendering from highly-distorted cameras common in robotics, stochastically sampling rays, and more. With our renderer, this flexibility comes at little cost compared to rasterization. Experiments demonstrate the speed and accuracy of our approach, as well as several applications in computer graphics and vision. We further propose related improvements to the basic Gaussian representation, including a simple use of generalized kernel functions which significantly reduces particle hit counts.","PeriodicalId":50913,"journal":{"name":"ACM Transactions on Graphics","volume":"14 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142673092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
John Flynn, Michael Broxton, Lukas Murmann, Lucy Chai, Matthew DuVall, Clément Godard, Kathryn Heal, Srinivas Kaza, Stephen Lombardi, Xuan Luo, Supreeth Achar, Kira Prabhu, Tiancheng Sun, Lynn Tsai, Ryan Overbeck
We present a novel neural algorithm for performing high-quality, highresolution, real-time novel view synthesis. From a sparse set of input RGB images or videos streams, our network both reconstructs the 3D scene and renders novel views at 1080p resolution at 30fps on an NVIDIA A100. Our feed-forward network generalizes across a wide variety of datasets and scenes and produces state-of-the-art quality for a real-time method. Our quality approaches, and in some cases surpasses, the quality of some of the top offline methods. In order to achieve these results we use a novel combination of several key concepts, and tie them together into a cohesive and effective algorithm. We build on previous works that represent the scene using semi-transparent layers and use an iterative learned render-and-refine approach to improve those layers. Instead of flat layers, our method reconstructs layered depth maps (LDMs) that efficiently represent scenes with complex depth and occlusions. The iterative update steps are embedded in a multi-scale, UNet-style architecture to perform as much compute as possible at reduced resolution. Within each update step, to better aggregate the information from multiple input views, we use a specialized Transformer-based network component. This allows the majority of the per-input image processing to be performed in the input image space, as opposed to layer space, further increasing efficiency. Finally, due to the real-time nature of our reconstruction and rendering, we dynamically create and discard the internal 3D geometry for each frame, generating the LDM for each view. Taken together, this produces a novel and effective algorithm for view synthesis. Through extensive evaluation, we demonstrate that we achieve state-of-the-art quality at real-time rates.
{"title":"Quark: Real-time, High-resolution, and General Neural View Synthesis","authors":"John Flynn, Michael Broxton, Lukas Murmann, Lucy Chai, Matthew DuVall, Clément Godard, Kathryn Heal, Srinivas Kaza, Stephen Lombardi, Xuan Luo, Supreeth Achar, Kira Prabhu, Tiancheng Sun, Lynn Tsai, Ryan Overbeck","doi":"10.1145/3687953","DOIUrl":"https://doi.org/10.1145/3687953","url":null,"abstract":"We present a novel neural algorithm for performing high-quality, highresolution, real-time novel view synthesis. From a sparse set of input RGB images or videos streams, our network both reconstructs the 3D scene and renders novel views at 1080p resolution at 30fps on an NVIDIA A100. Our feed-forward network generalizes across a wide variety of datasets and scenes and produces state-of-the-art quality for a real-time method. Our quality approaches, and in some cases surpasses, the quality of some of the top offline methods. In order to achieve these results we use a novel combination of several key concepts, and tie them together into a cohesive and effective algorithm. We build on previous works that represent the scene using semi-transparent layers and use an iterative learned render-and-refine approach to improve those layers. Instead of flat layers, our method reconstructs layered depth maps (LDMs) that efficiently represent scenes with complex depth and occlusions. The iterative update steps are embedded in a multi-scale, UNet-style architecture to perform as much compute as possible at reduced resolution. Within each update step, to better aggregate the information from multiple input views, we use a specialized Transformer-based network component. This allows the majority of the per-input image processing to be performed in the input image space, as opposed to layer space, further increasing efficiency. Finally, due to the real-time nature of our reconstruction and rendering, we dynamically create and discard the internal 3D geometry for each frame, generating the LDM for each view. Taken together, this produces a novel and effective algorithm for view synthesis. Through extensive evaluation, we demonstrate that we achieve state-of-the-art quality at real-time rates.","PeriodicalId":50913,"journal":{"name":"ACM Transactions on Graphics","volume":"14 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142672828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pengju Qiao, Qi Wang, Yuchi Huo, Shiji Zhai, Zixuan Xie, Wei Hua, Hujun Bao, Tao Liu
Unbiased Monte Carlo path tracing that is extensively used in realistic rendering produces undesirable noise, especially with low samples per pixel (spp). Recently, several methods have coped with this problem by importing unbiased noisy images and auxiliary features to neural networks to either predict a fixed-sized kernel for convolution or directly predict the denoised result. Since it is impossible to produce arbitrarily high spp images as the training dataset, the network-based denoising fails to produce high-quality images under high spp. More specifically, network-based denoising is inconsistent and does not converge to the ground truth as the sampling rate increases. On the other hand, the post-correction estimators yield a blending coefficient for a pair of biased and unbiased images influenced by image errors or variances to ensure the consistency of the denoised image. As the sampling rate increases, the blending coefficient of the unbiased image converges to 1, that is, using the unbiased image as the denoised results. However, these estimators usually produce artifacts due to the difficulty of accurately predicting image errors or variances with low spp. To address the above problems, we take advantage of both kernel-predicting methods and post-correction denoisers. A novel kernel-based denoiser is proposed based on distribution-free kernel regression consistency theory, which does not explicitly combine the biased and unbiased results but constrain the kernel bandwidth to produce consistent results under high spp. Meanwhile, our kernel regression method explores bandwidth optimization in the robust auxiliary feature space instead of the noisy image space. This leads to consistent high-quality denoising at both low and high spp. Experiment results demonstrate that our method outperforms existing denoisers in accuracy and consistency.
{"title":"Neural Kernel Regression for Consistent Monte Carlo Denoising","authors":"Pengju Qiao, Qi Wang, Yuchi Huo, Shiji Zhai, Zixuan Xie, Wei Hua, Hujun Bao, Tao Liu","doi":"10.1145/3687949","DOIUrl":"https://doi.org/10.1145/3687949","url":null,"abstract":"Unbiased Monte Carlo path tracing that is extensively used in realistic rendering produces undesirable noise, especially with low samples per pixel (spp). Recently, several methods have coped with this problem by importing unbiased noisy images and auxiliary features to neural networks to either predict a fixed-sized kernel for convolution or directly predict the denoised result. Since it is impossible to produce arbitrarily high spp images as the training dataset, the network-based denoising fails to produce high-quality images under high spp. More specifically, network-based denoising is inconsistent and does not converge to the ground truth as the sampling rate increases. On the other hand, the post-correction estimators yield a blending coefficient for a pair of biased and unbiased images influenced by image errors or variances to ensure the consistency of the denoised image. As the sampling rate increases, the blending coefficient of the unbiased image converges to 1, that is, using the unbiased image as the denoised results. However, these estimators usually produce artifacts due to the difficulty of accurately predicting image errors or variances with low spp. To address the above problems, we take advantage of both kernel-predicting methods and post-correction denoisers. A novel kernel-based denoiser is proposed based on distribution-free kernel regression consistency theory, which does not explicitly combine the biased and unbiased results but constrain the kernel bandwidth to produce consistent results under high spp. Meanwhile, our kernel regression method explores bandwidth optimization in the robust auxiliary feature space instead of the noisy image space. This leads to consistent high-quality denoising at both low and high spp. Experiment results demonstrate that our method outperforms existing denoisers in accuracy and consistency.","PeriodicalId":50913,"journal":{"name":"ACM Transactions on Graphics","volume":"197 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142673048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Annika Öhri, Aviv Segall, Jing Ren, Olga Sorkine-Hornung
Distortion-minimizing surface parameterization is an essential step for computing 2D pieces necessary to fabricate a target 3D shape from flat material. Garment design and textile fabrication are a prominent application example. Common distortion measures quantify length, angle or area preservation in an isotropic manner, so that when applied to woven textile fabrication, they implicitly assume fabric behaves like paper, which is inextensible in all directions and does not permit shearing. However, woven fabric differs significantly from paper: it exhibits anisotropy along the yarn directions and allows for some degree of shearing. We propose a novel distortion energy based on Chebyshev nets that anisotropically penalizes shearing and stretching. Our energy formulation can be used as an optimization objective for surface parameterization and is simple to minimize via a local-global algorithm. We demonstrate its advantages in modeling nets or woven fabric behavior over the commonly used isotropic distortion energies.
{"title":"Chebyshev Parameterization for Woven Fabric Modeling","authors":"Annika Öhri, Aviv Segall, Jing Ren, Olga Sorkine-Hornung","doi":"10.1145/3687928","DOIUrl":"https://doi.org/10.1145/3687928","url":null,"abstract":"Distortion-minimizing surface parameterization is an essential step for computing 2D pieces necessary to fabricate a target 3D shape from flat material. Garment design and textile fabrication are a prominent application example. Common distortion measures quantify length, angle or area preservation in an isotropic manner, so that when applied to woven textile fabrication, they implicitly assume fabric behaves like paper, which is inextensible in all directions and does not permit shearing. However, woven fabric differs significantly from paper: it exhibits anisotropy along the yarn directions and allows for some degree of shearing. We propose a novel distortion energy based on Chebyshev nets that anisotropically penalizes shearing and stretching. Our energy formulation can be used as an optimization objective for surface parameterization and is simple to minimize via a local-global algorithm. We demonstrate its advantages in modeling nets or woven fabric behavior over the commonly used isotropic distortion energies.","PeriodicalId":50913,"journal":{"name":"ACM Transactions on Graphics","volume":"38 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142673050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Inseo Jang, Soojin Choi, Seokhyeon Hong, Chaelin Kim, Junyong Noh
Interactive motion between multiple characters is widely utilized in games and movies. However, the method for generating interactive motions considering the character's diverse mesh shape has yet to be studied. We propose a Spatio Cooperative Transformer (SCT) to retarget the interacting motions of two characters having arbitrary mesh connectivity. SCT predicts the residual of root position and joint rotations considering the shape difference between the source and target of interacting characters. In addition, we introduce an anchor loss function for SCT to maintain the geometric distance between the interacting characters when they are retargeted. We also propose a motion augmentation method with deformation-based adaptation to prepare a source-target paired dataset with an identical mesh connectivity for training. In experiments, our method achieved higher accuracy for semantic preservation and produced less artifacts of inter-penetration between the interacting characters for unseen characters and motions than the baselines. Moreover, we conducted a user evaluation using characters with various shapes, spanning low-to-high interaction levels to prove better semantic preservation of our method compared to previous studies.
{"title":"Geometry-Aware Retargeting for Two-Skinned Characters Interaction","authors":"Inseo Jang, Soojin Choi, Seokhyeon Hong, Chaelin Kim, Junyong Noh","doi":"10.1145/3687962","DOIUrl":"https://doi.org/10.1145/3687962","url":null,"abstract":"Interactive motion between multiple characters is widely utilized in games and movies. However, the method for generating interactive motions considering the character's diverse mesh shape has yet to be studied. We propose a Spatio Cooperative Transformer (SCT) to retarget the interacting motions of two characters having arbitrary mesh connectivity. SCT predicts the residual of root position and joint rotations considering the shape difference between the source and target of interacting characters. In addition, we introduce an anchor loss function for SCT to maintain the geometric distance between the interacting characters when they are retargeted. We also propose a motion augmentation method with deformation-based adaptation to prepare a source-target paired dataset with an identical mesh connectivity for training. In experiments, our method achieved higher accuracy for semantic preservation and produced less artifacts of inter-penetration between the interacting characters for unseen characters and motions than the baselines. Moreover, we conducted a user evaluation using characters with various shapes, spanning low-to-high interaction levels to prove better semantic preservation of our method compared to previous studies.","PeriodicalId":50913,"journal":{"name":"ACM Transactions on Graphics","volume":"99 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142673099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhiqi Li, Duowen Chen, Candong Lin, Jinyuan Liu, Bo Zhu
We propose a novel framework for simulating ink as a particle-laden flow using particle flow maps. Our method addresses the limitations of existing flow-map techniques, which struggle with dissipative forces like viscosity and drag, thereby extending the application scope from solving the Euler equations to solving the Navier-Stokes equations with accurate viscosity and laden-particle treatment. Our key contribution lies in a coupling mechanism for two particle systems, coupling physical sediment particles and virtual flow-map particles on a background grid by solving a Poisson system. We implemented a novel path integral formula to incorporate viscosity and drag forces into the particle flow map process. Our approach enables state-of-the-art simulation of various particle-laden flow phenomena, exemplified by the bulging and breakup of suspension drop tails, torus formation, torus disintegration, and the coalescence of sedimenting drops. In particular, our method delivered high-fidelity ink diffusion simulations by accurately capturing vortex bulbs, viscous tails, fractal branching, and hierarchical structures.
{"title":"Particle-Laden Fluid on Flow Maps","authors":"Zhiqi Li, Duowen Chen, Candong Lin, Jinyuan Liu, Bo Zhu","doi":"10.1145/3687916","DOIUrl":"https://doi.org/10.1145/3687916","url":null,"abstract":"We propose a novel framework for simulating ink as a particle-laden flow using particle flow maps. Our method addresses the limitations of existing flow-map techniques, which struggle with dissipative forces like viscosity and drag, thereby extending the application scope from solving the Euler equations to solving the Navier-Stokes equations with accurate viscosity and laden-particle treatment. Our key contribution lies in a coupling mechanism for two particle systems, coupling physical sediment particles and virtual flow-map particles on a background grid by solving a Poisson system. We implemented a novel path integral formula to incorporate viscosity and drag forces into the particle flow map process. Our approach enables state-of-the-art simulation of various particle-laden flow phenomena, exemplified by the bulging and breakup of suspension drop tails, torus formation, torus disintegration, and the coalescence of sedimenting drops. In particular, our method delivered high-fidelity ink diffusion simulations by accurately capturing vortex bulbs, viscous tails, fractal branching, and hierarchical structures.","PeriodicalId":50913,"journal":{"name":"ACM Transactions on Graphics","volume":"35 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142673115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We introduce ToonCrafter, a novel approach that transcends traditional correspondence-based cartoon video interpolation, paving the way for generative interpolation. Traditional methods, that implicitly assume linear motion and the absence of complicated phenomena like dis-occlusion, often struggle with the exaggerated non-linear and large motions with occlusion commonly found in cartoons, resulting in implausible or even failed interpolation results. To overcome these limitations, we explore the potential of adapting live-action video priors to better suit cartoon interpolation within a generative framework. ToonCrafter effectively addresses the challenges faced when applying live-action video motion priors to generative cartoon interpolation. First, we design a toon rectification learning strategy that seamlessly adapts live-action video priors to the cartoon domain, resolving the domain gap and content leakage issues. Next, we introduce a dual-reference-based 3D decoder to compensate for lost details due to the highly compressed latent prior spaces, ensuring the preservation of fine details in interpolation results. Finally, we design a flexible sketch encoder that empowers users with interactive control over the interpolation results. Experimental results demonstrate that our proposed method not only produces visually convincing and more natural dynamics, but also effectively handles dis-occlusion. The comparative evaluation demonstrates the notable superiority of our approach over existing competitors. Code and model weights are available at https://doubiiu.github.io/projects/ToonCrafter
我们介绍的 ToonCrafter 是一种新颖的方法,它超越了传统的基于对应关系的卡通视频插值,为生成插值铺平了道路。传统方法隐含地假定了线性运动和不存在不闭塞等复杂现象,但在处理动画片中常见的夸张非线性运动和带有闭塞的大运动时往往力不从心,导致插值结果难以置信甚至失败。为了克服这些局限性,我们探索了在生成框架内调整真人视频先验以更好地适应卡通插值的可能性。ToonCrafter 有效地解决了将真人视频运动先验应用于生成式卡通插值时所面临的挑战。首先,我们设计了一种卡通矫正学习策略,将真人视频前验无缝调整到卡通领域,解决了领域差距和内容泄漏问题。其次,我们引入了基于双参考的 3D 解码器,以补偿因高度压缩的潜先验空间而丢失的细节,确保插值结果中精细细节的保留。最后,我们设计了一种灵活的草图编码器,使用户能够对插值结果进行交互式控制。实验结果表明,我们提出的方法不仅能产生视觉上令人信服且更自然的动态效果,还能有效处理不闭塞现象。对比评估结果表明,我们的方法明显优于现有的竞争对手。代码和模型权重见 https://doubiiu.github.io/projects/ToonCrafter。
{"title":"ToonCrafter: Generative Cartoon Interpolation","authors":"Jinbo Xing, Hanyuan Liu, Menghan Xia, Yong Zhang, Xintao Wang, Ying Shan, Tien-Tsin Wong","doi":"10.1145/3687761","DOIUrl":"https://doi.org/10.1145/3687761","url":null,"abstract":"We introduce ToonCrafter, a novel approach that transcends traditional correspondence-based cartoon video interpolation, paving the way for generative interpolation. Traditional methods, that implicitly assume linear motion and the absence of complicated phenomena like dis-occlusion, often struggle with the exaggerated non-linear and large motions with occlusion commonly found in cartoons, resulting in implausible or even failed interpolation results. To overcome these limitations, we explore the potential of adapting live-action video priors to better suit cartoon interpolation within a generative framework. ToonCrafter effectively addresses the challenges faced when applying live-action video motion priors to generative cartoon interpolation. First, we design a toon rectification learning strategy that seamlessly adapts live-action video priors to the cartoon domain, resolving the domain gap and content leakage issues. Next, we introduce a dual-reference-based 3D decoder to compensate for lost details due to the highly compressed latent prior spaces, ensuring the preservation of fine details in interpolation results. Finally, we design a flexible sketch encoder that empowers users with interactive control over the interpolation results. Experimental results demonstrate that our proposed method not only produces visually convincing and more natural dynamics, but also effectively handles dis-occlusion. The comparative evaluation demonstrates the notable superiority of our approach over existing competitors. Code and model weights are available at https://doubiiu.github.io/projects/ToonCrafter","PeriodicalId":50913,"journal":{"name":"ACM Transactions on Graphics","volume":"250 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142673120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}