首页 > 最新文献

ACM Transactions on Graphics最新文献

英文 中文
3D Reconstruction with Fast Dipole Sums 利用快速偶极和进行三维重建
IF 6.2 1区 计算机科学 Q1 COMPUTER SCIENCE, SOFTWARE ENGINEERING Pub Date : 2024-11-19 DOI: 10.1145/3687914
Hanyu Chen, Bailey Miller, Ioannis Gkioulekas
We introduce a method for high-quality 3D reconstruction from multi-view images. Our method uses a new point-based representation, the regularized dipole sum, which generalizes the winding number to allow for interpolation of per-point attributes in point clouds with noisy or outlier points. Using regularized dipole sums, we represent implicit geometry and radiance fields as per-point attributes of a dense point cloud, which we initialize from structure from motion. We additionally derive Barnes-Hut fast summation schemes for accelerated forward and adjoint dipole sum queries. These queries facilitate the use of ray tracing to efficiently and differentiably render images with our point-based representations, and thus update their point attributes to optimize scene geometry and appearance. We evaluate our method in inverse rendering applications against state-of-the-art alternatives, based on ray tracing of neural representations or rasterization of Gaussian point-based representations. Our method significantly improves 3D reconstruction quality and robustness at equal runtimes, while also supporting more general rendering methods such as shadow rays for direct illumination.
我们介绍了一种从多视角图像进行高质量三维重建的方法。我们的方法使用了一种新的基于点的表示方法--正则化偶极子和,它将缠绕数广义化,允许在有噪声点或离群点的点云中对每点属性进行插值。利用正则化偶极子和,我们将隐含几何和辐射场表示为密集点云的每点属性,并根据运动结构对其进行初始化。此外,我们还推导出了用于加速正向和邻接偶极和查询的巴恩斯-胡特快速求和方案。这些查询便于使用光线追踪来高效、可微分地渲染图像,从而更新点属性,优化场景几何和外观。我们在反渲染应用中评估了我们的方法,并与基于神经表示的光线追踪或基于高斯点表示的光栅化的最先进替代方法进行了比较。在相同的运行时间内,我们的方法大大提高了三维重建的质量和鲁棒性,同时还支持更通用的渲染方法,如直接照射的阴影射线。
{"title":"3D Reconstruction with Fast Dipole Sums","authors":"Hanyu Chen, Bailey Miller, Ioannis Gkioulekas","doi":"10.1145/3687914","DOIUrl":"https://doi.org/10.1145/3687914","url":null,"abstract":"We introduce a method for high-quality 3D reconstruction from multi-view images. Our method uses a new point-based representation, the regularized dipole sum, which generalizes the winding number to allow for interpolation of per-point attributes in point clouds with noisy or outlier points. Using regularized dipole sums, we represent implicit geometry and radiance fields as per-point attributes of a dense point cloud, which we initialize from structure from motion. We additionally derive Barnes-Hut fast summation schemes for accelerated forward and adjoint dipole sum queries. These queries facilitate the use of ray tracing to efficiently and differentiably render images with our point-based representations, and thus update their point attributes to optimize scene geometry and appearance. We evaluate our method in inverse rendering applications against state-of-the-art alternatives, based on ray tracing of neural representations or rasterization of Gaussian point-based representations. Our method significantly improves 3D reconstruction quality and robustness at equal runtimes, while also supporting more general rendering methods such as shadow rays for direct illumination.","PeriodicalId":50913,"journal":{"name":"ACM Transactions on Graphics","volume":"112 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142672876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
EgoHDM: A Real-time Egocentric-Inertial Human Motion Capture, Localization, and Dense Mapping System EgoHDM:实时脑心惯性人体运动捕捉、定位和密集绘图系统
IF 6.2 1区 计算机科学 Q1 COMPUTER SCIENCE, SOFTWARE ENGINEERING Pub Date : 2024-11-19 DOI: 10.1145/3687907
Handi Yin, Bonan Liu, Manuel Kaufmann, Jinhao He, Sammy Christen, Jie Song, Pan Hui
We present EgoHDM, an online egocentric-inertial human motion capture (mocap), localization, and dense mapping system. Our system uses 6 inertial measurement units (IMUs) and a commodity head-mounted RGB camera. EgoHDM is the first human mocap system that offers dense scene mapping in near real-time. Further, it is fast and robust to initialize and fully closes the loop between physically plausible map-aware global human motion estimation and mocap-aware 3D scene reconstruction. To achieve this, we design a tightly coupled mocap-aware dense bundle adjustment and physics-based body pose correction module leveraging a local body-centric elevation map. The latter introduces a novel terrain-aware contact PD controller, which enables characters to physically contact the given local elevation map thereby reducing human floating or penetration. We demonstrate the performance of our system on established synthetic and real-world benchmarks. The results show that our method reduces human localization, camera pose, and mapping accuracy error by 41%, 71%, 46%, respectively, compared to the state of the art. Our qualitative evaluations on newly captured data further demonstrate that EgoHDM can cover challenging scenarios in non-flat terrain including stepping over stairs and outdoor scenes in the wild. Our project page: https://handiyin.github.io/EgoHDM/
我们介绍的 EgoHDM 是一种在线自我中心惯性人体动作捕捉(mocap)、定位和密集绘图系统。我们的系统使用 6 个惯性测量单元(IMU)和一个商品头戴式 RGB 摄像机。EgoHDM 是首个可提供近乎实时的密集场景映射的人体动作捕捉系统。此外,它的初始化速度快、鲁棒性强,并能完全闭合物理上可信的地图感知全局人体运动估算和 mocap 感知三维场景重建之间的环路。为此,我们设计了一个紧密耦合的 mocap 感知密集束调整和基于物理的人体姿态校正模块,该模块利用了以人体为中心的局部高程图。后者引入了新颖的地形感知接触 PD 控制器,使角色能够与给定的本地高程图进行物理接触,从而减少人体漂浮或穿透。我们在已建立的合成和真实世界基准上演示了我们系统的性能。结果表明,与现有技术相比,我们的方法将人类定位、摄像机姿势和绘图精度误差分别降低了 41%、71% 和 46%。我们对新捕获的数据进行的定性评估进一步证明,EgoHDM 可以覆盖非平坦地形中的挑战性场景,包括跨过楼梯和野外室外场景。我们的项目页面:https://handiyin.github.io/EgoHDM/
{"title":"EgoHDM: A Real-time Egocentric-Inertial Human Motion Capture, Localization, and Dense Mapping System","authors":"Handi Yin, Bonan Liu, Manuel Kaufmann, Jinhao He, Sammy Christen, Jie Song, Pan Hui","doi":"10.1145/3687907","DOIUrl":"https://doi.org/10.1145/3687907","url":null,"abstract":"We present EgoHDM, an online egocentric-inertial human motion capture (mocap), localization, and dense mapping system. Our system uses 6 inertial measurement units (IMUs) and a commodity head-mounted RGB camera. EgoHDM is the first human mocap system that offers <jats:italic>dense</jats:italic> scene mapping in <jats:italic>near real-time.</jats:italic> Further, it is fast and robust to initialize and fully closes the loop between physically plausible map-aware global human motion estimation and mocap-aware 3D scene reconstruction. To achieve this, we design a tightly coupled mocap-aware dense bundle adjustment and physics-based body pose correction module leveraging a local body-centric elevation map. The latter introduces a novel terrain-aware contact PD controller, which enables characters to physically contact the given local elevation map thereby reducing human floating or penetration. We demonstrate the performance of our system on established synthetic and real-world benchmarks. The results show that our method reduces human localization, camera pose, and mapping accuracy error by 41%, 71%, 46%, respectively, compared to the state of the art. Our qualitative evaluations on newly captured data further demonstrate that EgoHDM can cover challenging scenarios in non-flat terrain including stepping over stairs and outdoor scenes in the wild. Our project page: https://handiyin.github.io/EgoHDM/","PeriodicalId":50913,"journal":{"name":"ACM Transactions on Graphics","volume":"176 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142673125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Direct Manipulation of Procedural Implicit Surfaces 直接操纵程序隐含曲面
IF 6.2 1区 计算机科学 Q1 COMPUTER SCIENCE, SOFTWARE ENGINEERING Pub Date : 2024-11-19 DOI: 10.1145/3687936
Marzia Riso, Élie Michel, Axel Paris, Valentin Deschaintre, Mathieu Gaillard, Fabio Pellacini
Procedural implicit surfaces are a popular representation for shape modeling. They provide a simple framework for complex geometric operations such as Booleans, blending and deformations. However, their editability remains a challenging task: as the definition of the shape is purely implicit, direct manipulation of the shape cannot be performed. Thus, parameters of the model are often exposed through abstract sliders, which have to be nontrivially created by the user and understood by others for each individual model to modify. Further, each of these sliders needs to be set one by one to achieve the desired appearance. To circumvent this laborious process while preserving editability, we propose to directly manipulate the implicit surface in the viewport. We let the user naturally interact with the output shape, leveraging points on a co-parameterization we design specifically for implicit surfaces, to guide the parameter updates and reach the desired appearance faster. We leverage our automatic differentiation of the procedural implicit surface to propagate interactions made by the user in the viewport to the shape parameters themselves. We further design a solver that uses such information to guide an intuitive and smooth user workflow. We demonstrate different editing processes across multiple implicit shapes and parameters that would be tedious by tuning sliders.
程序化隐式曲面是一种常用的形状建模表示方法。它们为布尔运算、混合和变形等复杂的几何操作提供了一个简单的框架。然而,它们的可编辑性仍然是一项具有挑战性的任务:由于形状的定义是纯隐式的,因此无法对形状进行直接操作。因此,模型的参数通常通过抽象的滑动条来显示,而这些滑动条必须由用户创建,并由其他人理解,才能对每个模型进行修改。此外,每个滑块都需要逐个设置,以达到所需的外观效果。为了避免这一费力的过程,同时保留可编辑性,我们建议在视口中直接操作隐式曲面。我们让用户与输出形状自然交互,利用我们专门为隐式曲面设计的共参数化点来引导参数更新,从而更快地达到所需的外观效果。我们利用程序化隐式曲面的自动区分功能,将用户在视口中进行的交互传播到形状参数本身。我们进一步设计了一个求解器,利用这些信息来引导直观流畅的用户工作流程。我们在多个隐式形状和参数上演示了不同的编辑流程,而这些流程通过调整滑块是非常繁琐的。
{"title":"Direct Manipulation of Procedural Implicit Surfaces","authors":"Marzia Riso, Élie Michel, Axel Paris, Valentin Deschaintre, Mathieu Gaillard, Fabio Pellacini","doi":"10.1145/3687936","DOIUrl":"https://doi.org/10.1145/3687936","url":null,"abstract":"Procedural implicit surfaces are a popular representation for shape modeling. They provide a simple framework for complex geometric operations such as Booleans, blending and deformations. However, their editability remains a challenging task: as the definition of the shape is purely implicit, direct manipulation of the shape cannot be performed. Thus, parameters of the model are often exposed through abstract sliders, which have to be nontrivially created by the user and understood by others for each individual model to modify. Further, each of these sliders needs to be set one by one to achieve the desired appearance. To circumvent this laborious process while preserving editability, we propose to directly manipulate the implicit surface in the viewport. We let the user naturally interact with the output shape, leveraging points on a co-parameterization we design specifically for implicit surfaces, to guide the parameter updates and reach the desired appearance faster. We leverage our automatic differentiation of the procedural implicit surface to propagate interactions made by the user in the viewport to the shape parameters themselves. We further design a solver that uses such information to guide an intuitive and smooth user workflow. We demonstrate different editing processes across multiple implicit shapes and parameters that would be tedious by tuning sliders.","PeriodicalId":50913,"journal":{"name":"ACM Transactions on Graphics","volume":"18 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142672826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
GarVerseLOD: High-Fidelity 3D Garment Reconstruction from a Single In-the-Wild Image using a Dataset with Levels of Details GarVerseLOD:利用具有细节层次的数据集,从单张野外图像重建高保真 3D 服装
IF 6.2 1区 计算机科学 Q1 COMPUTER SCIENCE, SOFTWARE ENGINEERING Pub Date : 2024-11-19 DOI: 10.1145/3687921
Zhongjin Luo, Haolin Liu, Chenghong Li, Wanghao Du, Zirong Jin, Wanhu Sun, Yinyu Nie, Weikai Chen, Xiaoguang Han
Neural implicit functions have brought impressive advances to the state-of-the-art of clothed human digitization from multiple or even single images. However, despite the progress, current arts still have difficulty generalizing to unseen images with complex cloth deformation and body poses. In this work, we present GarVerseLOD, a new dataset and framework that paves the way to achieving unprecedented robustness in high-fidelity 3D garment reconstruction from a single unconstrained image. Inspired by the recent success of large generative models, we believe that one key to addressing the generalization challenge lies in the quantity and quality of 3D garment data. Towards this end, GarVerseLOD collects 6,000 high-quality cloth models with fine-grained geometry details manually created by professional artists. In addition to the scale of training data, we observe that having disentangled granularities of geometry can play an important role in boosting the generalization capability and inference accuracy of the learned model. We hence craft GarVerseLOD as a hierarchical dataset with levels of details (LOD) , spanning from detail-free stylized shape to pose-blended garment with pixel-aligned details. This allows us to make this highly under-constrained problem tractable by factorizing the inference into easier tasks, each narrowed down with smaller searching space. To ensure GarVerseLOD can generalize well to in-the-wild images, we propose a novel labeling paradigm based on conditional diffusion models to generate extensive paired images for each garment model with high photorealism. We evaluate our method on a massive amount of in-the-wild images. Experimental results demonstrate that GarVerseLOD can generate standalone garment pieces with significantly better quality than prior approaches while being robust against a large variation of pose, illumination, occlusion, and deformation. Code and dataset are available at garverselod.github.io.
神经隐函数为从多幅甚至单幅图像中进行服装人体数字化带来了令人印象深刻的进步。然而,尽管取得了进步,目前的技术仍然难以推广到具有复杂布料变形和身体姿势的未知图像。在这项工作中,我们提出了 GarVerseLOD,这是一个新的数据集和框架,它为从单张无约束图像重建高保真三维服装实现前所未有的鲁棒性铺平了道路。受最近大型生成模型成功的启发,我们认为解决泛化难题的关键之一在于三维服装数据的数量和质量。为此,GarVerseLOD 收集了由专业艺术家手工创建的 6000 个高质量布料模型,这些模型具有精细的几何细节。除了训练数据的规模外,我们还观察到,几何粒度的分离在提高学习模型的泛化能力和推理准确性方面发挥着重要作用。因此,我们将 GarVerseLOD 制作成一个具有细节级别(LOD)的分层数据集,从无细节的风格化形状到具有像素对齐细节的姿态混合服装。这样,我们就能将推理分解成更简单的任务,缩小搜索空间,从而使这个高度受限的问题变得简单易行。为了确保 GarVerseLOD 能够很好地应用于野生图像,我们提出了一种基于条件扩散模型的新型标注范式,为每个服装模型生成大量高逼真度的配对图像。我们在大量野生图像上评估了我们的方法。实验结果表明,GarVerseLOD 生成的独立服装质量明显优于之前的方法,同时对姿势、光照、遮挡和变形的巨大变化具有鲁棒性。代码和数据集见 garverselod.github.io。
{"title":"GarVerseLOD: High-Fidelity 3D Garment Reconstruction from a Single In-the-Wild Image using a Dataset with Levels of Details","authors":"Zhongjin Luo, Haolin Liu, Chenghong Li, Wanghao Du, Zirong Jin, Wanhu Sun, Yinyu Nie, Weikai Chen, Xiaoguang Han","doi":"10.1145/3687921","DOIUrl":"https://doi.org/10.1145/3687921","url":null,"abstract":"Neural implicit functions have brought impressive advances to the state-of-the-art of clothed human digitization from multiple or even single images. However, despite the progress, current arts still have difficulty generalizing to unseen images with complex cloth deformation and body poses. In this work, we present GarVerseLOD, a new dataset and framework that paves the way to achieving unprecedented robustness in high-fidelity 3D garment reconstruction from a single unconstrained image. Inspired by the recent success of large generative models, we believe that one key to addressing the generalization challenge lies in the quantity and quality of 3D garment data. Towards this end, GarVerseLOD collects 6,000 high-quality cloth models with fine-grained geometry details manually created by professional artists. In addition to the scale of training data, we observe that having disentangled granularities of geometry can play an important role in boosting the generalization capability and inference accuracy of the learned model. We hence craft GarVerseLOD as a hierarchical dataset with <jats:italic>levels of details (LOD)</jats:italic> , spanning from detail-free stylized shape to pose-blended garment with pixel-aligned details. This allows us to make this highly under-constrained problem tractable by factorizing the inference into easier tasks, each narrowed down with smaller searching space. To ensure GarVerseLOD can generalize well to in-the-wild images, we propose a novel labeling paradigm based on conditional diffusion models to generate extensive paired images for each garment model with high photorealism. We evaluate our method on a massive amount of in-the-wild images. Experimental results demonstrate that GarVerseLOD can generate standalone garment pieces with significantly better quality than prior approaches while being robust against a large variation of pose, illumination, occlusion, and deformation. Code and dataset are available at garverselod.github.io.","PeriodicalId":50913,"journal":{"name":"ACM Transactions on Graphics","volume":"80 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142672836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing the Aesthetics of 3D Shapes via Reference-based Editing 通过参考编辑增强三维形状的美感
IF 6.2 1区 计算机科学 Q1 COMPUTER SCIENCE, SOFTWARE ENGINEERING Pub Date : 2024-11-19 DOI: 10.1145/3687954
Minchan Chen, Manfred Lau
While there have been previous works that explored methods to enhance the aesthetics of images, the automated beautification of 3D shapes has been limited to specific shapes such as 3D face models. In this paper, we introduce a framework to automatically enhance the aesthetics of general 3D shapes. Our approach employs a reference-based beautification strategy. We first performed data collection to gather the aesthetics ratings of various 3D shapes to create a 3D shape aesthetics dataset. Then we perform reference-based editing to edit the input shape and beautify it by making it look more like some reference shape that is aesthetic. Specifically, we propose a reference-guided global deformation framework to coherently deform the input shape such that its structural proportions will be closer to those of the reference shape. We then optionally transplant some local aesthetic parts from the reference to the input to obtain the beautified output shapes. Comparisons show that our reference-guided 3D deformation algorithm outperforms existing techniques. Furthermore, quantitative and qualitative evaluations demonstrate that the performance of our aesthetics enhancement framework is consistent with both human perception and existing 3D shape aesthetics assessment.
虽然以前也有作品探索过增强图像美感的方法,但三维形状的自动美化仅限于特定形状,如三维人脸模型。在本文中,我们介绍了一种自动增强一般三维形状美感的框架。我们的方法采用了基于参考的美化策略。我们首先进行数据收集,收集各种三维形状的美学评分,创建三维形状美学数据集。然后,我们执行基于参考的编辑,对输入的形状进行编辑和美化,使其看起来更像某个具有美感的参考形状。具体来说,我们提出了一个以参考为导向的全局变形框架,对输入形状进行连贯变形,使其结构比例更接近参考形状。然后,我们会选择性地将一些局部美学部分从参考形状移植到输入形状中,从而获得美化后的输出形状。比较结果表明,我们的参考指导三维变形算法优于现有技术。此外,定量和定性评估表明,我们的美学增强框架的性能与人类感知和现有的三维形状美学评估一致。
{"title":"Enhancing the Aesthetics of 3D Shapes via Reference-based Editing","authors":"Minchan Chen, Manfred Lau","doi":"10.1145/3687954","DOIUrl":"https://doi.org/10.1145/3687954","url":null,"abstract":"While there have been previous works that explored methods to enhance the aesthetics of images, the automated beautification of 3D shapes has been limited to specific shapes such as 3D face models. In this paper, we introduce a framework to automatically enhance the aesthetics of general 3D shapes. Our approach employs a reference-based beautification strategy. We first performed data collection to gather the aesthetics ratings of various 3D shapes to create a 3D shape aesthetics dataset. Then we perform reference-based editing to edit the input shape and beautify it by making it look more like some reference shape that is aesthetic. Specifically, we propose a reference-guided global deformation framework to coherently deform the input shape such that its structural proportions will be closer to those of the reference shape. We then optionally transplant some local aesthetic parts from the reference to the input to obtain the beautified output shapes. Comparisons show that our reference-guided 3D deformation algorithm outperforms existing techniques. Furthermore, quantitative and qualitative evaluations demonstrate that the performance of our aesthetics enhancement framework is consistent with both human perception and existing 3D shape aesthetics assessment.","PeriodicalId":50913,"journal":{"name":"ACM Transactions on Graphics","volume":"176 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142672837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Differentiable Owen Scrambling 可微分欧文扰频
IF 6.2 1区 计算机科学 Q1 COMPUTER SCIENCE, SOFTWARE ENGINEERING Pub Date : 2024-11-19 DOI: 10.1145/3687764
Bastien Doignies, David Coeurjolly, Nicolas Bonneel, Julie Digne, Jean-Claude Iehl, Victor Ostromoukhov
Quasi-Monte Carlo integration is at the core of rendering. This technique estimates the value of an integral by evaluating the integrand at well-chosen sample locations. These sample points are designed to cover the domain as uniformly as possible to achieve better convergence rates than purely random points. Deterministic low-discrepancy sequences have been shown to outperform many competitors by guaranteeing good uniformity as measured by the so-called discrepancy metric, and, indirectly, by an integer t value relating the number of points falling into each domain stratum with the stratum area (lower t is better). To achieve randomness, scrambling techniques produce multiple realizations preserving the t value, making the construction stochastic. Among them, Owen scrambling is a popular approach that recursively permutes intervals for each dimension. However, relying on permutation trees makes it incompatible with smooth optimization frameworks. We present a differentiable Owen scrambling that regularizes permutations. We show that it can effectively be used with automatic differentiation tools for optimizing low-discrepancy sequences to improve metrics such as optimal transport uniformity, integration error, designed power spectra or projective properties, while maintaining their initial t -value as guaranteed by Owen scrambling. In some rendering settings, we show that our optimized sequences improve the rendering error.
准蒙特卡罗积分是渲染的核心。这种技术通过在精心选择的样本位置对积分进行求值来估算积分值。这些采样点的设计目的是尽可能均匀地覆盖整个域,以达到比纯随机点更好的收敛速度。确定性低差异序列已被证明优于许多竞争者,它通过所谓的差异度量保证良好的均匀性,并间接地通过一个整数 t 值(t 值越小越好)来衡量落入每个域分层的点数与分层面积的关系。为了实现随机性,扰频技术会产生多个保留 t 值的实现值,从而使构造具有随机性。其中,欧文扰频是一种流行的方法,它对每个维度的区间进行递归置换。然而,依赖于置换树使其与平滑优化框架不兼容。我们提出了一种正则化排列的可微分欧文扰乱法。我们证明,它可以有效地与自动微分工具一起用于优化低差异序列,以改善最优传输均匀性、积分误差、设计功率谱或投影特性等指标,同时保持欧文扰频所保证的初始 t 值。在某些渲染设置中,我们的优化序列改善了渲染误差。
{"title":"Differentiable Owen Scrambling","authors":"Bastien Doignies, David Coeurjolly, Nicolas Bonneel, Julie Digne, Jean-Claude Iehl, Victor Ostromoukhov","doi":"10.1145/3687764","DOIUrl":"https://doi.org/10.1145/3687764","url":null,"abstract":"Quasi-Monte Carlo integration is at the core of rendering. This technique estimates the value of an integral by evaluating the integrand at well-chosen sample locations. These sample points are designed to cover the domain as uniformly as possible to achieve better convergence rates than purely random points. Deterministic low-discrepancy sequences have been shown to outperform many competitors by guaranteeing good uniformity as measured by the so-called discrepancy metric, and, indirectly, by an integer <jats:italic>t</jats:italic> value relating the number of points falling into each domain stratum with the stratum area (lower <jats:italic>t</jats:italic> is better). To achieve randomness, scrambling techniques produce multiple realizations preserving the <jats:italic>t</jats:italic> value, making the construction stochastic. Among them, Owen scrambling is a popular approach that recursively permutes intervals for each dimension. However, relying on permutation trees makes it incompatible with smooth optimization frameworks. We present a differentiable Owen scrambling that regularizes permutations. We show that it can effectively be used with automatic differentiation tools for optimizing low-discrepancy sequences to improve metrics such as optimal transport uniformity, integration error, designed power spectra or projective properties, while maintaining their initial <jats:italic>t</jats:italic> -value as guaranteed by Owen scrambling. In some rendering settings, we show that our optimized sequences improve the rendering error.","PeriodicalId":50913,"journal":{"name":"ACM Transactions on Graphics","volume":"22 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142672829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Skeleton-Driven Inbetweening of Bitmap Character Drawings 位图字符绘图的骨架驱动夹层技术
IF 6.2 1区 计算机科学 Q1 COMPUTER SCIENCE, SOFTWARE ENGINEERING Pub Date : 2024-11-19 DOI: 10.1145/3687955
Kirill Brodt, Mikhail Bessmeltsev
One of the primary reasons for the high cost of traditional animation is the inbetweening process, where artists manually draw each intermediate frame necessary for smooth motion. Making this process more efficient has been at the core of computer graphics research for years, yet the industry has adopted very few solutions. Most existing solutions either require vector input or resort to tight inbetweening; often, they attempt to fully automate the process. In industry, however, keyframes are often spaced far apart, drawn in raster format, and contain occlusions. Moreover, inbetweening is fundamentally an artistic process, so the artist should maintain high-level control over it. We address these issues by proposing a novel inbetweening system for bitmap character drawings, supporting both tight and far inbetweening. In our setup, the artist can control motion by animating a skeleton between the keyframe poses. Our system then performs skeleton-based deformation of the bitmap drawings into the same pose and employs discrete optimization and deep learning to blend the deformed images. Besides the skeleton and the two drawn bitmap keyframes, we require very little annotation. However, deforming drawings with occlusions is complex, as it requires a piecewise smooth deformation field. To address this, we observe that this deformation field is smooth when the drawing is lifted into 3D. Our system therefore optimizes topology of a 2.5D partially layered template that we use to lift the drawing into 3D and get the final piecewise-smooth deformaton, effectively resolving occlusions. We validate our system through a series of animations, qualitative and quantitative comparisons, and user studies, demonstrating that our approach consistently outperforms the state of the art and our results are consistent with the viewers' perception. Code and data for our paper are available at http://www-labs.iro.umontreal.ca/~bmpix/inbetweening/.
传统动画成本高昂的主要原因之一是中间处理过程,即艺术家手动绘制平滑运动所需的每个中间帧。多年来,提高这一过程的效率一直是计算机图形学研究的核心,但业界采用的解决方案却寥寥无几。大多数现有的解决方案要么需要矢量输入,要么需要紧密的中间帧;通常,它们都试图将这一过程完全自动化。然而,在工业中,关键帧的间距往往很远,以光栅格式绘制,并包含遮挡物。此外,inbetweening 从根本上说是一个艺术过程,因此艺术家应该对其保持高层次的控制。为了解决这些问题,我们为位图字符绘制提出了一种新颖的夹入系统,同时支持紧密夹入和远距离夹入。在我们的设置中,艺术家可以通过关键帧姿势之间的骨架动画来控制运动。然后,我们的系统将基于骨架的位图绘图变形为相同的姿势,并采用离散优化和深度学习来混合变形图像。除了骨架和两个绘制的位图关键帧外,我们只需要很少的注释。不过,带有遮挡物的绘图变形非常复杂,因为它需要一个片状平滑变形场。为了解决这个问题,我们观察到当绘图被提升到三维时,这种变形场是平滑的。因此,我们的系统优化了 2.5D 部分分层模板的拓扑结构,我们使用该模板将图纸提升到三维,并获得最终的片状平滑变形,从而有效解决遮挡问题。我们通过一系列动画、定性和定量比较以及用户研究验证了我们的系统,证明我们的方法始终优于目前的技术水平,而且我们的结果与观众的感知一致。本文的代码和数据可在 http://www-labs.iro.umontreal.ca/~bmpix/inbetweening/ 上获取。
{"title":"Skeleton-Driven Inbetweening of Bitmap Character Drawings","authors":"Kirill Brodt, Mikhail Bessmeltsev","doi":"10.1145/3687955","DOIUrl":"https://doi.org/10.1145/3687955","url":null,"abstract":"One of the primary reasons for the high cost of traditional animation is the inbetweening process, where artists manually draw each intermediate frame necessary for smooth motion. Making this process more efficient has been at the core of computer graphics research for years, yet the industry has adopted very few solutions. Most existing solutions either require vector input or resort to tight inbetweening; often, they attempt to fully automate the process. In industry, however, keyframes are often spaced far apart, drawn in raster format, and contain occlusions. Moreover, inbetweening is fundamentally an artistic process, so the artist should maintain high-level control over it. We address these issues by proposing a novel inbetweening system for bitmap character drawings, supporting both <jats:italic>tight</jats:italic> and <jats:italic>far</jats:italic> inbetweening. In our setup, the artist can control motion by animating a skeleton between the keyframe poses. Our system then performs skeleton-based deformation of the bitmap drawings into the same pose and employs discrete optimization and deep learning to blend the deformed images. Besides the skeleton and the two drawn bitmap keyframes, we require very little annotation. However, deforming drawings with occlusions is complex, as it requires a piecewise smooth deformation field. To address this, we observe that this deformation field is smooth when the drawing is lifted into 3D. Our system therefore optimizes topology of a 2.5D partially layered template that we use to lift the drawing into 3D and get the final piecewise-smooth deformaton, effectively resolving occlusions. We validate our system through a series of animations, qualitative and quantitative comparisons, and user studies, demonstrating that our approach consistently outperforms the state of the art and our results are consistent with the viewers' perception. Code and data for our paper are available at http://www-labs.iro.umontreal.ca/~bmpix/inbetweening/.","PeriodicalId":50913,"journal":{"name":"ACM Transactions on Graphics","volume":"69 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142673047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stochastic Normal Orientation for Point Clouds 点云的随机正态定向
IF 6.2 1区 计算机科学 Q1 COMPUTER SCIENCE, SOFTWARE ENGINEERING Pub Date : 2024-11-19 DOI: 10.1145/3687944
Guojin Huang, Qing Fang, Zheng Zhang, Ligang Liu, Xiao-Ming Fu
We propose a simple yet effective method to orient normals for point clouds. Central to our approach is a novel optimization objective function defined from global and local perspectives. Globally, we introduce a signed uncertainty function that distinguishes the inside and outside of the underlying surface. Moreover, benefiting from the statistics of our global term, we present a local orientation term instead of a global one. The optimization problem can be solved by the commonly used numerical optimization solver, such as L-BFGS. The capability and feasibility of our approach are demonstrated over various complex point clouds. We achieve higher practical robustness and normal quality than the state-of-the-art methods.
我们提出了一种简单而有效的点云法线定向方法。我们方法的核心是一个从全局和局部角度定义的新型优化目标函数。在全局上,我们引入了一个有符号的不确定性函数,用于区分底层表面的内部和外部。此外,受益于全局项的统计数据,我们提出了一个局部定向项,而不是全局项。优化问题可以通过常用的数值优化求解器(如 L-BFGS)来解决。我们的方法在各种复杂点云上的能力和可行性得到了验证。与最先进的方法相比,我们获得了更高的实际鲁棒性和正常质量。
{"title":"Stochastic Normal Orientation for Point Clouds","authors":"Guojin Huang, Qing Fang, Zheng Zhang, Ligang Liu, Xiao-Ming Fu","doi":"10.1145/3687944","DOIUrl":"https://doi.org/10.1145/3687944","url":null,"abstract":"We propose a simple yet effective method to orient normals for point clouds. Central to our approach is a novel optimization objective function defined from global and local perspectives. Globally, we introduce a signed uncertainty function that distinguishes the inside and outside of the underlying surface. Moreover, benefiting from the statistics of our global term, we present a local orientation term instead of a global one. The optimization problem can be solved by the commonly used numerical optimization solver, such as L-BFGS. The capability and feasibility of our approach are demonstrated over various complex point clouds. We achieve higher practical robustness and normal quality than the state-of-the-art methods.","PeriodicalId":50913,"journal":{"name":"ACM Transactions on Graphics","volume":"70 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142673090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Mesh-based Simulation Framework using Automatic Code Generation 使用自动代码生成的基于网格的仿真框架
IF 6.2 1区 计算机科学 Q1 COMPUTER SCIENCE, SOFTWARE ENGINEERING Pub Date : 2024-11-19 DOI: 10.1145/3687986
Philipp Herholz, Tuur Stuyck, Ladislav Kavan
Optimized parallel implementations on GPU or CPU have dramatically enhanced the fidelity, resolution and accuracy of physical simulations and mesh-based algorithms. However, attaining optimal performance requires expert knowledge and might demand complex code and memory layout optimizations. This adds to the fact that physical simulation algorithms require the implementation of derivatives, which can be a tedious and error-prone process. In recent years, researchers and practitioners have investigated the concept of designing systems that allow for a more expressive definition of mesh-based simulation code. These systems leverage domain-specific languages (DSL), automatic differentiation or symbolic computing to enhance readability of implementations without compromising performance. We follow this line of work and propose a symbolic code generation approach tailored to mesh-based computations on parallel devices. Our system extends related work by incorporating collision handling and a data access synchronization approach, enabling rapid sparse matrix assembly.
GPU 或 CPU 上经过优化的并行实施大大提高了物理模拟和基于网格算法的保真度、分辨率和精确度。然而,要达到最佳性能需要专业知识,还可能需要对代码和内存布局进行复杂的优化。此外,物理模拟算法还需要执行导数,这可能是一个繁琐且容易出错的过程。近年来,研究人员和从业人员对设计系统的概念进行了研究,这些系统允许对基于网格的仿真代码进行更具表现力的定义。这些系统利用特定领域语言 (DSL)、自动微分或符号计算来提高实现的可读性,同时又不影响性能。我们遵循这一工作路线,提出了一种为并行设备上基于网格的计算量身定制的符号代码生成方法。我们的系统扩展了相关工作,纳入了碰撞处理和数据访问同步方法,实现了稀疏矩阵的快速组装。
{"title":"A Mesh-based Simulation Framework using Automatic Code Generation","authors":"Philipp Herholz, Tuur Stuyck, Ladislav Kavan","doi":"10.1145/3687986","DOIUrl":"https://doi.org/10.1145/3687986","url":null,"abstract":"Optimized parallel implementations on GPU or CPU have dramatically enhanced the fidelity, resolution and accuracy of physical simulations and mesh-based algorithms. However, attaining optimal performance requires expert knowledge and might demand complex code and memory layout optimizations. This adds to the fact that physical simulation algorithms require the implementation of derivatives, which can be a tedious and error-prone process. In recent years, researchers and practitioners have investigated the concept of designing systems that allow for a more expressive definition of mesh-based simulation code. These systems leverage domain-specific languages (DSL), automatic differentiation or symbolic computing to enhance readability of implementations without compromising performance. We follow this line of work and propose a symbolic code generation approach tailored to mesh-based computations on parallel devices. Our system extends related work by incorporating collision handling and a data access synchronization approach, enabling rapid sparse matrix assembly.","PeriodicalId":50913,"journal":{"name":"ACM Transactions on Graphics","volume":"55 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142673098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quad mesh mechanisms 四网格机制
IF 6.2 1区 计算机科学 Q1 COMPUTER SCIENCE, SOFTWARE ENGINEERING Pub Date : 2024-11-19 DOI: 10.1145/3687939
Caigui Jiang, Dmitry Lyakhov, Florian Rist, Helmut Pottmann, Johannes Wallner
This paper provides computational tools for the modeling and design of quad mesh mechanisms, which are meshes allowing continuous flexions under the assumption of rigid faces and hinges in the edges. We combine methods and results from different areas, namely differential geometry of surfaces, rigidity and flexibility of bar and joint frameworks, algebraic geometry, and optimization. The basic idea to achieve a time-continuous flexion is time-discretization justified by an algebraic degree argument. We are able to prove computationally feasible bounds on the number of required time instances we need to incorporate in our optimization. For optimization to succeed, an informed initialization is crucial. We present two computational pipelines to achieve that: one based on remeshing isometric surface pairs, another one based on iterative refinement. A third manner of initialization proved very effective: We interactively design meshes which are close to a narrow known class of flexible meshes, but not contained in it. Having enjoyed sufficiently many degrees of freedom during design, we afterwards optimize towards flexibility.
本文为四网格机构的建模和设计提供了计算工具,四网格机构是指在刚性面和边缘铰链假设下允许连续挠曲的网格。我们结合了不同领域的方法和结果,即曲面微分几何、杆件和关节框架的刚度和柔度、代数几何和优化。实现时间连续弯曲的基本思想是通过代数阶数论证时间离散化。我们能够证明优化所需的时间实例数量在计算上是可行的。要想优化成功,明智的初始化至关重要。我们提出了两种实现这一目标的计算管道:一种基于等距曲面对的重网格化,另一种基于迭代细化。事实证明,第三种初始化方式非常有效:我们以交互方式设计网格,这些网格接近于已知的狭义柔性网格类别,但并不包含在其中。在设计过程中获得足够多的自由度后,我们再对其灵活性进行优化。
{"title":"Quad mesh mechanisms","authors":"Caigui Jiang, Dmitry Lyakhov, Florian Rist, Helmut Pottmann, Johannes Wallner","doi":"10.1145/3687939","DOIUrl":"https://doi.org/10.1145/3687939","url":null,"abstract":"This paper provides computational tools for the modeling and design of quad mesh mechanisms, which are meshes allowing continuous flexions under the assumption of rigid faces and hinges in the edges. We combine methods and results from different areas, namely differential geometry of surfaces, rigidity and flexibility of bar and joint frameworks, algebraic geometry, and optimization. The basic idea to achieve a time-continuous flexion is time-discretization justified by an algebraic degree argument. We are able to prove computationally feasible bounds on the number of required time instances we need to incorporate in our optimization. For optimization to succeed, an informed initialization is crucial. We present two computational pipelines to achieve that: one based on remeshing isometric surface pairs, another one based on iterative refinement. A third manner of initialization proved very effective: We interactively design meshes which are close to a narrow known class of flexible meshes, but not contained in it. Having enjoyed sufficiently many degrees of freedom during design, we afterwards optimize towards flexibility.","PeriodicalId":50913,"journal":{"name":"ACM Transactions on Graphics","volume":"7 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142673116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
ACM Transactions on Graphics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1