Many geometry processing techniques require the solution of partial differential equations (PDEs) on manifolds embedded in (mathbb {R}^2 ) or (mathbb {R}^3 ), such as curves or surfaces. Such manifold PDEs often involve boundary conditions (e.g., Dirichlet or Neumann) prescribed at points or curves on the manifold’s interior or along the geometric (exterior) boundary of an open manifold. However, input manifolds can take many forms (e.g., triangle meshes, parametrizations, point clouds, implicit functions, etc.). Typically, one must generate a mesh to apply finite element-type techniques or derive specialized discretization procedures for each distinct manifold representation. We propose instead to address such problems in a unified manner through a novel extension of the closest point method (CPM) to handle interior boundary conditions. CPM solves the manifold PDE by solving a volumetric PDE defined over the Cartesian embedding space containing the manifold, and requires only a closest point representation of the manifold. Hence, CPM supports objects that are open or closed, orientable or not, and of any codimension. To enable support for interior boundary conditions we derive a method that implicitly partitions the embedding space across interior boundaries. CPM’s finite difference and interpolation stencils are adapted to respect this partition while preserving second-order accuracy. Additionally, we develop an efficient sparse-grid implementation and numerical solver that can scale to tens of millions of degrees of freedom, allowing PDEs to be solved on more complex manifolds. We demonstrate our method’s convergence behaviour on selected model PDEs and explore several geometry processing problems: diffusion curves on surfaces, geodesic distance, tangent vector field design, harmonic map construction, and reaction-diffusion textures. Our proposed approach thus offers a powerful and flexible new tool for a range of geometry processing tasks on general manifold representations.
Anisotropic hyperelastic distortion energies are used to solve many problems in fields like computer graphics and engineering with applications in shape analysis, deformation, design, mesh parameterization, biomechanics and more. However, formulating a robust anisotropic energy that is low-order and yet sufficiently non-linear remains a challenging problem for achieving the convergence promised by Newton-type methods in numerical optimization. In this paper, we propose a novel analytic formulation of an anisotropic energy that is smooth everywhere, low-order, rotationally-invariant and at-least twice differentiable. At its core, our approach utilizes implicit rotation factorizations with invariants of the Cauchy-Green tensor that arises from the deformation gradient. The versatility and generality of our analysis is demonstrated through a variety of examples, where we also show that the constitutive law suggested by the anisotropic version of the well-known As-Rigid-As-Possible energy is the foundational parametric description of both passive and active elastic materials. The generality of our approach means that we can systematically derive the force and force-Jacobian expressions for use in implicit and quasistatic numerical optimization schemes, and we can also use our analysis to rewrite, simplify and speedup several existing anisotropic and isotropic distortion energies with guaranteed inversion-safety.
We introduce a framework for solving a class of parabolic partial differential equations on triangle mesh surfaces, including the Hamilton-Jacobi equation and the Fokker-Planck equation. PDE in this class often have nonlinear or stiff terms that cannot be resolved with standard methods on curved triangle meshes. To address this challenge, we leverage a splitting integrator combined with a convex optimization step to solve these PDE. Our machinery can be used to compute entropic approximation of optimal transport distances on geometric domains, overcoming the numerical limitations of the state-of-the-art method. In addition, we demonstrate the versatility of our method on a number of linear and nonlinear PDE that appear in diffusion and front propagation tasks in geometry processing.