Pub Date : 2024-11-15DOI: 10.1021/acs.langmuir.4c03538
C Ingram Vargas-Consuelos, Victor R Vasquez, Olivia A Graeve
We present a direct electrospinning fabrication technique for the manufacture of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)/poly(ethylene oxide) (PEDOT:PSS/PEO) polymer fibers containing embedded cubic lanthanum hexaboride (LaB6) particles. We focus on the impact of relative humidity on the formation of uniform polymer fibers and show that a relative humidity of 5% is optimal, resulting in an average fiber thickness of 266 ± 88 nm. As the relative humidity is increased, the fibers contain beads as a consequence of Rayleigh instabilities. The addition of lanthanum hexaboride cubic particles to the polymer solution before electrospinning results in the encapsulation of the LaB6 particles inside the fibers. We investigate the effect of LaB6 particle size on morphology and observe that particles of ∼500 nm yield a fiber-cube-fiber morphology, while 2 μm particles result in fewer embedded cubes along the length of the polymer fibers. This phenomenon likely arises from electrodynamic interactions between the LaB6 particles in the polymer solution and the electric field lines generated during electrospinning between the spinneret and the collector. Our results display the versatility of the electrospinning technique in the fabrication of unique polymer/hexaboride composite fibers.
{"title":"Electrospinning of LaB<sub>6</sub>/PEDOT:PSS/PEO Fiber Composites of Unique Morphologies.","authors":"C Ingram Vargas-Consuelos, Victor R Vasquez, Olivia A Graeve","doi":"10.1021/acs.langmuir.4c03538","DOIUrl":"https://doi.org/10.1021/acs.langmuir.4c03538","url":null,"abstract":"<p><p>We present a direct electrospinning fabrication technique for the manufacture of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)/poly(ethylene oxide) (PEDOT:PSS/PEO) polymer fibers containing embedded cubic lanthanum hexaboride (LaB<sub>6</sub>) particles. We focus on the impact of relative humidity on the formation of uniform polymer fibers and show that a relative humidity of 5% is optimal, resulting in an average fiber thickness of 266 ± 88 nm. As the relative humidity is increased, the fibers contain beads as a consequence of Rayleigh instabilities. The addition of lanthanum hexaboride cubic particles to the polymer solution before electrospinning results in the encapsulation of the LaB<sub>6</sub> particles inside the fibers. We investigate the effect of LaB<sub>6</sub> particle size on morphology and observe that particles of ∼500 nm yield a fiber-cube-fiber morphology, while 2 μm particles result in fewer embedded cubes along the length of the polymer fibers. This phenomenon likely arises from electrodynamic interactions between the LaB<sub>6</sub> particles in the polymer solution and the electric field lines generated during electrospinning between the spinneret and the collector. Our results display the versatility of the electrospinning technique in the fabrication of unique polymer/hexaboride composite fibers.</p>","PeriodicalId":50,"journal":{"name":"Langmuir","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142638107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-15DOI: 10.1021/acs.langmuir.4c03707
Quanhua Xie, Jiani Qin, Ting Gao, Fei Li, Nianbing Zhong, Bao Pan
Defect engineering is a highly effective strategy for accelerating charge transfer and enhancing the performance of photocatalysts. In this study, ZnIn2S4 nanosheets were designed and prepared with controlled Zn vacancies to optimize the electronic band structure and localized charge density of ZnIn2S4. EPR results confirmed the formation of Zn vacancies. This modification enabled efficient capture of photoexcited charges in defect centers, thereby prolonging the carrier's lifetime. Theoretical calculations demonstrated that these vacancies induced the formation of new defect states and highly efficient surface reaction sites. As anticipated, under visible light irradiation, the photocatalytic tetracycline removal rate of the ZnIn2S4 nanosheets with Zn vacancies reached 82.8% within 60 min, significantly higher than that observed for the pristine ZnIn2S4 sample. These findings offer valuable insights into the deliberate construction of metal-vacancy-containing photocatalytic nanomaterials for the enhanced degradation of micropollutants.
{"title":"Engineering ZnIn<sub>2</sub>S<sub>4</sub> Nanosheets with Zinc Vacancies: Unleashing Enhanced Photocatalytic Degradation of Tetracycline.","authors":"Quanhua Xie, Jiani Qin, Ting Gao, Fei Li, Nianbing Zhong, Bao Pan","doi":"10.1021/acs.langmuir.4c03707","DOIUrl":"https://doi.org/10.1021/acs.langmuir.4c03707","url":null,"abstract":"<p><p>Defect engineering is a highly effective strategy for accelerating charge transfer and enhancing the performance of photocatalysts. In this study, ZnIn<sub>2</sub>S<sub>4</sub> nanosheets were designed and prepared with controlled Zn vacancies to optimize the electronic band structure and localized charge density of ZnIn<sub>2</sub>S<sub>4</sub>. EPR results confirmed the formation of Zn vacancies. This modification enabled efficient capture of photoexcited charges in defect centers, thereby prolonging the carrier's lifetime. Theoretical calculations demonstrated that these vacancies induced the formation of new defect states and highly efficient surface reaction sites. As anticipated, under visible light irradiation, the photocatalytic tetracycline removal rate of the ZnIn<sub>2</sub>S<sub>4</sub> nanosheets with Zn vacancies reached 82.8% within 60 min, significantly higher than that observed for the pristine ZnIn<sub>2</sub>S<sub>4</sub> sample. These findings offer valuable insights into the deliberate construction of metal-vacancy-containing photocatalytic nanomaterials for the enhanced degradation of micropollutants.</p>","PeriodicalId":50,"journal":{"name":"Langmuir","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142638108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-14DOI: 10.1021/acs.langmuir.4c02910
Suchona Akter, Yong Li, Min-Bum Kim, Md Omar Faruque, Zhonghua Peng, Praveen K Thallapally, Mohammad R Momeni
Selective adsorptive capture and separation of chemically inert krypton (Kr) and xenon (Xe) noble gases with very low ppmv concentrations in air and industrial off-gases constitute an important technological challenge. Here, using a synergistic combination of experiment and theory, the microporous crystalline vanadomolybdates (MoVOx) as highly selective Kr sorbents are studied in detail. By varying the Mo/V ratios, we show for the first time that their one-dimensional (1D) pores can be fine-tuned for the size-selective adsorption of Kr over the larger Xe with selectivities reaching >100. Using extensive electronic structure calculations and grand canonical Monte Carlo simulations, the competition between Kr uptake with CO2 and N2 was also investigated. As most materials reported so far are selective toward the larger, more polarizable Xe than Kr, this work constitutes an important step toward robust Kr-selective sorbent materials. This work highlights the potential use of porous crystalline transition metal oxides as energy-efficient and selective noble gas capture sorbents for industrial applications.
{"title":"Fine-Tuning Microporosity of Crystalline Vanadomolybdate Frameworks for Selective Adsorptive Separation of Kr from Xe.","authors":"Suchona Akter, Yong Li, Min-Bum Kim, Md Omar Faruque, Zhonghua Peng, Praveen K Thallapally, Mohammad R Momeni","doi":"10.1021/acs.langmuir.4c02910","DOIUrl":"https://doi.org/10.1021/acs.langmuir.4c02910","url":null,"abstract":"<p><p>Selective adsorptive capture and separation of chemically inert krypton (Kr) and xenon (Xe) noble gases with very low ppmv concentrations in air and industrial off-gases constitute an important technological challenge. Here, using a synergistic combination of experiment and theory, the microporous crystalline vanadomolybdates (MoVO<sub><i>x</i></sub>) as highly selective Kr sorbents are studied in detail. By varying the Mo/V ratios, we show for the first time that their one-dimensional (1D) pores can be fine-tuned for the size-selective adsorption of Kr over the larger Xe with selectivities reaching >100. Using extensive electronic structure calculations and grand canonical Monte Carlo simulations, the competition between Kr uptake with CO<sub>2</sub> and N<sub>2</sub> was also investigated. As most materials reported so far are selective toward the larger, more polarizable Xe than Kr, this work constitutes an important step toward robust Kr-selective sorbent materials. This work highlights the potential use of porous crystalline transition metal oxides as energy-efficient and selective noble gas capture sorbents for industrial applications.</p>","PeriodicalId":50,"journal":{"name":"Langmuir","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142612741","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-14DOI: 10.1021/acs.langmuir.4c01725
Xiaosi Li, Qi Li, Xinyu Xia, Edward Deng, Yue Zhao, Yi He, Chao Zhao
Clinically used amino-ester and amino-amide local anesthetics, such as bupivacaine and lidocaine, face two primary challenges: inadequate duration of action and nonselective action on both sensory and motor neurons, resulting in motor function loss alongside pain relief. In this work, we developed capsaicin-loaded melanin nanoparticles (Cap-MNPs) to address these two challenges. Capsaicin selectively acts on sensory neurons without affecting motor neurons, thereby achieving nociceptive-selective nerve blockade. Melanin is known for its exceptional biocompatibility, biodegradability, and abundance in pigmented human tissue. Melanin's inherent chemical structure and hydrophobic nature enable the encapsulation and sustained release of amino-ester and amino-amide local anesthetics with aromatic rings through π-π interactions and hydrophobic interactions. The drug loading efficiency of Cap-MNPs was 82.99 ± 1.55%, the drug loading capacity was 67.47 ± 4.24%, and capsaicin was continuously released for more than 360 h. In rats, a single injection of Cap-MNPs containing 8.04 mg of capsaicin produced a sciatic sensory nerve block lasting for 6 h without causing any local toxicity and capsaicin-related systemic toxicity. Cap-MNPs show promise as clinically useful therapeutics for pain management.
{"title":"Capsaicin-Loaded Melanin Nanoparticles for Long-Lasting Nociceptive-Selective Nerve Blockade.","authors":"Xiaosi Li, Qi Li, Xinyu Xia, Edward Deng, Yue Zhao, Yi He, Chao Zhao","doi":"10.1021/acs.langmuir.4c01725","DOIUrl":"https://doi.org/10.1021/acs.langmuir.4c01725","url":null,"abstract":"<p><p>Clinically used amino-ester and amino-amide local anesthetics, such as bupivacaine and lidocaine, face two primary challenges: inadequate duration of action and nonselective action on both sensory and motor neurons, resulting in motor function loss alongside pain relief. In this work, we developed capsaicin-loaded melanin nanoparticles (Cap-MNPs) to address these two challenges. Capsaicin selectively acts on sensory neurons without affecting motor neurons, thereby achieving nociceptive-selective nerve blockade. Melanin is known for its exceptional biocompatibility, biodegradability, and abundance in pigmented human tissue. Melanin's inherent chemical structure and hydrophobic nature enable the encapsulation and sustained release of amino-ester and amino-amide local anesthetics with aromatic rings through π-π interactions and hydrophobic interactions. The drug loading efficiency of Cap-MNPs was 82.99 ± 1.55%, the drug loading capacity was 67.47 ± 4.24%, and capsaicin was continuously released for more than 360 h. In rats, a single injection of Cap-MNPs containing 8.04 mg of capsaicin produced a sciatic sensory nerve block lasting for 6 h without causing any local toxicity and capsaicin-related systemic toxicity. Cap-MNPs show promise as clinically useful therapeutics for pain management.</p>","PeriodicalId":50,"journal":{"name":"Langmuir","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142612720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
As a broad-spectrum antimicrobial material, ZnO nanoparticles (NPs) offer a novel approach to infected wounds in the clinic; however, it is very necessary to improve the antimicrobial performance of ZnO to satisfy the clinic requirements. In this work, a new antimicrobial hybrid ZnO@PDA/GL13K was prepared by attaching the antimicrobial GL13K peptide on the surface of ZnO NPs via polydopamine (PDA) as a covalent bonding agent, which can enhance the reactive oxygen species (ROS) production and damage the cell wall, showing superior antimicrobial efficacy. Besides, the ZnO@PDA/GL13K hybrid can promote the healing of bacterial infected wounds, with the wound area only remaining 1.8% on day 9, about 2 times smaller than that of the ZnO group. Moreover, ZnO@PDA/GL13K also showed good biocompatibility, and no side effect on normal tissue and organs was found, implying that the antimicrobial hybrid may possess prospective application in biomedical fields.
{"title":"Antimicrobial GL13K Peptide-Decorated ZnO Nanoparticles To Treat Bacterial Infections","authors":"Xu Zhang, Yinghao Liu, Xue’e Zhang, Mengzhen Tang, Weihong Xi, Junchao Wei","doi":"10.1021/acs.langmuir.4c03206","DOIUrl":"https://doi.org/10.1021/acs.langmuir.4c03206","url":null,"abstract":"As a broad-spectrum antimicrobial material, ZnO nanoparticles (NPs) offer a novel approach to infected wounds in the clinic; however, it is very necessary to improve the antimicrobial performance of ZnO to satisfy the clinic requirements. In this work, a new antimicrobial hybrid ZnO@PDA/GL13K was prepared by attaching the antimicrobial GL13K peptide on the surface of ZnO NPs via polydopamine (PDA) as a covalent bonding agent, which can enhance the reactive oxygen species (ROS) production and damage the cell wall, showing superior antimicrobial efficacy. Besides, the ZnO@PDA/GL13K hybrid can promote the healing of bacterial infected wounds, with the wound area only remaining 1.8% on day 9, about 2 times smaller than that of the ZnO group. Moreover, ZnO@PDA/GL13K also showed good biocompatibility, and no side effect on normal tissue and organs was found, implying that the antimicrobial hybrid may possess prospective application in biomedical fields.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"45 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142609887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-14DOI: 10.1021/acs.langmuir.4c03101
Lechuan Zhang, Alec J. Pellicciotti, Rachel S. Hendley, Xiao Wang, Michael A. Bevan
We report direct measurements of potential energy landscapes for different shaped colloidal particles interacting with nonuniform AC electric fields. Epoxy particle shapes investigated include disks, ellipses, squares, rectangles, and rhombuses, which are all part of the superelliptical prism shape class and are chosen to systematically vary particle anisotropy and corner features. The measurement configuration consists of noninteracting single particles sedimented onto microscope slides within electric fields between parallel coplanar electrodes. Thermally sampled positions and orientations of single particles in nonuniform fields are tracked in an optical microscope, and measured potential energy landscapes are obtained via Boltzmann inversions. We develop a new analytically simple model that captures all measured energy landscapes for superelliptical prism shaped colloidal particles with electrostatic double layers. The model recovers known validated potentials for spherical and ellipsoidal particles, and therefore captures energy landscapes for a variety of different colloidal particle sizes, shapes, and materials reported in prior studies.
{"title":"Simple Models of Directly Measured Energy Landscapes for Different Shaped Particles in Nonuniform AC Electric Fields","authors":"Lechuan Zhang, Alec J. Pellicciotti, Rachel S. Hendley, Xiao Wang, Michael A. Bevan","doi":"10.1021/acs.langmuir.4c03101","DOIUrl":"https://doi.org/10.1021/acs.langmuir.4c03101","url":null,"abstract":"We report direct measurements of potential energy landscapes for different shaped colloidal particles interacting with nonuniform AC electric fields. Epoxy particle shapes investigated include disks, ellipses, squares, rectangles, and rhombuses, which are all part of the superelliptical prism shape class and are chosen to systematically vary particle anisotropy and corner features. The measurement configuration consists of noninteracting single particles sedimented onto microscope slides within electric fields between parallel coplanar electrodes. Thermally sampled positions and orientations of single particles in nonuniform fields are tracked in an optical microscope, and measured potential energy landscapes are obtained via Boltzmann inversions. We develop a new analytically simple model that captures all measured energy landscapes for superelliptical prism shaped colloidal particles with electrostatic double layers. The model recovers known validated potentials for spherical and ellipsoidal particles, and therefore captures energy landscapes for a variety of different colloidal particle sizes, shapes, and materials reported in prior studies.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"42 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142609886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Polycarboxylate superplasticizers (PCEs) achieve dispersion mainly via steric hindrance from poly(ether) side chains. However, long side chains may cause structural collapse. This study mitigates this issue by introducing sulfonic acid terminations to the long side chains, synthesizing sulfonic-terminated polycarboxylates (PCEPS). Electrostatic repulsion between sulfonic and carboxyl groups on the main chain reduces the level of collapse, enhancing PCE dispersion in cement. PCEPS-4000 showed the strongest dispersion compared with conventional PCEs (PCEC). PCEPS-4000 formed an adsorption layer thickness (ALT) of 11.65 nm, showing a significant improvement over the 7.93 nm observed in the carboxyl-terminated long side chain polycarboxylate (PCETA). Stronger negative charge and lower complexation of sulfonic acid groups enhance the side chain extension. PCEPS also shows good clay tolerance and slump retention, proving its versatility as a concrete admixture.
{"title":"Synthesis, Performance Evaluation, and Adsorption-Dispersion Mechanism of Sulfonic Acid-Terminated Long Side Chain Polycarboxylate Superplasticizers.","authors":"Haotian Duan, Tianfeng Zhou, Beibei Li, Yuxia Pang, Hongming Lou, Dongjie Yang, Xueqing Qiu","doi":"10.1021/acs.langmuir.4c03026","DOIUrl":"https://doi.org/10.1021/acs.langmuir.4c03026","url":null,"abstract":"<p><p>Polycarboxylate superplasticizers (PCEs) achieve dispersion mainly via steric hindrance from poly(ether) side chains. However, long side chains may cause structural collapse. This study mitigates this issue by introducing sulfonic acid terminations to the long side chains, synthesizing sulfonic-terminated polycarboxylates (PCEPS). Electrostatic repulsion between sulfonic and carboxyl groups on the main chain reduces the level of collapse, enhancing PCE dispersion in cement. PCEPS-4000 showed the strongest dispersion compared with conventional PCEs (PCEC). PCEPS-4000 formed an adsorption layer thickness (ALT) of 11.65 nm, showing a significant improvement over the 7.93 nm observed in the carboxyl-terminated long side chain polycarboxylate (PCETA). Stronger negative charge and lower complexation of sulfonic acid groups enhance the side chain extension. PCEPS also shows good clay tolerance and slump retention, proving its versatility as a concrete admixture.</p>","PeriodicalId":50,"journal":{"name":"Langmuir","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142612748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-14DOI: 10.1021/acs.langmuir.4c03418
Sol Johanne Mehammer, Martin M. Greve, Pawel Kosinski, Anna Kosinska
In this work, we employed experimental technique to study the issue of particle erosion and deposition in multiphase flows involving both particles of micro/meso- and nanoscale (sand particles and iron oxide particles). Especially, liquids with immersed nanoparticles gained a lot of interest in the recent years due to their enhanced thermal properties. At the same time, this type of fluids is still not widely used in practical and engineering applications, and one of the reasons is a risk of leading to erosion and deposition on, for instance, pipe walls. In our experiments, an aluminum plate was subjected to a flow with particles by immersing it in a beaker with a rotating fluid for 530 h. After this, the plate was investigated using scanning electron microscopy (SEM) and atomic force microscopy (AFM), followed by energy dispersive X-ray (EDX) analysis. According to our observations, the erosion was mainly caused by the largest particles (sand particles), while the nanoparticles did not lead to clear erosion but resulted in significant deposition due to strong adhesion, as well as corrosion, resulting in aluminum oxide formation. This issue was also confirmed through theoretical analysis by comparing the momentum response time and the characteristic time of the flow, as well as computational fluid dynamics (CFD) simulations.
{"title":"Investigation of Erosion and Deposition Due to Flows with Particles","authors":"Sol Johanne Mehammer, Martin M. Greve, Pawel Kosinski, Anna Kosinska","doi":"10.1021/acs.langmuir.4c03418","DOIUrl":"https://doi.org/10.1021/acs.langmuir.4c03418","url":null,"abstract":"In this work, we employed experimental technique to study the issue of particle erosion and deposition in multiphase flows involving both particles of micro/meso- and nanoscale (sand particles and iron oxide particles). Especially, liquids with immersed nanoparticles gained a lot of interest in the recent years due to their enhanced thermal properties. At the same time, this type of fluids is still not widely used in practical and engineering applications, and one of the reasons is a risk of leading to erosion and deposition on, for instance, pipe walls. In our experiments, an aluminum plate was subjected to a flow with particles by immersing it in a beaker with a rotating fluid for 530 h. After this, the plate was investigated using scanning electron microscopy (SEM) and atomic force microscopy (AFM), followed by energy dispersive X-ray (EDX) analysis. According to our observations, the erosion was mainly caused by the largest particles (sand particles), while the nanoparticles did not lead to clear erosion but resulted in significant deposition due to strong adhesion, as well as corrosion, resulting in aluminum oxide formation. This issue was also confirmed through theoretical analysis by comparing the momentum response time and the characteristic time of the flow, as well as computational fluid dynamics (CFD) simulations.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"11 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142609890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The electrochemical carbon dioxide reduction reaction (CO2RR) is a potential and efficient method that can directly convert CO2 into high-value-added chemicals under mild conditions. Owing to the exceptionally high activation barriers of CO2, catalysts play a pivotal role in CO2RR. In this study, the transition metal (TM = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Zn) is doped into g-C3N4 with a unique N,O-coordination environment, namely, TM–N1O2/g-C3N4. Herein, the catalytic performance and reaction mechanism for the CO2RR on TM–N1O2/g-C3N4 are systematically investigated by density functional theory methods. Especially, through the calculation of ΔG*H and ΔG*COOH/ΔG*OCHO, the catalysts with preference for the CO2RR over the hydrogen evolution reaction (HER) are selected for further study. Furthermore, Gibbs free energy computation results of each elementary step for the CO2RR on these catalysts indicate that Ti–N1O2/g-C3N4 has significant catalytic activity and selectivity for reducing CO2 to methanol (CH3OH) with the limiting potential (UL) of −0.55 V. Finally, through frontier molecular orbital theory and charge transfer analyses, the introduction of the O atoms illustrates that it is instrumental in regulating the electron distribution of the catalytic active site, thereby improving the catalytic performance. This work provides insight into the design of single-atom catalysts with unique coordination structures for the CO2RR.
{"title":"Transition Metals Doped into g-C3N4 via N,O Coordination as Efficient Electrocatalysts for the Carbon Dioxide Reduction Reaction","authors":"Haoyang Qiu, Huohai Yang, Peng Wang, Manxi Leng, Xingbo Ge, Xu Yang, Xin Chen","doi":"10.1021/acs.langmuir.4c03938","DOIUrl":"https://doi.org/10.1021/acs.langmuir.4c03938","url":null,"abstract":"The electrochemical carbon dioxide reduction reaction (CO<sub>2</sub>RR) is a potential and efficient method that can directly convert CO<sub>2</sub> into high-value-added chemicals under mild conditions. Owing to the exceptionally high activation barriers of CO<sub>2</sub>, catalysts play a pivotal role in CO<sub>2</sub>RR. In this study, the transition metal (TM = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Zn) is doped into g-C<sub>3</sub>N<sub>4</sub> with a unique N,O-coordination environment, namely, TM–N<sub>1</sub>O<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub>. Herein, the catalytic performance and reaction mechanism for the CO<sub>2</sub>RR on TM–N<sub>1</sub>O<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub> are systematically investigated by density functional theory methods. Especially, through the calculation of Δ<i>G</i><sub>*H</sub> and Δ<i>G</i><sub>*COOH</sub>/Δ<i>G</i><sub>*OCHO</sub>, the catalysts with preference for the CO<sub>2</sub>RR over the hydrogen evolution reaction (HER) are selected for further study. Furthermore, Gibbs free energy computation results of each elementary step for the CO<sub>2</sub>RR on these catalysts indicate that Ti–N<sub>1</sub>O<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub> has significant catalytic activity and selectivity for reducing CO<sub>2</sub> to methanol (CH<sub>3</sub>OH) with the limiting potential (<i>U</i><sub>L</sub>) of −0.55 V. Finally, through frontier molecular orbital theory and charge transfer analyses, the introduction of the O atoms illustrates that it is instrumental in regulating the electron distribution of the catalytic active site, thereby improving the catalytic performance. This work provides insight into the design of single-atom catalysts with unique coordination structures for the CO<sub>2</sub>RR.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"98 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142609888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-14DOI: 10.1021/acs.langmuir.4c02782
Qianpeng Zhang, Fang Li, Pei Zuo
Hybrid perovskites exhibit highly efficient optoelectronic properties and find widespread applications in areas such as solar cells, light-emitting diodes, photodetectors, and lasers. Here, we report the innovative synthesis of formamidinium lead iodide (FAPbI3) single-crystal microsheets via a two-step chemical vapor deposition (CVD) method. The microsheets exhibit hexagonal and trapezoidal shapes, with hexagonal FAPbI3 growing parallel to the substrate and trapezoidal FAPbI3 growing perpendicular to the substrate. The dominant role of single-exciton recombination in the photoluminescence (PL) of these microsheets is observed, especially pronounced at low temperatures, attributed to the relatively large exciton binding energies of the samples. Calculations reveal exciton binding energies as high as 110.8 meV for hexagonal and 133.3 meV for trapezoidal FAPbI3 single-crystal microsheets, attributed to reduced rotational freedom of the formamidinium (FA) ions. Further investigation into low-temperature phase transitions indicates lower transition temperatures (around 100 K) for these microsheets, suggesting reduced FA ion rotational freedom and consequently higher exciton binding energies.
{"title":"Two-Step Chemical Vapor Deposition for Fabrication of FAPbI3 Single-Crystal Microsheets with High Exciton Binding Energy","authors":"Qianpeng Zhang, Fang Li, Pei Zuo","doi":"10.1021/acs.langmuir.4c02782","DOIUrl":"https://doi.org/10.1021/acs.langmuir.4c02782","url":null,"abstract":"Hybrid perovskites exhibit highly efficient optoelectronic properties and find widespread applications in areas such as solar cells, light-emitting diodes, photodetectors, and lasers. Here, we report the innovative synthesis of formamidinium lead iodide (FAPbI<sub>3</sub>) single-crystal microsheets via a two-step chemical vapor deposition (CVD) method. The microsheets exhibit hexagonal and trapezoidal shapes, with hexagonal FAPbI<sub>3</sub> growing parallel to the substrate and trapezoidal FAPbI<sub>3</sub> growing perpendicular to the substrate. The dominant role of single-exciton recombination in the photoluminescence (PL) of these microsheets is observed, especially pronounced at low temperatures, attributed to the relatively large exciton binding energies of the samples. Calculations reveal exciton binding energies as high as 110.8 meV for hexagonal and 133.3 meV for trapezoidal FAPbI<sub>3</sub> single-crystal microsheets, attributed to reduced rotational freedom of the formamidinium (FA) ions. Further investigation into low-temperature phase transitions indicates lower transition temperatures (around 100 K) for these microsheets, suggesting reduced FA ion rotational freedom and consequently higher exciton binding energies.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"6 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142609885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}