In architecture, shapes of surfaces that can withstand gravity with no bending action are considered ideal for shell structures. Those shells have special geometries through which they can stream gravitational force toward the ground via stresses strictly tangent to the surface, making them highly efficient. The process of finding these special forms is called form-finding. Recently, [Miki and Mitchell 2022] presented a method to reliably produce mixed tension-compression continuum shells, a type of shells known to be especially difficult to form-find. The key to this method was to use the concept of the Airy stress function to derive a valid bending-free shell shape by iterating on both the shell shape and the Airy stress function; this turns a problem that is over-constrained in general into a problem with many solutions. In [Miki and Mitchell 2022], it was proposed that the method could also be used to design grid shells by tracing curves on a continuum shell such that the resulting grid has bars that are both bending-free and form flat panels, a property useful for construction of real grid shells made of glass and steel. However, this special type of grid is not guaranteed to exist in general on a mixed-tension compression shell, even when the shell is in bending-free equilibrium [Miki and Mitchell 2023]. Additional conditions must be imposed on the shell shape to guarantee the existence of simultaneously bending-free and conjugate grid directions. The current study resolves the existence issue by adding alignment conditions. We consider several practical curve alignment conditions: alignment with the lines of curvature of the shell, approximate alignment with a bidirectional set of user-prescribed guide curves, and exact alignment with a single direction of user-prescribed guide curves. We report that the variable projection method originally used to solve the form-finding problem in the work of [Miki and Mitchell 2022] can be successfully extended to solve the newly introduced alignment conditions, and conclude with results for several practical design examples. To our knowledge, this is the first method that can take a user-input grid and find a "nearby" grid that is both flat-panelled and in bending-free equilibrium for the general case of mixed tension-compression grid shells.
{"title":"Alignment conditions for NURBS-based design of mixed tension-compression grid shells","authors":"Masaaki Miki, Toby Mitchell","doi":"10.1145/3658142","DOIUrl":"https://doi.org/10.1145/3658142","url":null,"abstract":"\u0000 In architecture, shapes of surfaces that can withstand gravity with no bending action are considered ideal for\u0000 shell structures.\u0000 Those shells have special geometries through which they can stream gravitational force toward the ground via stresses strictly tangent to the surface, making them highly efficient. The process of finding these special forms is called\u0000 form-finding.\u0000 Recently, [Miki and Mitchell 2022] presented a method to reliably produce mixed tension-compression continuum shells, a type of shells known to be especially difficult to form-find. The key to this method was to use the concept of the Airy stress function to derive a valid bending-free shell shape by iterating on both the shell shape and the Airy stress function; this turns a problem that is over-constrained in general into a problem with many solutions.\u0000 \u0000 \u0000 In [Miki and Mitchell 2022], it was proposed that the method could also be used to design grid shells by tracing curves on a continuum shell such that the resulting grid has bars that are both bending-free and form flat panels, a property useful for construction of real grid shells made of glass and steel. However, this special type of grid is\u0000 not\u0000 guaranteed to exist in general on a mixed-tension compression shell, even when the shell is in bending-free equilibrium [Miki and Mitchell 2023]. Additional conditions must be imposed on the shell shape to guarantee the existence of simultaneously bending-free and conjugate grid directions. The current study resolves the existence issue by adding\u0000 alignment conditions.\u0000 \u0000 We consider several practical curve alignment conditions: alignment with the lines of curvature of the shell, approximate alignment with a bidirectional set of user-prescribed guide curves, and exact alignment with a single direction of user-prescribed guide curves. We report that the variable projection method originally used to solve the form-finding problem in the work of [Miki and Mitchell 2022] can be successfully extended to solve the newly introduced alignment conditions, and conclude with results for several practical design examples. To our knowledge, this is the first method that can take a user-input grid and find a \"nearby\" grid that is both flat-panelled and in bending-free equilibrium for the general case of mixed tension-compression grid shells.","PeriodicalId":50913,"journal":{"name":"ACM Transactions on Graphics","volume":null,"pages":null},"PeriodicalIF":7.8,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141823687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We introduce a method for approximating the signed distance function (SDF) of geometry corrupted by holes, noise, or self-intersections. The method implicitly defines a completed version of the shape, rather than explicitly repairing the given input. Our starting point is a modified version of the heat method for geodesic distance, which diffuses normal vectors rather than a scalar distribution. This formulation provides robustness akin to generalized winding numbers (GWN) , but provides distance function rather than just an inside/outside classification. Our formulation also offers several features not common to classic distance algorithms, such as the ability to simultaneously fit multiple level sets, a notion of distance for geometry that does not topologically bound any region, and the ability to mix and match signed and unsigned distance. The method can be applied in any dimension and to any spatial discretization, including triangle meshes, tet meshes, point clouds, polygonal meshes, voxelized surfaces, and regular grids. We evaluate the method on several challenging examples, implementing normal offsets and other morphological operations directly on imperfect curve and surface data. In many cases we also obtain an inside/outside classification dramatically more robust than the one obtained provided by GWN.
{"title":"A Heat Method for Generalized Signed Distance","authors":"Nicole Feng, Keenan Crane","doi":"10.1145/3658220","DOIUrl":"https://doi.org/10.1145/3658220","url":null,"abstract":"\u0000 We introduce a method for approximating the signed distance function (SDF) of geometry corrupted by holes, noise, or self-intersections. The method implicitly defines a completed version of the shape, rather than explicitly repairing the given input. Our starting point is a modified version of the\u0000 heat method\u0000 for geodesic distance, which diffuses normal vectors rather than a scalar distribution. This formulation provides robustness akin to\u0000 generalized winding numbers (GWN)\u0000 , but provides distance function rather than just an inside/outside classification. Our formulation also offers several features not common to classic distance algorithms, such as the ability to simultaneously fit multiple level sets, a notion of distance for geometry that does not topologically bound any region, and the ability to mix and match signed and unsigned distance. The method can be applied in any dimension and to any spatial discretization, including triangle meshes, tet meshes, point clouds, polygonal meshes, voxelized surfaces, and regular grids. We evaluate the method on several challenging examples, implementing normal offsets and other morphological operations directly on imperfect curve and surface data. In many cases we also obtain an inside/outside classification dramatically more robust than the one obtained provided by GWN.\u0000","PeriodicalId":50913,"journal":{"name":"ACM Transactions on Graphics","volume":null,"pages":null},"PeriodicalIF":7.8,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141821226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Despite its visual appeal, the simulation of separated multiphase flows (i.e., streams of fluids separated by interfaces) faces numerous challenges in accurately reproducing complex behaviors such as guggling, wetting, or bubbling. These difficulties are especially pronounced for high Reynolds numbers and large density variations between fluids, most likely explaining why they have received comparatively little attention in Computer Graphics compared to single- or two-phase flows. In this paper, we present a full LBM solver for multifluid simulation. We derive a conservative phase field model with which the spatial presence of each fluid or phase is encoded to allow for the simulation of miscible, immiscible and even partially-miscible fluids, while the temporal evolution of the phases is performed using a D3Q7 lattice-Boltzmann discretization. The velocity field, handled through the recent high-order moment-encoded LBM (HOME-LBM) framework to minimize its memory footprint, is simulated via a velocity-based distribution stored on a D3Q27 or D3Q19 discretization to offer accuracy and stability to large density ratios even in turbulent scenarios, while coupling with the phases through pressure, viscosity, and interfacial forces is achieved by leveraging the diffuse encoding of interfaces. The resulting solver addresses a number of limitations of kinetic methods in both computational fluid dynamics and computer graphics: it offers a fast, accurate, and low-memory fluid solver enabling efficient turbulent multiphase simulations free of the typical oscillatory pressure behavior near boundaries. We present several numerical benchmarks, examples and comparisons of multiphase flows to demonstrate our solver's visual complexity, accuracy, and realism.
{"title":"Kinetic Simulation of Turbulent Multifluid Flows","authors":"Wei Li, Kui Wu, Mathieu Desbrun","doi":"10.1145/3658178","DOIUrl":"https://doi.org/10.1145/3658178","url":null,"abstract":"Despite its visual appeal, the simulation of separated multiphase flows (i.e., streams of fluids separated by interfaces) faces numerous challenges in accurately reproducing complex behaviors such as guggling, wetting, or bubbling. These difficulties are especially pronounced for high Reynolds numbers and large density variations between fluids, most likely explaining why they have received comparatively little attention in Computer Graphics compared to single- or two-phase flows. In this paper, we present a full LBM solver for multifluid simulation. We derive a conservative phase field model with which the spatial presence of each fluid or phase is encoded to allow for the simulation of miscible, immiscible and even partially-miscible fluids, while the temporal evolution of the phases is performed using a D3Q7 lattice-Boltzmann discretization. The velocity field, handled through the recent high-order moment-encoded LBM (HOME-LBM) framework to minimize its memory footprint, is simulated via a velocity-based distribution stored on a D3Q27 or D3Q19 discretization to offer accuracy and stability to large density ratios even in turbulent scenarios, while coupling with the phases through pressure, viscosity, and interfacial forces is achieved by leveraging the diffuse encoding of interfaces. The resulting solver addresses a number of limitations of kinetic methods in both computational fluid dynamics and computer graphics: it offers a fast, accurate, and low-memory fluid solver enabling efficient turbulent multiphase simulations free of the typical oscillatory pressure behavior near boundaries. We present several numerical benchmarks, examples and comparisons of multiphase flows to demonstrate our solver's visual complexity, accuracy, and realism.","PeriodicalId":50913,"journal":{"name":"ACM Transactions on Graphics","volume":null,"pages":null},"PeriodicalIF":7.8,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141821548","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bosheng Li, Nikolas Alexander Schwarz, Wojciech Palubicki, S. Pirk, Bedrich Benes
Generating realistic models of trees and plants is a complex problem because of the vast variety of shapes trees can form. Procedural modeling algorithms are popular for defining branching structures and steadily increasing their expressive power by considering more biological findings. Most existing methods focus on defining the branching structure of trees based on skeletal graphs, while the surface mesh of branches is most commonly defined as simple cylinders. One critical open problem is defining and controlling the complex details observed in real trees. This paper aims to advance tree modeling by proposing a strand-based volumetric representation for tree models. Strands are fixed-size volumetric pipes that define the branching structure. By leveraging strands, our approach captures the lateral development of trees. We combine the strands with a novel branch development formulation that allows us to locally inject vigor and reshape the tree model. Moreover, we define a set of editing operators for tree primary and lateral development that enables users to interactively generate complex tree models with unprecedented detail with minimal effort.
{"title":"Interactive Invigoration: Volumetric Modeling of Trees with Strands","authors":"Bosheng Li, Nikolas Alexander Schwarz, Wojciech Palubicki, S. Pirk, Bedrich Benes","doi":"10.1145/3658206","DOIUrl":"https://doi.org/10.1145/3658206","url":null,"abstract":"Generating realistic models of trees and plants is a complex problem because of the vast variety of shapes trees can form. Procedural modeling algorithms are popular for defining branching structures and steadily increasing their expressive power by considering more biological findings. Most existing methods focus on defining the branching structure of trees based on skeletal graphs, while the surface mesh of branches is most commonly defined as simple cylinders. One critical open problem is defining and controlling the complex details observed in real trees. This paper aims to advance tree modeling by proposing a strand-based volumetric representation for tree models. Strands are fixed-size volumetric pipes that define the branching structure. By leveraging strands, our approach captures the lateral development of trees. We combine the strands with a novel branch development formulation that allows us to locally inject vigor and reshape the tree model. Moreover, we define a set of editing operators for tree primary and lateral development that enables users to interactively generate complex tree models with unprecedented detail with minimal effort.","PeriodicalId":50913,"journal":{"name":"ACM Transactions on Graphics","volume":null,"pages":null},"PeriodicalIF":7.8,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141821892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We present S 3 , a novel approach to generating expressive, animator-centric 3D head and eye animation of characters in conversation. Given speech audio, a Directorial script and a cinematographic 3D scene as input, we automatically output the animated 3D rotation of each character's head and eyes. S 3 distills animation and psycho-linguistic insights into a novel modular framework for conversational gaze capturing: audio-driven rhythmic head motion; narrative script-driven emblematic head and eye gestures; and gaze trajectories computed from audio-driven gaze focus/aversion and 3D visual scene salience. Our evaluation is four-fold: we quantitatively validate our algorithm against ground truth data and baseline alternatives; we conduct a perceptual study showing our results to compare favourably to prior art; we present examples of animator control and critique of S 3 output; and present a large number of compelling and varied animations of conversational gaze.
我们介绍的 S 3 是一种新颖的方法,用于生成以动画师为中心、富有表现力的对话人物头部和眼睛三维动画。输入语音音频、导演脚本和电影三维场景后,我们会自动输出每个角色头部和眼睛的三维旋转动画。S 3 将动画和心理语言学的见解提炼成一个新颖的对话注视捕捉模块框架:音频驱动的有节奏的头部运动;叙事脚本驱动的标志性头部和眼部手势;以及根据音频驱动的注视焦点/偏移和三维视觉场景突出度计算出的注视轨迹。我们的评估包括四个方面:我们根据地面实况数据和基线替代方案对我们的算法进行了定量验证;我们进行了一项感知研究,显示我们的结果优于现有技术;我们展示了动画师控制和评论 S 3 输出的示例;我们还展示了大量令人信服的各种对话凝视动画。
{"title":"S3: Speech, Script and Scene driven Head and Eye Animation","authors":"Yifang Pan, Rishabh Agrawal, Karan Singh","doi":"10.1145/3658172","DOIUrl":"https://doi.org/10.1145/3658172","url":null,"abstract":"\u0000 We present\u0000 S\u0000 3\u0000 , a novel approach to generating expressive, animator-centric 3D head and eye animation of characters in conversation. Given\u0000 speech\u0000 audio, a Directorial\u0000 script\u0000 and a cinematographic 3D\u0000 scene\u0000 as input, we automatically output the animated 3D rotation of each character's head and eyes.\u0000 S\u0000 3\u0000 distills animation and psycho-linguistic insights into a novel modular framework for conversational gaze capturing: audio-driven rhythmic head motion; narrative script-driven emblematic head and eye gestures; and gaze trajectories computed from audio-driven gaze focus/aversion and 3D visual scene salience. Our evaluation is four-fold: we quantitatively validate our algorithm against ground truth data and baseline alternatives; we conduct a perceptual study showing our results to compare favourably to prior art; we present examples of animator control and critique of\u0000 S\u0000 3\u0000 output; and present a large number of compelling and varied animations of conversational gaze.\u0000","PeriodicalId":50913,"journal":{"name":"ACM Transactions on Graphics","volume":null,"pages":null},"PeriodicalIF":7.8,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141822122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shree K. Nayar, Jeremy Klotz, Nikhil Nanda, Mikhail Fridberg
We present a sensor that can measure light and wirelessly communicate the measurement, without the need for an external power source or a battery. Our sensor, called cricket, harvests energy from incident light. It is asleep for most of the time and transmits a short and strong radio frequency chirp when its harvested energy reaches a specific level. The carrier frequency of each cricket is fixed and reveals its identity, and the duration between consecutive chirps is a measure of the incident light level. We have characterized the radiometric response function, signal-to-noise ratio and dynamic range of cricket. We have experimentally verified that cricket can be miniaturized at the expense of increasing the duration between chirps. We show that a cube with a cricket on each of its sides can be used to estimate the centroid of any complex illumination, which has value in applications such as solar tracking. We also demonstrate the use of crickets for creating untethered sensor arrays that can produce video and control lighting for energy conservation. Finally, we modified cricket's circuit to develop battery-free electronic sunglasses that can instantly adapt to environmental illumination.
{"title":"Cricket: A Self-Powered Chirping Pixel","authors":"Shree K. Nayar, Jeremy Klotz, Nikhil Nanda, Mikhail Fridberg","doi":"10.1145/3658196","DOIUrl":"https://doi.org/10.1145/3658196","url":null,"abstract":"We present a sensor that can measure light and wirelessly communicate the measurement, without the need for an external power source or a battery. Our sensor, called cricket, harvests energy from incident light. It is asleep for most of the time and transmits a short and strong radio frequency chirp when its harvested energy reaches a specific level. The carrier frequency of each cricket is fixed and reveals its identity, and the duration between consecutive chirps is a measure of the incident light level. We have characterized the radiometric response function, signal-to-noise ratio and dynamic range of cricket. We have experimentally verified that cricket can be miniaturized at the expense of increasing the duration between chirps. We show that a cube with a cricket on each of its sides can be used to estimate the centroid of any complex illumination, which has value in applications such as solar tracking. We also demonstrate the use of crickets for creating untethered sensor arrays that can produce video and control lighting for energy conservation. Finally, we modified cricket's circuit to develop battery-free electronic sunglasses that can instantly adapt to environmental illumination.","PeriodicalId":50913,"journal":{"name":"ACM Transactions on Graphics","volume":null,"pages":null},"PeriodicalIF":7.8,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141822372","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yushan Han, Yizhou Chen, Carmichael F. Ong, Jingyu Chen, Jennifer Hicks, Joseph Teran
We present a comprehensive neural network to model the deformation of human soft tissues including muscle, tendon, fat and skin. Our approach provides kinematic and active correctives to linear blend skinning [Magnenat-Thalmann et al. 1989] that enhance the realism of soft tissue deformation at modest computational cost. Our network accounts for deformations induced by changes in the underlying skeletal joint state as well as the active contractile state of relevant muscles. Training is done to approximate quasistatic equilibria produced from physics-based simulation of hyperelastic soft tissues in close contact. We use a layered approach to equilibrium data generation where deformation of muscle is computed first, followed by an inner skin/fascia layer, and lastly a fat layer between the fascia and outer skin. We show that a simple network model which decouples the dependence on skeletal kinematics and muscle activation state can produce compelling behaviors with modest training data burden. Active contraction of muscles is estimated using inverse dynamics where muscle moment arms are accurately predicted using the neural network to model kinematic musculotendon geometry. Results demonstrate the ability to accurately replicate compelling musculoskeletal and skin deformation behaviors over a representative range of motions, including the effects of added weights in body building motions.
{"title":"A Neural Network Model for Efficient Musculoskeletal-Driven Skin Deformation","authors":"Yushan Han, Yizhou Chen, Carmichael F. Ong, Jingyu Chen, Jennifer Hicks, Joseph Teran","doi":"10.1145/3658135","DOIUrl":"https://doi.org/10.1145/3658135","url":null,"abstract":"We present a comprehensive neural network to model the deformation of human soft tissues including muscle, tendon, fat and skin. Our approach provides kinematic and active correctives to linear blend skinning [Magnenat-Thalmann et al. 1989] that enhance the realism of soft tissue deformation at modest computational cost. Our network accounts for deformations induced by changes in the underlying skeletal joint state as well as the active contractile state of relevant muscles. Training is done to approximate quasistatic equilibria produced from physics-based simulation of hyperelastic soft tissues in close contact. We use a layered approach to equilibrium data generation where deformation of muscle is computed first, followed by an inner skin/fascia layer, and lastly a fat layer between the fascia and outer skin. We show that a simple network model which decouples the dependence on skeletal kinematics and muscle activation state can produce compelling behaviors with modest training data burden. Active contraction of muscles is estimated using inverse dynamics where muscle moment arms are accurately predicted using the neural network to model kinematic musculotendon geometry. Results demonstrate the ability to accurately replicate compelling musculoskeletal and skin deformation behaviors over a representative range of motions, including the effects of added weights in body building motions.","PeriodicalId":50913,"journal":{"name":"ACM Transactions on Graphics","volume":null,"pages":null},"PeriodicalIF":7.8,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141823238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yizhou Chen, Yushan Han, Jingyu Chen, Zhan Zhang, Alex Mcadams, Joseph Teran
Position based dynamics [Müller et al. 2007] is a powerful technique for simulating a variety of materials. Its primary strength is its robustness when run with limited computational budget. Even though PBD is based on the projection of static constraints, it does not work well for quasistatic problems. This is particularly relevant since the efficient creation of large data sets of plausible, but not necessarily accurate elastic equilibria is of increasing importance with the emergence of quasistatic neural networks [Bailey et al. 2018; Chentanez et al. 2020; Jin et al. 2022; Luo et al. 2020]. Recent work [Macklin et al. 2016] has shown that PBD can be related to the Gauss-Seidel approximation of a Lagrange multiplier formulation of backward Euler time stepping, where each constraint is solved/projected independently of the others in an iterative fashion. We show that a position-based, rather than constraint-based nonlinear Gauss-Seidel approach resolves a number of issues with PBD, particularly in the quasistatic setting. Our approach retains the essential PBD feature of stable behavior with constrained computational budgets, but also allows for convergent behavior with expanded budgets. We demonstrate the efficacy of our method on a variety of representative hyperelastic problems and show that both successive over relaxation (SOR), Chebyshev and multiresolution-based acceleration can be easily applied.
{"title":"Position-Based Nonlinear Gauss-Seidel for Quasistatic Hyperelasticity","authors":"Yizhou Chen, Yushan Han, Jingyu Chen, Zhan Zhang, Alex Mcadams, Joseph Teran","doi":"10.1145/3658154","DOIUrl":"https://doi.org/10.1145/3658154","url":null,"abstract":"Position based dynamics [Müller et al. 2007] is a powerful technique for simulating a variety of materials. Its primary strength is its robustness when run with limited computational budget. Even though PBD is based on the projection of static constraints, it does not work well for quasistatic problems. This is particularly relevant since the efficient creation of large data sets of plausible, but not necessarily accurate elastic equilibria is of increasing importance with the emergence of quasistatic neural networks [Bailey et al. 2018; Chentanez et al. 2020; Jin et al. 2022; Luo et al. 2020]. Recent work [Macklin et al. 2016] has shown that PBD can be related to the Gauss-Seidel approximation of a Lagrange multiplier formulation of backward Euler time stepping, where each constraint is solved/projected independently of the others in an iterative fashion. We show that a position-based, rather than constraint-based nonlinear Gauss-Seidel approach resolves a number of issues with PBD, particularly in the quasistatic setting. Our approach retains the essential PBD feature of stable behavior with constrained computational budgets, but also allows for convergent behavior with expanded budgets. We demonstrate the efficacy of our method on a variety of representative hyperelastic problems and show that both successive over relaxation (SOR), Chebyshev and multiresolution-based acceleration can be easily applied.","PeriodicalId":50913,"journal":{"name":"ACM Transactions on Graphics","volume":null,"pages":null},"PeriodicalIF":7.8,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141823262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Gillespie, Denise Yang, Mario Botsch, Keenan Crane
Sphere tracing is a fast and high-quality method for visualizing surfaces encoded by signed distance functions (SDFs). We introduce a similar method for a completely different class of surfaces encoded by harmonic functions , opening up rich new possibilities for visual computing. Our starting point is similar in spirit to sphere tracing: using conservative Harnack bounds on the growth of harmonic functions, we develop a Harnack tracing algorithm for visualizing level sets of harmonic functions, including those that are angle-valued and exhibit singularities. The method takes much larger steps than naïve ray marching, avoids numerical issues common to generic root finding methods and, like sphere tracing, needs only perform pointwise evaluation of the function at each step. For many use cases, the method is fast enough to run real time in a shader program. We use it to visualize smooth surfaces directly from point clouds (via Poisson surface reconstruction) or polygon soup (via generalized winding numbers) without linear solves or mesh extraction. We also use it to visualize nonplanar polygons (possibly with holes), surfaces from architectural geometry, mesh "exoskeletons", and key mathematical objects including knots, links, spherical harmonics, and Riemann surfaces. Finally we show that, at least in theory, Harnack tracing provides an alternative mechanism for visualizing arbitrary implicit surfaces.
{"title":"Ray Tracing Harmonic Functions","authors":"M. Gillespie, Denise Yang, Mario Botsch, Keenan Crane","doi":"10.1145/3658201","DOIUrl":"https://doi.org/10.1145/3658201","url":null,"abstract":"\u0000 Sphere tracing\u0000 is a fast and high-quality method for visualizing surfaces encoded by signed distance functions (SDFs). We introduce a similar method for a completely different class of surfaces encoded by\u0000 harmonic functions\u0000 , opening up rich new possibilities for visual computing. Our starting point is similar in spirit to sphere tracing: using conservative\u0000 Harnack bounds\u0000 on the growth of harmonic functions, we develop a\u0000 Harnack tracing\u0000 algorithm for visualizing level sets of harmonic functions, including those that are angle-valued and exhibit singularities. The method takes much larger steps than naïve ray marching, avoids numerical issues common to generic root finding methods and, like sphere tracing, needs only perform pointwise evaluation of the function at each step. For many use cases, the method is fast enough to run real time in a shader program. We use it to visualize smooth surfaces directly from point clouds (via Poisson surface reconstruction) or polygon soup (via generalized winding numbers) without linear solves or mesh extraction. We also use it to visualize nonplanar polygons (possibly with holes), surfaces from architectural geometry, mesh \"exoskeletons\", and key mathematical objects including knots, links, spherical harmonics, and Riemann surfaces. Finally we show that, at least in theory, Harnack tracing provides an alternative mechanism for visualizing arbitrary implicit surfaces.\u0000","PeriodicalId":50913,"journal":{"name":"ACM Transactions on Graphics","volume":null,"pages":null},"PeriodicalIF":7.8,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141823731","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Haolin Lu, Wesley Chang, Trevor Hedstrom, Tzu-Mao Li
We propose a real-time path guiding method, Voxel Path Guiding (VXPG), that significantly improves fitting efficiency under limited sampling budget. Our key idea is to use a spatial irradiance voxel data structure across all shading points to guide the location of path vertices. For each frame, we first populate the voxel data structure with irradiance and geometry information. To sample from the data structure for a shading point, we need to select a voxel with high contribution to that point. To importance sample the voxels while taking visibility into consideration, we adapt techniques from offline many-lights rendering by clustering pairs of shading points and voxels. Finally, we unbiasedly sample within the selected voxel while taking the geometry inside into consideration. Our experiments show that VXPG achieves significantly lower perceptual error compared to other real-time path guiding and virtual point light methods under equal-time comparison. Furthermore, our method does not rely on temporal information, but can be used together with other temporal reuse sampling techniques such as ReSTIR to further improve sampling efficiency.
{"title":"Real-Time Path Guiding Using Bounding Voxel Sampling","authors":"Haolin Lu, Wesley Chang, Trevor Hedstrom, Tzu-Mao Li","doi":"10.1145/3658203","DOIUrl":"https://doi.org/10.1145/3658203","url":null,"abstract":"We propose a real-time path guiding method, Voxel Path Guiding (VXPG), that significantly improves fitting efficiency under limited sampling budget. Our key idea is to use a spatial irradiance voxel data structure across all shading points to guide the location of path vertices. For each frame, we first populate the voxel data structure with irradiance and geometry information. To sample from the data structure for a shading point, we need to select a voxel with high contribution to that point. To importance sample the voxels while taking visibility into consideration, we adapt techniques from offline many-lights rendering by clustering pairs of shading points and voxels. Finally, we unbiasedly sample within the selected voxel while taking the geometry inside into consideration. Our experiments show that VXPG achieves significantly lower perceptual error compared to other real-time path guiding and virtual point light methods under equal-time comparison. Furthermore, our method does not rely on temporal information, but can be used together with other temporal reuse sampling techniques such as ReSTIR to further improve sampling efficiency.","PeriodicalId":50913,"journal":{"name":"ACM Transactions on Graphics","volume":null,"pages":null},"PeriodicalIF":7.8,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141824088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}