Pub Date : 2025-01-13DOI: 10.1021/acs.langmuir.4c04285
Hyunjin An, Kwangjin Park
LiFePO4 (LFP) typically requires a conductive additive to improve its low ion and electron conductivity. In this study, we achieved significant enhancements in Li+ and electron mobility by applying a minimal amount of conductive material through a new coating process. The coin cell demonstrated an excellent capacity of 157.57 mA h g–1 at 0.1 C/25 °C, while the pouch cell exhibited excellent long-term cycling stability, maintaining 99.33% capacity after 150 cycles at 1 C/45 °C. Compared to pristine LFP, the rate capacities increased by 30%, reaching 130.9 mA h g–1 at 3 C. After 100 cycles, the RCT resistance value decreased by 10% compared to pristine. The uniform coating layer not only improved electronic conductivity but also enhanced the rate performance. DCIR testing of the pouch cell showed a 17.7% reduction in resistance values compared to that of pristine LFP with increasing cycles. This new coating method, using a very small amount of conductive material, forms a uniform coating layer that optimizes electrochemical performance while maintaining the economic benefits of the LFP cathode material.
{"title":"LFP via Nanoscale Surface Reforming with a Tiny Minimal Amount of Conductivity-Enhancing Material","authors":"Hyunjin An, Kwangjin Park","doi":"10.1021/acs.langmuir.4c04285","DOIUrl":"https://doi.org/10.1021/acs.langmuir.4c04285","url":null,"abstract":"LiFePO<sub>4</sub> (LFP) typically requires a conductive additive to improve its low ion and electron conductivity. In this study, we achieved significant enhancements in Li<sup>+</sup> and electron mobility by applying a minimal amount of conductive material through a new coating process. The coin cell demonstrated an excellent capacity of 157.57 mA h g<sup>–1</sup> at 0.1 C/25 °C, while the pouch cell exhibited excellent long-term cycling stability, maintaining 99.33% capacity after 150 cycles at 1 C/45 °C. Compared to pristine LFP, the rate capacities increased by 30%, reaching 130.9 mA h g<sup>–1</sup> at 3 C. After 100 cycles, the <i>R</i><sub>CT</sub> resistance value decreased by 10% compared to pristine. The uniform coating layer not only improved electronic conductivity but also enhanced the rate performance. DCIR testing of the pouch cell showed a 17.7% reduction in resistance values compared to that of pristine LFP with increasing cycles. This new coating method, using a very small amount of conductive material, forms a uniform coating layer that optimizes electrochemical performance while maintaining the economic benefits of the LFP cathode material.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"27 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142968472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-13DOI: 10.1021/acs.langmuir.4c03920
Xue Meng, Quan Shi, Jianghong Mao, Kun Fang
Based on the bidirectional electromigration (BIEM) technique, a corrosion inhibitor solution was prepared by mixing 1 mol/L triethylene tetramine with deionized water. The effects of current density, charging time, and corrosion inhibitor on critical current density and hydrogen content of rebar were investigated. Subsequently, the hydrogen embrittlement risk of rebar was further characterized by mechanical property tests. Finally, the bearing capacity and crack distribution characteristics of the components during electrochemical repair were revealed based on the microstructure of the steel fracture. Studies have shown that the corrosion inhibitor in the BIEM electrolyte reduces the polarization potential, increases the critical current density, and finally inhibits the hydrogen evolution rate. The hydrogen evolution reaction increases with the increase of current density and energizing time. The critical hydrogen evolution current density of concrete specimens measured ranges from 0.796 to 0.833 A/m2. In addition, the current density range of 1–7 A/m2 has no effect on the yield strength, yield platform, and ultimate strength of steel. With the increase of 1 μg/g hydrogen content, the fracture energy ratio of steel bars decreases by 12.18%, and the sensitivity coefficient of hydrogen brittleness increases by 9.92%.
{"title":"Study on the Hydrogen Evolution Reaction of Reinforced Concrete during Electrochemical Repair under the Influence of BIEM","authors":"Xue Meng, Quan Shi, Jianghong Mao, Kun Fang","doi":"10.1021/acs.langmuir.4c03920","DOIUrl":"https://doi.org/10.1021/acs.langmuir.4c03920","url":null,"abstract":"Based on the bidirectional electromigration (BIEM) technique, a corrosion inhibitor solution was prepared by mixing 1 mol/L triethylene tetramine with deionized water. The effects of current density, charging time, and corrosion inhibitor on critical current density and hydrogen content of rebar were investigated. Subsequently, the hydrogen embrittlement risk of rebar was further characterized by mechanical property tests. Finally, the bearing capacity and crack distribution characteristics of the components during electrochemical repair were revealed based on the microstructure of the steel fracture. Studies have shown that the corrosion inhibitor in the BIEM electrolyte reduces the polarization potential, increases the critical current density, and finally inhibits the hydrogen evolution rate. The hydrogen evolution reaction increases with the increase of current density and energizing time. The critical hydrogen evolution current density of concrete specimens measured ranges from 0.796 to 0.833 A/m<sup>2</sup>. In addition, the current density range of 1–7 A/m<sup>2</sup> has no effect on the yield strength, yield platform, and ultimate strength of steel. With the increase of 1 μg/g hydrogen content, the fracture energy ratio of steel bars decreases by 12.18%, and the sensitivity coefficient of hydrogen brittleness increases by 9.92%.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"24 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142968465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-13DOI: 10.1021/acs.langmuir.4c04407
Kirti, Smit J. Balar, Ankush V. Biradar, Divesh N. Srivastava
Electrochemical CO2 reduction is crucial in combatting climate change and advancing sustainable energy practices by converting CO2 into valuable chemicals and fuels, thereby reducing atmospheric CO2 levels and enabling the storage and utilization of renewable energy from intermittent sources like solar and wind. The selection of electrode materials and platform design plays a critical role in enhancing reaction efficiency and product selectivity during CO2 reduction. Various metals, both in their solid forms and coated over substrates, have been used in electrochemical CO2RR. In this study, we utilized electrodeposition to modify the plastic chip electrode (PCE), depositing lead metal onto it through a galvanostatic method at a current density of 100 mA/cm2 from a 0.1 M Pb(NO3)2 aqueous solution. Pb-coated electrodes are crucial due to their high selectivity, efficiency, cost-effectiveness, and flexibility as electrode materials. Their good stability and durability make them ideal for long-term applications. The electrochemical reduction of carbon dioxide using the Pb/PCE electrode as the cathode has been investigated, focusing on assessing how different electrolysis potentials influenced the faradaic efficiency of formic acid production. Our results demonstrated that the peak faradaic efficiency, reaching 86.2%, was achieved at −0.7 V vs RHE over a 5 h electrolysis period.
{"title":"Empowering Sustainable Energy: Lead-Coated Plastic Chip Electrodes for Effective CO2 Reduction","authors":"Kirti, Smit J. Balar, Ankush V. Biradar, Divesh N. Srivastava","doi":"10.1021/acs.langmuir.4c04407","DOIUrl":"https://doi.org/10.1021/acs.langmuir.4c04407","url":null,"abstract":"Electrochemical CO<sub>2</sub> reduction is crucial in combatting climate change and advancing sustainable energy practices by converting CO<sub>2</sub> into valuable chemicals and fuels, thereby reducing atmospheric CO<sub>2</sub> levels and enabling the storage and utilization of renewable energy from intermittent sources like solar and wind. The selection of electrode materials and platform design plays a critical role in enhancing reaction efficiency and product selectivity during CO<sub>2</sub> reduction. Various metals, both in their solid forms and coated over substrates, have been used in electrochemical CO<sub>2</sub>RR. In this study, we utilized electrodeposition to modify the plastic chip electrode (PCE), depositing lead metal onto it through a galvanostatic method at a current density of 100 mA/cm<sup>2</sup> from a 0.1 M Pb(NO<sub>3</sub>)<sub>2</sub> aqueous solution. Pb-coated electrodes are crucial due to their high selectivity, efficiency, cost-effectiveness, and flexibility as electrode materials. Their good stability and durability make them ideal for long-term applications. The electrochemical reduction of carbon dioxide using the Pb/PCE electrode as the cathode has been investigated, focusing on assessing how different electrolysis potentials influenced the faradaic efficiency of formic acid production. Our results demonstrated that the peak faradaic efficiency, reaching 86.2%, was achieved at −0.7 V vs RHE over a 5 h electrolysis period.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"12 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142968471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-13DOI: 10.1021/acs.langmuir.4c04005
Suzanne Lafon, Tiago Outerelo Corvo, Marion Grzelka, Arnaud Hélary, Philipp Gutfreund, Liliane Léger, Alexis Chennevière, Frédéric Restagno
Controlling the structure of polymer solutions near a solid surface is crucial for many industrial processes as it significantly impacts solution flow and influences slip at the interface. To date, only a few techniques have been developed to experimentally investigate this type of interface at the nanometric scale of solid/liquid interactions. In this study, we probe the interface between a smooth sapphire surface and a semidilute polystyrene solution, using neutron reflectivity. A special setup for flow measurements under shear has been designed and optimized. Our results show that, at rest, polymer chains are globally depleted from the solid surface. Contrary to common assumptions, some polystyrene chains do adsorb onto the wall. Under flow conditions, we experimentally demonstrate that the depletion layer remains stable, a finding that has been hypothesized but is only vaguely confirmed in the literature.
{"title":"Near-Surface Concentration Profile of Sheared Semidilute Polymer Solutions","authors":"Suzanne Lafon, Tiago Outerelo Corvo, Marion Grzelka, Arnaud Hélary, Philipp Gutfreund, Liliane Léger, Alexis Chennevière, Frédéric Restagno","doi":"10.1021/acs.langmuir.4c04005","DOIUrl":"https://doi.org/10.1021/acs.langmuir.4c04005","url":null,"abstract":"Controlling the structure of polymer solutions near a solid surface is crucial for many industrial processes as it significantly impacts solution flow and influences slip at the interface. To date, only a few techniques have been developed to experimentally investigate this type of interface at the nanometric scale of solid/liquid interactions. In this study, we probe the interface between a smooth sapphire surface and a semidilute polystyrene solution, using neutron reflectivity. A special setup for flow measurements under shear has been designed and optimized. Our results show that, at rest, polymer chains are globally depleted from the solid surface. Contrary to common assumptions, some polystyrene chains do adsorb onto the wall. Under flow conditions, we experimentally demonstrate that the depletion layer remains stable, a finding that has been hypothesized but is only vaguely confirmed in the literature.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"47 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142968467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-13DOI: 10.1021/acs.langmuir.4c04207
Zhuorui Li, Yali Guo, Denghui Zhao, Chengtao Yan, Panagiotis E. Theodorakis, Bin Liu
Self-cleaning applications based on bionic surface designs requires an in-depth understanding of unique and complex wetting and evaporation processes of sessile droplets on natural biosurfaces. To this end, hydrophobic bamboo and Kalanchoe blossfeldiana leaves are excellent candidates for self-cleaning applications, but various properties, such as the heat and mass transfer processes during evaporation, remain unknown. Here, the dynamics of contact angle, radius, and heat and mass transfer during evaporation of sessile droplets on bamboo and Kalanchoe blossfeldiana leaves with roughness in the range 2.8–3.4 μm are thoroughly investigated. In particular, the “stick–jump” phenomenon is observed on bamboo leaves, which was further analyzed in terms of Gibbs free energy and indicates that a larger roughness would also render more likely the jump of the drops. Moreover, by means of the Wenzel wetting model, the functional relation between the rough structure parameters of the bamboo leaf surface and the system intrinsic energy barrier was established, and the evaporation kinetics of droplets was elucidated. We anticipate that this study offers a framework for understanding the behavior of droplets on the surface of hydrophobic biomimetic materials, which may lead to the rational design of self-cleaning bionic-type surfaces.
{"title":"Evaporation Dynamics of Deionized Water Droplets on Hydrophobic Leaves","authors":"Zhuorui Li, Yali Guo, Denghui Zhao, Chengtao Yan, Panagiotis E. Theodorakis, Bin Liu","doi":"10.1021/acs.langmuir.4c04207","DOIUrl":"https://doi.org/10.1021/acs.langmuir.4c04207","url":null,"abstract":"Self-cleaning applications based on bionic surface designs requires an in-depth understanding of unique and complex wetting and evaporation processes of sessile droplets on natural biosurfaces. To this end, hydrophobic bamboo and Kalanchoe blossfeldiana leaves are excellent candidates for self-cleaning applications, but various properties, such as the heat and mass transfer processes during evaporation, remain unknown. Here, the dynamics of contact angle, radius, and heat and mass transfer during evaporation of sessile droplets on bamboo and Kalanchoe blossfeldiana leaves with roughness in the range 2.8–3.4 μm are thoroughly investigated. In particular, the “stick–jump” phenomenon is observed on bamboo leaves, which was further analyzed in terms of Gibbs free energy and indicates that a larger roughness would also render more likely the jump of the drops. Moreover, by means of the Wenzel wetting model, the functional relation between the rough structure parameters of the bamboo leaf surface and the system intrinsic energy barrier was established, and the evaporation kinetics of droplets was elucidated. We anticipate that this study offers a framework for understanding the behavior of droplets on the surface of hydrophobic biomimetic materials, which may lead to the rational design of self-cleaning bionic-type surfaces.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"9 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142968473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-12DOI: 10.1021/acs.langmuir.4c03660
Jinghan Ding, Jiakang Yu, Jinmeng Zhu, Liuyang Han, Hong Guo, Rui Feng, Wenqiang Dong, Xichen Zhao, Shan Wang, Li Li, Xuanhua Li
Palm leaf manuscripts, crafted from specially treated palm leaves, are invaluable historical documents. However, they degrade and tend to become brittle over time. To date, plant essential oils and glycerin are the used materials to improve the flexibility of palm leaf manuscripts, but the effective duration of these materials is short due to their volatility. This work introduces ionic liquids, a nonvolatile and stable material, to achieve durable toughening of the palm leaf manuscripts. We select 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIm][BF4]), one of the most used ionic liquids, as the subject of research. We find that [BMIm][BF4] does not alter the palm leaf manuscripts’ appearance and significantly improves their tensile strength and fracture toughness by 39.9 and 101.0%, respectively, while reducing the bending modulus by 25.7% and increasing the bending fracture deflection by 2.6 times. Notably, [BMIm][BF4]’s toughening effect for palm leaf manuscripts is sustainable for over 2 months, outperforming traditional methods that last only about 1 week. Even under harsh conditions, such as low humidity, high temperatures, alkalinity, and UV exposure, [BMIm][BF4] still maintains its effectiveness. Through the analysis of its composition, structure, and theoretical simulation, we reveal that [BMIm][BF4] penetrates the manuscripts, filling the pores between the inner structure of them and adsorbing strongly with cellulose. This enhances load transfer and reduces the stress concentration, resulting in increased toughness. This research provides innovative materials for palm leaf manuscript conservation and deepens our understanding of their mechanical properties.
{"title":"Exploring the Effects of Ionic Liquid on the Toughness of Palm Leaf Manuscripts","authors":"Jinghan Ding, Jiakang Yu, Jinmeng Zhu, Liuyang Han, Hong Guo, Rui Feng, Wenqiang Dong, Xichen Zhao, Shan Wang, Li Li, Xuanhua Li","doi":"10.1021/acs.langmuir.4c03660","DOIUrl":"https://doi.org/10.1021/acs.langmuir.4c03660","url":null,"abstract":"Palm leaf manuscripts, crafted from specially treated palm leaves, are invaluable historical documents. However, they degrade and tend to become brittle over time. To date, plant essential oils and glycerin are the used materials to improve the flexibility of palm leaf manuscripts, but the effective duration of these materials is short due to their volatility. This work introduces ionic liquids, a nonvolatile and stable material, to achieve durable toughening of the palm leaf manuscripts. We select 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIm][BF<sub>4</sub>]), one of the most used ionic liquids, as the subject of research. We find that [BMIm][BF<sub>4</sub>] does not alter the palm leaf manuscripts’ appearance and significantly improves their tensile strength and fracture toughness by 39.9 and 101.0%, respectively, while reducing the bending modulus by 25.7% and increasing the bending fracture deflection by 2.6 times. Notably, [BMIm][BF<sub>4</sub>]’s toughening effect for palm leaf manuscripts is sustainable for over 2 months, outperforming traditional methods that last only about 1 week. Even under harsh conditions, such as low humidity, high temperatures, alkalinity, and UV exposure, [BMIm][BF<sub>4</sub>] still maintains its effectiveness. Through the analysis of its composition, structure, and theoretical simulation, we reveal that [BMIm][BF<sub>4</sub>] penetrates the manuscripts, filling the pores between the inner structure of them and adsorbing strongly with cellulose. This enhances load transfer and reduces the stress concentration, resulting in increased toughness. This research provides innovative materials for palm leaf manuscript conservation and deepens our understanding of their mechanical properties.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"2 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142968501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The detection of hydrogen peroxide (H2O2) at elevated concentrations while eliminating oxygen interference presents a significant challenge. Nickel-based stainless steel, such as Hastelloy G35, has shown excellent corrosion resistance. However, it has never been used in electroanalysis. In this study, the electrochemical analysis of H2O2 was conducted for the first time using nickel-based stainless steel electrode. The Hastelloy G35 electrode exhibited a very wide linear range from 1 up to 1000 mM and a detection limit of 0.0135 mM. The method is free from interference by oxygen. This method effectively detected H2O2 in skin wound wash solutions with excellent recoveries. The excellent performance of this method enhances its applicability in various fields, including industrial processes, environmental monitoring, and analytical chemistry, where quantifying concentrated H2O2 is of utmost importance. It shows that nickel-based stainless steel is promising for electroanalysis.
{"title":"Electrochemical Detection of Hydrogen Peroxide at High Concentrations Using Hastelloy G35 Electrode","authors":"Ala’a Mhmoued Abdllh Alboull, Hongzhan Liu, Fathimath Abbas, Altaf Hussain, Jieping Jiang, Baohua Lou, Guobao Xu","doi":"10.1021/acs.langmuir.4c04757","DOIUrl":"https://doi.org/10.1021/acs.langmuir.4c04757","url":null,"abstract":"The detection of hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) at elevated concentrations while eliminating oxygen interference presents a significant challenge. Nickel-based stainless steel, such as Hastelloy G35, has shown excellent corrosion resistance. However, it has never been used in electroanalysis. In this study, the electrochemical analysis of H<sub>2</sub>O<sub>2</sub> was conducted for the first time using nickel-based stainless steel electrode. The Hastelloy G35 electrode exhibited a very wide linear range from 1 up to 1000 mM and a detection limit of 0.0135 mM. The method is free from interference by oxygen. This method effectively detected H<sub>2</sub>O<sub>2</sub> in skin wound wash solutions with excellent recoveries. The excellent performance of this method enhances its applicability in various fields, including industrial processes, environmental monitoring, and analytical chemistry, where quantifying concentrated H<sub>2</sub>O<sub>2</sub> is of utmost importance. It shows that nickel-based stainless steel is promising for electroanalysis.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"87 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142968505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study introduces a novel method for fabricating multicavity, honeycomb-shaped collagen aerogels characterized by continuous pores. We have taken a unique approach to lyophilizing collagen hydrogels, which are UV-irradiated collagen solutions gelatinized in a carbonate buffer solution. The focus of this study was to investigate the effect of UV irradiation times on collagen solutions on collagen hydrogels and aerogels. This investigation revealed significant alterations in the morphological attributes, notably in the pore and short axis cross-sectional areas and the mechanical properties, particularly the elastic modulus, of the resultant collagen gels and aerogels. A notable increase in the ratio of the pore to the short-axis cross-sectional area was observed with extended UV exposure. Further, irrespective of the irradiation duration, we observed a consistent pattern of elongation and proliferation in mouse fibroblast cultures. These findings underscore the potential of our developed collagen aerogels as versatile biomaterials, especially in the realm of cell scaffolds.
{"title":"Honeycomb-Shaped Collagen Aerogels Formed Using a Multichannel Hydrogel as the Template","authors":"Ryota Haraguchi, Shigehisa Aoki, Yushi Oishi, Takayuki Narita","doi":"10.1021/acs.langmuir.4c03780","DOIUrl":"https://doi.org/10.1021/acs.langmuir.4c03780","url":null,"abstract":"This study introduces a novel method for fabricating multicavity, honeycomb-shaped collagen aerogels characterized by continuous pores. We have taken a unique approach to lyophilizing collagen hydrogels, which are UV-irradiated collagen solutions gelatinized in a carbonate buffer solution. The focus of this study was to investigate the effect of UV irradiation times on collagen solutions on collagen hydrogels and aerogels. This investigation revealed significant alterations in the morphological attributes, notably in the pore and short axis cross-sectional areas and the mechanical properties, particularly the elastic modulus, of the resultant collagen gels and aerogels. A notable increase in the ratio of the pore to the short-axis cross-sectional area was observed with extended UV exposure. Further, irrespective of the irradiation duration, we observed a consistent pattern of elongation and proliferation in mouse fibroblast cultures. These findings underscore the potential of our developed collagen aerogels as versatile biomaterials, especially in the realm of cell scaffolds.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"19 12 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142968503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-11DOI: 10.1021/acs.langmuir.4c04135
Jie Qi, Miaomiao Qing, Yang Yang, Siwei Chen, Yong Zhang, Na Wang, Hongsheng Lu, Zheng Zhang
To balance the stability and dissolution of polyacrylamide (PAM), emulsion drag reducers dominate the successful operation of volumetric fracturing. Herein, a pH-switchable four-tailed ionic liquid surfactant (OA/Cyclen) is synthesized by oleic acid (OA) and 1,4,7,10-tetraazacyclododecane (Cyclen). The four-tailed structure of OA/Cyclen enhances the stability of the emulsion polymerization reactor and supplies enough switchable sites for triggering the intensified release of the PAM emulsion. The surface activity of OA/Cyclen varied under different pH conditions due to the interionic proton transfer between OA and Cyclen. The OA/Cyclen-stabilized monomer emulsion thus posed controllable stability. A pH-switchable PAM emulsion is produced through polymerization of this monomer emulsion, which shows a storage stability for 60 days at a pH value of 7.5. It is completely released to the aqueous solution within 20 s at a pH value of 12.03, achieving a maximum viscosity of 63 mPa·s at a polymer concentration of 0.5 wt % and a drag reduction of 61.2% at a polymer concentration of 0.05 wt %. The construction of OA/Cyclen is expected to supply an alternative for the development of drag reducer products.
{"title":"Intensifying Stabilization and Dissolution Capacity of Polyacrylamide Emulsion Drag Reducers Using a pH-Switchable Four-Tailed Ionic Liquid Surfactant","authors":"Jie Qi, Miaomiao Qing, Yang Yang, Siwei Chen, Yong Zhang, Na Wang, Hongsheng Lu, Zheng Zhang","doi":"10.1021/acs.langmuir.4c04135","DOIUrl":"https://doi.org/10.1021/acs.langmuir.4c04135","url":null,"abstract":"To balance the stability and dissolution of polyacrylamide (PAM), emulsion drag reducers dominate the successful operation of volumetric fracturing. Herein, a pH-switchable four-tailed ionic liquid surfactant (OA/Cyclen) is synthesized by oleic acid (OA) and 1,4,7,10-tetraazacyclododecane (Cyclen). The four-tailed structure of OA/Cyclen enhances the stability of the emulsion polymerization reactor and supplies enough switchable sites for triggering the intensified release of the PAM emulsion. The surface activity of OA/Cyclen varied under different pH conditions due to the interionic proton transfer between OA and Cyclen. The OA/Cyclen-stabilized monomer emulsion thus posed controllable stability. A pH-switchable PAM emulsion is produced through polymerization of this monomer emulsion, which shows a storage stability for 60 days at a pH value of 7.5. It is completely released to the aqueous solution within 20 s at a pH value of 12.03, achieving a maximum viscosity of 63 mPa·s at a polymer concentration of 0.5 wt % and a drag reduction of 61.2% at a polymer concentration of 0.05 wt %. The construction of OA/Cyclen is expected to supply an alternative for the development of drag reducer products.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"29 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142961472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-11DOI: 10.1021/acs.langmuir.4c03945
Jiajun Li, Sihui Wu, Xueran Shi, Yingbo Cao, Han Hao, Jing Wang, Qian Han
Warfarin (WAR), an effective oral anticoagulant, is of utmost importance in treating many diseases. Despite its significance, rapid and precise discrimination of WAR remains a formidable challenge, especially facing its structural analogs of metabolites. Here, three kinds of herb-derived N-doped carbon dots (NCDs) were greenly synthesized via a fast and simple microwave-assisted method. Three NCDs showcased respectable blue fluorescent (FL) properties and sensing capabilities for the discrimination of WAR and its metabolites. To improve accuracy in identifying WAR and its metabolites, a sensor array composed of three unique herb-derived NCDs was meticulously designed. Combined with the machine learning model, the sensor array displayed a strong immunity to interference in the discrimination of the WAR, even in unknown samples. Meanwhile, the FL sensing mechanism is deeply expounded. The methodology proffers broad prospects for biomass-derived nanomaterials and provides an effective and feasible project for pharmaceutical analysis by capitalizing on machine learning.
{"title":"Machine Learning-Assisted Biomass-Derived Carbon Dots as Fluorescent Sensor Array for Discrimination of Warfarin and Its Metabolites","authors":"Jiajun Li, Sihui Wu, Xueran Shi, Yingbo Cao, Han Hao, Jing Wang, Qian Han","doi":"10.1021/acs.langmuir.4c03945","DOIUrl":"https://doi.org/10.1021/acs.langmuir.4c03945","url":null,"abstract":"Warfarin (WAR), an effective oral anticoagulant, is of utmost importance in treating many diseases. Despite its significance, rapid and precise discrimination of WAR remains a formidable challenge, especially facing its structural analogs of metabolites. Here, three kinds of herb-derived N-doped carbon dots (NCDs) were greenly synthesized via a fast and simple microwave-assisted method. Three NCDs showcased respectable blue fluorescent (FL) properties and sensing capabilities for the discrimination of WAR and its metabolites. To improve accuracy in identifying WAR and its metabolites, a sensor array composed of three unique herb-derived NCDs was meticulously designed. Combined with the machine learning model, the sensor array displayed a strong immunity to interference in the discrimination of the WAR, even in unknown samples. Meanwhile, the FL sensing mechanism is deeply expounded. The methodology proffers broad prospects for biomass-derived nanomaterials and provides an effective and feasible project for pharmaceutical analysis by capitalizing on machine learning.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"84 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142961470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}