The article describes the paleobiogeographic history of the modern subfamilies so-called “crown deer” of the family Cervidae (Artiodactyla, Mammalia) in the world from the late Miocene to the late Pleistocene. The study overviews the taxonomic diversity and evolutionary radiation of Cervidae from all zoogeographic realms where this systematic group is present in the paleontological record. The evolutionary diversification of the fossil Cervidae is based on the estimations of species body masses that are regarded here as a proxy of occupied ecological niches. The study reveals two important evolutionary radiations of Cervidae during the late Miocene of Eurasia that gave the origin of the modern subfamilies Cervinae and Capreolinae. The evolutionary radiation of Capreolinae during the Pleistocene in South America shows a range of diversity comparable to the late Miocene radiations of Old World deer and provides multiple examples of evolutionary convergences with Eurasian Pleistocene cervids. The article discusses factors that shaped the modern biogeographic distribution of representatives of the subfamilies Cervinae and Capreolinae.
{"title":"Paleobiogeography of Crown Deer","authors":"R. Croitor","doi":"10.3390/earth3040066","DOIUrl":"https://doi.org/10.3390/earth3040066","url":null,"abstract":"The article describes the paleobiogeographic history of the modern subfamilies so-called “crown deer” of the family Cervidae (Artiodactyla, Mammalia) in the world from the late Miocene to the late Pleistocene. The study overviews the taxonomic diversity and evolutionary radiation of Cervidae from all zoogeographic realms where this systematic group is present in the paleontological record. The evolutionary diversification of the fossil Cervidae is based on the estimations of species body masses that are regarded here as a proxy of occupied ecological niches. The study reveals two important evolutionary radiations of Cervidae during the late Miocene of Eurasia that gave the origin of the modern subfamilies Cervinae and Capreolinae. The evolutionary radiation of Capreolinae during the Pleistocene in South America shows a range of diversity comparable to the late Miocene radiations of Old World deer and provides multiple examples of evolutionary convergences with Eurasian Pleistocene cervids. The article discusses factors that shaped the modern biogeographic distribution of representatives of the subfamilies Cervinae and Capreolinae.","PeriodicalId":51020,"journal":{"name":"Earth Interactions","volume":"119 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2022-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80336561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The Mississippi River basin drains nearly half of the contiguous United States, and its rivers serve as economic corridors that facilitate trade and transportation. Flooding remains a perennial hazard on the major tributaries of the Mississippi River basin, and reducing the economic and humanitarian consequences of these events depends on improving their seasonal predictability. Here, we use climate reanalysis and river gage data to document the evolution of floods on the Missouri and Ohio Rivers — the two largest tributaries of the Mississippi River — and how they are influenced by major modes of climate variability centered in the Pacific and Atlantic Oceans. We show that the largest floods on these tributaries are preceded by the advection and convergence of moisture from the Gulf of Mexico following distinct atmospheric mechanisms, where Missouri River floods are associated with heavy spring and summer precipitation events delivered by the Great Plains Low-Level Jet, while Ohio River floods are associated with frontal precipitation events in winter when the North Atlantic subtropical high is anomalously strong. Further, we demonstrate that the El Niño-Southern Oscillation can serve as a precursor for floods on these rivers by mediating antecedent soil moisture, with Missouri River floods often preceded by a warm eastern tropical Pacific (El Niño) and Ohio River floods often preceded by a cool eastern tropical Pacific (La Niña) in the months leading up peak discharge. Finally, we use recent floods in 2019 and 2021 to demonstrate how linking flood hazard to sea surface temperature anomalies holds potential to improve seasonal predictability of hydrologic extremes on these rivers.
{"title":"Contrasting ocean-atmosphere dynamics mediate flood hazard across the Mississippi River basin","authors":"S. Muñoz, Brynnydd Hamilton, B. Parazin","doi":"10.1175/ei-d-22-0015.1","DOIUrl":"https://doi.org/10.1175/ei-d-22-0015.1","url":null,"abstract":"\u0000The Mississippi River basin drains nearly half of the contiguous United States, and its rivers serve as economic corridors that facilitate trade and transportation. Flooding remains a perennial hazard on the major tributaries of the Mississippi River basin, and reducing the economic and humanitarian consequences of these events depends on improving their seasonal predictability. Here, we use climate reanalysis and river gage data to document the evolution of floods on the Missouri and Ohio Rivers — the two largest tributaries of the Mississippi River — and how they are influenced by major modes of climate variability centered in the Pacific and Atlantic Oceans. We show that the largest floods on these tributaries are preceded by the advection and convergence of moisture from the Gulf of Mexico following distinct atmospheric mechanisms, where Missouri River floods are associated with heavy spring and summer precipitation events delivered by the Great Plains Low-Level Jet, while Ohio River floods are associated with frontal precipitation events in winter when the North Atlantic subtropical high is anomalously strong. Further, we demonstrate that the El Niño-Southern Oscillation can serve as a precursor for floods on these rivers by mediating antecedent soil moisture, with Missouri River floods often preceded by a warm eastern tropical Pacific (El Niño) and Ohio River floods often preceded by a cool eastern tropical Pacific (La Niña) in the months leading up peak discharge. Finally, we use recent floods in 2019 and 2021 to demonstrate how linking flood hazard to sea surface temperature anomalies holds potential to improve seasonal predictability of hydrologic extremes on these rivers.","PeriodicalId":51020,"journal":{"name":"Earth Interactions","volume":" ","pages":""},"PeriodicalIF":2.0,"publicationDate":"2022-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43786549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Due to rapid urbanization and population growth, identification and management of illegal dump sites has been a global challenge. In this study, satellite imagery and geographic information system were used to map potential illegal dump sites (PIDS). An original analytical approach was developed to identify PIDS using a set of remote sensing indices and vector files. The Network Analysis tool was used to prioritize PIDS considering driving distance between PIDS and neighboring populated points. A total of five variables (Landfills, LST, HCHO, Highways, and EVI) were considered. A study area in Saskatchewan, Canada, was selected, and the identified PIDS account for about 37.3% of the total area. Road network intensity and accessibility appear important to the occurrence of PIDS. Overall road densities in identified PIDS ranged from 0.098 to 0.251 km/km2. All five variables have observable effects on the occurrence of PIDS; however, LST and highways are recommended for future studies due to their higher membership grade and spatial sensitivity. The combination of multiple remote sensing indices and network analysis on PIDS prioritization is advantageous. The proposed PIDS mapping and prioritization method can be easily employed elsewhere.
{"title":"Mapping and Prioritizing Potential Illegal Dump Sites Using Geographic Information System Network Analysis and Multiple Remote Sensing Indices","authors":"Nima Karimi, K. T. W. Ng","doi":"10.3390/earth3040065","DOIUrl":"https://doi.org/10.3390/earth3040065","url":null,"abstract":"Due to rapid urbanization and population growth, identification and management of illegal dump sites has been a global challenge. In this study, satellite imagery and geographic information system were used to map potential illegal dump sites (PIDS). An original analytical approach was developed to identify PIDS using a set of remote sensing indices and vector files. The Network Analysis tool was used to prioritize PIDS considering driving distance between PIDS and neighboring populated points. A total of five variables (Landfills, LST, HCHO, Highways, and EVI) were considered. A study area in Saskatchewan, Canada, was selected, and the identified PIDS account for about 37.3% of the total area. Road network intensity and accessibility appear important to the occurrence of PIDS. Overall road densities in identified PIDS ranged from 0.098 to 0.251 km/km2. All five variables have observable effects on the occurrence of PIDS; however, LST and highways are recommended for future studies due to their higher membership grade and spatial sensitivity. The combination of multiple remote sensing indices and network analysis on PIDS prioritization is advantageous. The proposed PIDS mapping and prioritization method can be easily employed elsewhere.","PeriodicalId":51020,"journal":{"name":"Earth Interactions","volume":"42 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2022-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87272602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ecosystem services, like water provision or pollination, may increase both agricultural productivity (that is, the capability of the sector to increase the output in volume and value) and alleviate poverty (for instance, through food provision). In addition, increased agricultural productivity can help alleviate poverty by increasing the profitability of the sector, the income of the farmers, and the rates of return on (natural and other) capital investments. However, those beneficial effects come at the cost of (possible) deterioration of existing ESs, that, prima facie, represented the main driver for the generation of benefits. This paper, therefore, identifies and discusses the implications (and possible remedies) of a critical issue that, to our knowledge, is under-studied in an integrated context and methodological approach.
{"title":"Ecosystem Services, Poverty Alleviation and Land Productivity: A Critical Survey of a Complex “Ménage à Trois”","authors":"L. Onofri","doi":"10.3390/earth3040064","DOIUrl":"https://doi.org/10.3390/earth3040064","url":null,"abstract":"Ecosystem services, like water provision or pollination, may increase both agricultural productivity (that is, the capability of the sector to increase the output in volume and value) and alleviate poverty (for instance, through food provision). In addition, increased agricultural productivity can help alleviate poverty by increasing the profitability of the sector, the income of the farmers, and the rates of return on (natural and other) capital investments. However, those beneficial effects come at the cost of (possible) deterioration of existing ESs, that, prima facie, represented the main driver for the generation of benefits. This paper, therefore, identifies and discusses the implications (and possible remedies) of a critical issue that, to our knowledge, is under-studied in an integrated context and methodological approach.","PeriodicalId":51020,"journal":{"name":"Earth Interactions","volume":"111 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80819736","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Globally, wildfires and prescribed fires are becoming more prevalent and are known to affect plant and animals in diverse ecosystems. Understanding the responses of animal communities to fire is a central issue in conservation and a panacea to predicting how fire regimes may affect communities and food webs. Here, a global meta-analysis of 2581 observations extracted from 208 empirical studies were used to investigate the effect of fire on aboveground and belowground fauna (e.g., bacteria, fungi, small mammals, arthropods). Overall, results revealed that fire had a negative effect on biomass, abundance, richness, evenness, and diversity of all faunas. Similarly, when considering wildfires and prescribed fires the data revealed that both fire regimes have negative effects on fauna. Similarly, fire had negative impacts on aboveground and aboveground fauna across most biomes and continents of the world. Moreover, there was little evidence of changes in pH, moisture and soil depth on soil organisms suggesting that other factors may drive community changes following a fire disturbance. Future research in fire ecology should consider the effects of fire across several species and across larger geospatial scales. In addition, fire effects on faunal community structure must be studied under contrasting global fire regimes and in light of the effects of climate change.
{"title":"Community Responses to Fire: A Global Meta-Analysis Unravels the Contrasting Responses of Fauna to Fire","authors":"S. Moyo","doi":"10.3390/earth3040063","DOIUrl":"https://doi.org/10.3390/earth3040063","url":null,"abstract":"Globally, wildfires and prescribed fires are becoming more prevalent and are known to affect plant and animals in diverse ecosystems. Understanding the responses of animal communities to fire is a central issue in conservation and a panacea to predicting how fire regimes may affect communities and food webs. Here, a global meta-analysis of 2581 observations extracted from 208 empirical studies were used to investigate the effect of fire on aboveground and belowground fauna (e.g., bacteria, fungi, small mammals, arthropods). Overall, results revealed that fire had a negative effect on biomass, abundance, richness, evenness, and diversity of all faunas. Similarly, when considering wildfires and prescribed fires the data revealed that both fire regimes have negative effects on fauna. Similarly, fire had negative impacts on aboveground and aboveground fauna across most biomes and continents of the world. Moreover, there was little evidence of changes in pH, moisture and soil depth on soil organisms suggesting that other factors may drive community changes following a fire disturbance. Future research in fire ecology should consider the effects of fire across several species and across larger geospatial scales. In addition, fire effects on faunal community structure must be studied under contrasting global fire regimes and in light of the effects of climate change.","PeriodicalId":51020,"journal":{"name":"Earth Interactions","volume":"1 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2022-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77222769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Solanum elaeagnifolium, one of the world’s most widespread invasive weeds, thrives in the regions of Tunisia with a semi-arid climate. An enhanced understanding of its biological traits could be useful for its management. For this purpose, S. elaeagnifolium vegetative propagation, flowering, fruiting, and spread patterns were assessed under semi-arid environmental conditions at Chott Mariem (Tunisia) over three years (2013–2015). Our results revealed that S. elaeagnifolium showed an active vegetative growth phase during the spring (March–May). Thereafter, the plant stopped its vegetative growth in June–August in favor of flowering and fruiting. The vegetative growth resumed during September–October and declined in November, announcing its dormant period. Thanks to its vigorous rhizomatous system, S. elaeagnifolium was able to emit offshoots within a radius of 1.5 m from parent shoots by 30 months after its establishment. These findings could inform and improve dedicated management control options for S. elaeagnifolium. Silverleaf nightshade should be controlled before the full-flowering stage in spring and following the first autumnal rainfall to prevent vegetative propagation and fruiting.
{"title":"Solanum elaeagnifolium Invasiveness under Semi-Arid Environmental Conditions in Tunisia","authors":"N. Sayari, G. Brundu, Z. Soilhi, M. Mekki","doi":"10.3390/earth3040062","DOIUrl":"https://doi.org/10.3390/earth3040062","url":null,"abstract":"Solanum elaeagnifolium, one of the world’s most widespread invasive weeds, thrives in the regions of Tunisia with a semi-arid climate. An enhanced understanding of its biological traits could be useful for its management. For this purpose, S. elaeagnifolium vegetative propagation, flowering, fruiting, and spread patterns were assessed under semi-arid environmental conditions at Chott Mariem (Tunisia) over three years (2013–2015). Our results revealed that S. elaeagnifolium showed an active vegetative growth phase during the spring (March–May). Thereafter, the plant stopped its vegetative growth in June–August in favor of flowering and fruiting. The vegetative growth resumed during September–October and declined in November, announcing its dormant period. Thanks to its vigorous rhizomatous system, S. elaeagnifolium was able to emit offshoots within a radius of 1.5 m from parent shoots by 30 months after its establishment. These findings could inform and improve dedicated management control options for S. elaeagnifolium. Silverleaf nightshade should be controlled before the full-flowering stage in spring and following the first autumnal rainfall to prevent vegetative propagation and fruiting.","PeriodicalId":51020,"journal":{"name":"Earth Interactions","volume":"36 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2022-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79330291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A variety of elements in nature, from a pine cone’s bracts to a spiral galaxy, are described by a unique mathematical relationship described by Fibonacci as adhering to the “golden ratio.” In forest management, various models are used to achieve a balance between forest use and conservation that meets societal expectations in both ecological and economic terms. In Central European countries, where forest management has been subordinated to the timber industry, such a transition is still in progress, and people continue to look for an acceptable balance between forest conservation and management. The main objective of this paper is to review approaches to forest management in Central Europe with the aim of contributing to current discussions on forest management models in Europe. We anticipate that the new EU Biodiversity Strategy for 2030 will implement the billion-tree afforestation program with appropriate consideration of forest potential based on the tenets of sustainable management and that the future climate will be neutral. We hope that the forestry aspects of the strategy will provide a positive impetus to forest management by finding effective compromises between forest conservation and forest use in furthering the aims of sustainable development.
{"title":"Is It Possible to Compromise Forest Conservation with Forest Use?","authors":"Z. Sierota, S. Miścicki","doi":"10.3390/earth3040061","DOIUrl":"https://doi.org/10.3390/earth3040061","url":null,"abstract":"A variety of elements in nature, from a pine cone’s bracts to a spiral galaxy, are described by a unique mathematical relationship described by Fibonacci as adhering to the “golden ratio.” In forest management, various models are used to achieve a balance between forest use and conservation that meets societal expectations in both ecological and economic terms. In Central European countries, where forest management has been subordinated to the timber industry, such a transition is still in progress, and people continue to look for an acceptable balance between forest conservation and management. The main objective of this paper is to review approaches to forest management in Central Europe with the aim of contributing to current discussions on forest management models in Europe. We anticipate that the new EU Biodiversity Strategy for 2030 will implement the billion-tree afforestation program with appropriate consideration of forest potential based on the tenets of sustainable management and that the future climate will be neutral. We hope that the forestry aspects of the strategy will provide a positive impetus to forest management by finding effective compromises between forest conservation and forest use in furthering the aims of sustainable development.","PeriodicalId":51020,"journal":{"name":"Earth Interactions","volume":"55 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2022-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82356541","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cailing Zhao, C. Gong, H. Duan, P. Yan, Yuanpu Liu, G. Zhou
Soil temperature is a crucial parameter in surface emissions of carbon, water, and energy exchanges. This study utilized the soil temperature of 836 national basic meteorological observing stations over China to evaluate three soil temperature products. Soil temperature data from the China Meteorology Administration Land Data Assimilation System (CLDAS), European Centre for Medium-Range Weather Forecasts (ERA-Interim), and Global Land Data Assimilation System (GLDAS) during 2017 are evaluated. The results showed that soil temperature reanalysis datasets display a significant north-to-south difference over eastern China with generally underestimated magnitudes. CLDAS data perform soil temperature assessment best at different depths and can be reproduced well in most areas of China. CLDAS slightly overestimates soil temperature in summer. The most significant deviation of ERA-Interim (GLDAS) appears in summer (summer and autumn). As soil depth increases, the soil temperature errors of all three datasets increase. The CLDAS represents the soil temperature over China but owns a more considerable bias in barren or sparsely vegetated croplands. ERA-Interim performs poorest in urban and built-up and barren or sparsely vegetated areas. GLDAS overall owns an enormous bias at the mixed forest, grassland, and croplands areas, which should be improved, especially in summer. However, it performs better in open shrublands and barren or sparsely vegetated areas. The ST of mixed forests shows better results in the south region than the north region. For grasslands, smaller MEs are located in the north and northwest regions. The ST of croplands shows the poorest performance over the northwest region.
{"title":"Evaluation of Three Reanalysis Soil Temperature Datasets with Observation Data over China","authors":"Cailing Zhao, C. Gong, H. Duan, P. Yan, Yuanpu Liu, G. Zhou","doi":"10.3390/earth3040060","DOIUrl":"https://doi.org/10.3390/earth3040060","url":null,"abstract":"Soil temperature is a crucial parameter in surface emissions of carbon, water, and energy exchanges. This study utilized the soil temperature of 836 national basic meteorological observing stations over China to evaluate three soil temperature products. Soil temperature data from the China Meteorology Administration Land Data Assimilation System (CLDAS), European Centre for Medium-Range Weather Forecasts (ERA-Interim), and Global Land Data Assimilation System (GLDAS) during 2017 are evaluated. The results showed that soil temperature reanalysis datasets display a significant north-to-south difference over eastern China with generally underestimated magnitudes. CLDAS data perform soil temperature assessment best at different depths and can be reproduced well in most areas of China. CLDAS slightly overestimates soil temperature in summer. The most significant deviation of ERA-Interim (GLDAS) appears in summer (summer and autumn). As soil depth increases, the soil temperature errors of all three datasets increase. The CLDAS represents the soil temperature over China but owns a more considerable bias in barren or sparsely vegetated croplands. ERA-Interim performs poorest in urban and built-up and barren or sparsely vegetated areas. GLDAS overall owns an enormous bias at the mixed forest, grassland, and croplands areas, which should be improved, especially in summer. However, it performs better in open shrublands and barren or sparsely vegetated areas. The ST of mixed forests shows better results in the south region than the north region. For grasslands, smaller MEs are located in the north and northwest regions. The ST of croplands shows the poorest performance over the northwest region.","PeriodicalId":51020,"journal":{"name":"Earth Interactions","volume":"21 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2022-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84730517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aristotelis Koskinas, Eleni Zaharopoulou, George Pouliasis, Ilias Deligiannis, P. Dimitriadis, T. Iliopoulou, N. Mamassis, Demetris Koutsoyiannis
Hydroclimatic processes such as precipitation, temperature, wind speed and dew point are usually considered to be independent of each other. In this study, the cross−correlations between key hydrological−cycle processes are examined, initially by conducting statistical tests, then adding the impact of long−range dependence, which is shown to govern all these processes. Subsequently, an innovative stochastic test that can validate the significance of the cross−correlation among these processes is introduced based on Monte−Carlo simulations. The test works as follows: observations obtained from numerous global−scale timeseries were used for application to, and a comparison of, the traditional methods of validation of statistical significance, such as the t−test, after filtering the data based on length and quality, and then by estimating the cross−correlations on an annual−scale. The proposed method has two main benefits: it negates the need of the pre−whitening data series which could disrupt the stochastic properties of hydroclimatic processes, and indicates tighter limits for upper and lower boundaries of statistical significance when analyzing cross−correlations of processes that exhibit long−range dependence, compared to classical statistical tests. The results of this analysis highlight the need to acquire cross−correlations between processes, which may be significant in the case of long−range dependence behavior.
{"title":"Estimating the Statistical Significance of Cross–Correlations between Hydroclimatic Processes in the Presence of Long–Range Dependence","authors":"Aristotelis Koskinas, Eleni Zaharopoulou, George Pouliasis, Ilias Deligiannis, P. Dimitriadis, T. Iliopoulou, N. Mamassis, Demetris Koutsoyiannis","doi":"10.3390/earth3030059","DOIUrl":"https://doi.org/10.3390/earth3030059","url":null,"abstract":"Hydroclimatic processes such as precipitation, temperature, wind speed and dew point are usually considered to be independent of each other. In this study, the cross−correlations between key hydrological−cycle processes are examined, initially by conducting statistical tests, then adding the impact of long−range dependence, which is shown to govern all these processes. Subsequently, an innovative stochastic test that can validate the significance of the cross−correlation among these processes is introduced based on Monte−Carlo simulations. The test works as follows: observations obtained from numerous global−scale timeseries were used for application to, and a comparison of, the traditional methods of validation of statistical significance, such as the t−test, after filtering the data based on length and quality, and then by estimating the cross−correlations on an annual−scale. The proposed method has two main benefits: it negates the need of the pre−whitening data series which could disrupt the stochastic properties of hydroclimatic processes, and indicates tighter limits for upper and lower boundaries of statistical significance when analyzing cross−correlations of processes that exhibit long−range dependence, compared to classical statistical tests. The results of this analysis highlight the need to acquire cross−correlations between processes, which may be significant in the case of long−range dependence behavior.","PeriodicalId":51020,"journal":{"name":"Earth Interactions","volume":"83 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2022-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80361697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Holly Atkinson, B. Cristescu, L. Marker, Nicola Rooney
Bush encroachment is a habitat change phenomenon that threatens savanna and grassland ecosystems worldwide. In Africa, large carnivores in bush encroached landscapes must adjust to increasing woody plant cover and biomass, which could affect predation success at multiple stages through complex and context-dependent pathways. We highlight, interpret, and compare studies that assessed how bush encroachment or related habitat parameters affect the predation stages of large African carnivores. Bush encroachment may directly or indirectly affect predation success in various ways, including by: (1) altering habitat structure, which may affect hunting efficiency and prey accessibility; (2) changing prey abundance/distribution, with smaller species and browsers being potentially favoured; (3) influencing interference competition within the carnivore guild. For habitat or dietary specialists, and subordinate predators that are vulnerable to both top-down and bottom-up ecosystem effects, these alterations may be detrimental and eventually incur population fitness costs. As the threat of bush encroachment continues, future studies are required to assess indirect effects on competitive interactions within the large African carnivore guild to ensure that conservation efforts are focused. Additionally, to better understand the effects of bush encroachment across Africa, further research is necessary in affected areas as overall little attention has been devoted to the topic.
{"title":"Bush Encroachment and Large Carnivore Predation Success in African Landscapes: A Review","authors":"Holly Atkinson, B. Cristescu, L. Marker, Nicola Rooney","doi":"10.3390/earth3030058","DOIUrl":"https://doi.org/10.3390/earth3030058","url":null,"abstract":"Bush encroachment is a habitat change phenomenon that threatens savanna and grassland ecosystems worldwide. In Africa, large carnivores in bush encroached landscapes must adjust to increasing woody plant cover and biomass, which could affect predation success at multiple stages through complex and context-dependent pathways. We highlight, interpret, and compare studies that assessed how bush encroachment or related habitat parameters affect the predation stages of large African carnivores. Bush encroachment may directly or indirectly affect predation success in various ways, including by: (1) altering habitat structure, which may affect hunting efficiency and prey accessibility; (2) changing prey abundance/distribution, with smaller species and browsers being potentially favoured; (3) influencing interference competition within the carnivore guild. For habitat or dietary specialists, and subordinate predators that are vulnerable to both top-down and bottom-up ecosystem effects, these alterations may be detrimental and eventually incur population fitness costs. As the threat of bush encroachment continues, future studies are required to assess indirect effects on competitive interactions within the large African carnivore guild to ensure that conservation efforts are focused. Additionally, to better understand the effects of bush encroachment across Africa, further research is necessary in affected areas as overall little attention has been devoted to the topic.","PeriodicalId":51020,"journal":{"name":"Earth Interactions","volume":"118 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2022-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78982337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}