With the aim of contributing to the knowledge of soil organic carbon stocks in dry areas, this work is based on a quantification of SOC stocks in gypsum-bearing soils whose vertical and spatial heterogeneity greatly limits inferring the total SOC stocks solely from soil surface information. Public databases of soil profiles were key to this quantification, through which it was estimated which amounts of organic carbon can potentially be excluded from calculations associated with soil C cycle models in the absence of information regarding deep soil horizons. These databases include two key factors in the quantification of SOC stocks, which are often excluded: the volume of coarse fragments and the thickness of all sampled soil horizons where SOC concentration was determined. The observed average value of SOC stocks in the studied subsurface horizons reaches 73% of the whole soil. Climate, relief, and land use influence the quantity and heterogeneity of SOC stocks in these soils. Information based on the mere surface of the soil is not relevant to quantify the total SOC; however, the calculation of stocks through soil pits of medium depth (30 cm) has proven to be potentially useful as a complementary approach to these stocks.
{"title":"Carbon Stock Assessment in Gypsum-Bearing Soils: The Role of Subsurface Soil Horizons","authors":"M. Rodríguez-Rastrero, Almudena Ortega-Martos","doi":"10.3390/earth3030048","DOIUrl":"https://doi.org/10.3390/earth3030048","url":null,"abstract":"With the aim of contributing to the knowledge of soil organic carbon stocks in dry areas, this work is based on a quantification of SOC stocks in gypsum-bearing soils whose vertical and spatial heterogeneity greatly limits inferring the total SOC stocks solely from soil surface information. Public databases of soil profiles were key to this quantification, through which it was estimated which amounts of organic carbon can potentially be excluded from calculations associated with soil C cycle models in the absence of information regarding deep soil horizons. These databases include two key factors in the quantification of SOC stocks, which are often excluded: the volume of coarse fragments and the thickness of all sampled soil horizons where SOC concentration was determined. The observed average value of SOC stocks in the studied subsurface horizons reaches 73% of the whole soil. Climate, relief, and land use influence the quantity and heterogeneity of SOC stocks in these soils. Information based on the mere surface of the soil is not relevant to quantify the total SOC; however, the calculation of stocks through soil pits of medium depth (30 cm) has proven to be potentially useful as a complementary approach to these stocks.","PeriodicalId":51020,"journal":{"name":"Earth Interactions","volume":"25 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2022-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81532773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Parts of southeast Alaska experienced record drought in 2019, followed by record daily precipitation in late 2020 with substantial impacts to human health and safety, energy resources and fisheries. To help ascertain whether or not these types of events can be expected more frequently, this study investigated observed trends and projected changes of hydroclimatic extremes indices across southeast Alaska, including measures of precipitation variability, seasonality, magnitude and type. Observations indicated mixed tendencies of inter-annual precipitation variability, but there were consistent trends toward warmer and wetter conditions. Projected changes were assessed using dynamically downscaled climate model simulations at 4-km spatial resolution from 2031-2060 that were compared to a historical period from 1981-2010 using two models – NCAR CCSM4 and GFDL-CM3. Consistent directional changes were found for five of the analyzed indices. The CCSM indicated increased maximum 1-day precipitation (RX1; 12.6%), increased maximum consecutive 5-day precipitation (RX5; 7.4%), longer periods of consecutive dry days (CDD; 11.9%), fewer snow cover days (SNC; -21.4%) and lower snow fraction (SNF; -24.4%); for GFDL these changes were RX1 (19.8%), RX5 (16.0%), CDD (20.1%), SNC (-21.9%) and SNF (-26.5%). While both models indicated substantial snow losses, they also projected annual snowfall increases at high elevations; for CCSM this occurred above 1500 m and above 2500 m for GFDL. Significance testing was assessed at the 95% confidence level using Theil-Sen’s slope estimates for the observed time series and the Wilcoxon-Mann- Whitney U test for projected changes of the hydroclimatic extremes indices relative to their historical distributions.
{"title":"Projections of Hydroclimatic Extremes in Southeast Alaska under the RCP8.5 scenario","authors":"Rick Lader, U. Bhatt, J. Walsh, P. Bieniek","doi":"10.1175/ei-d-21-0023.1","DOIUrl":"https://doi.org/10.1175/ei-d-21-0023.1","url":null,"abstract":"\u0000Parts of southeast Alaska experienced record drought in 2019, followed by record daily precipitation in late 2020 with substantial impacts to human health and safety, energy resources and fisheries. To help ascertain whether or not these types of events can be expected more frequently, this study investigated observed trends and projected changes of hydroclimatic extremes indices across southeast Alaska, including measures of precipitation variability, seasonality, magnitude and type. Observations indicated mixed tendencies of inter-annual precipitation variability, but there were consistent trends toward warmer and wetter conditions. Projected changes were assessed using dynamically downscaled climate model simulations at 4-km spatial resolution from 2031-2060 that were compared to a historical period from 1981-2010 using two models – NCAR CCSM4 and GFDL-CM3. Consistent directional changes were found for five of the analyzed indices. The CCSM indicated increased maximum 1-day precipitation (RX1; 12.6%), increased maximum consecutive 5-day precipitation (RX5; 7.4%), longer periods of consecutive dry days (CDD; 11.9%), fewer snow cover days (SNC; -21.4%) and lower snow fraction (SNF; -24.4%); for GFDL these changes were RX1 (19.8%), RX5 (16.0%), CDD (20.1%), SNC (-21.9%) and SNF (-26.5%). While both models indicated substantial snow losses, they also projected annual snowfall increases at high elevations; for CCSM this occurred above 1500 m and above 2500 m for GFDL. Significance testing was assessed at the 95% confidence level using Theil-Sen’s slope estimates for the observed time series and the Wilcoxon-Mann- Whitney U test for projected changes of the hydroclimatic extremes indices relative to their historical distributions.","PeriodicalId":51020,"journal":{"name":"Earth Interactions","volume":"1 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2022-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41525722","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Robyn N. Holmes, A. Mayer, D. Gutzler, Luis Garnica Chavira
The Middle Rio Grande is a vital source of water for irrigation in the region. Climate change is impacting regional hydrology and is likely to put additional stress on a water supply that is already stretched thin. To gain insight on the hydrologic effects of climate change on reservoir storage, a simple water balance model was used to simulate the Elephant Butte-Caballo reservoir system (Southern New Mexico, USA). The water balance model was forced by hydrologic inputs generated by 97 climate simulations derived from CMIP5 Global Climate Models, coupled to a surface hydrologic model. Results suggest the percentage of years that reservoir releases satisfy agricultural water rights allocations over the next 50 years (2021-2070) will decrease compared to the past 50 years (1971-2020). The modeling also projects an increase in multi-year drought events that hinder reservoir management strategies to maintain high storage levels. In most cases, changes in reservoir inflows from distant upstream snowmelt is projected to have a greater influence on reservoir storage and water availability downstream of the reservoirs, compared to changes in local evaporation and precipitation from the reservoir surfaces.
{"title":"Assessing the Effects of Climate Change on Middle Rio Grande Surface Water Supplies Using a Simple Water Balance Reservoir Model","authors":"Robyn N. Holmes, A. Mayer, D. Gutzler, Luis Garnica Chavira","doi":"10.1175/ei-d-21-0025.1","DOIUrl":"https://doi.org/10.1175/ei-d-21-0025.1","url":null,"abstract":"\u0000The Middle Rio Grande is a vital source of water for irrigation in the region. Climate change is impacting regional hydrology and is likely to put additional stress on a water supply that is already stretched thin. To gain insight on the hydrologic effects of climate change on reservoir storage, a simple water balance model was used to simulate the Elephant Butte-Caballo reservoir system (Southern New Mexico, USA). The water balance model was forced by hydrologic inputs generated by 97 climate simulations derived from CMIP5 Global Climate Models, coupled to a surface hydrologic model. Results suggest the percentage of years that reservoir releases satisfy agricultural water rights allocations over the next 50 years (2021-2070) will decrease compared to the past 50 years (1971-2020). The modeling also projects an increase in multi-year drought events that hinder reservoir management strategies to maintain high storage levels. In most cases, changes in reservoir inflows from distant upstream snowmelt is projected to have a greater influence on reservoir storage and water availability downstream of the reservoirs, compared to changes in local evaporation and precipitation from the reservoir surfaces.","PeriodicalId":51020,"journal":{"name":"Earth Interactions","volume":" ","pages":""},"PeriodicalIF":2.0,"publicationDate":"2022-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46529101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
With a growing interest in the study of urban life and health, evidence indicates that the quality of the environment in which we live can have implications for our subjective well-being and health. This study assesses the potential impacts of perceptions of visual air pollution, olfactory air pollution, and noise pollution on self-perceived health, self-perceived happiness, and satisfaction with life, through the calculation of ordinal logistic regressions, using the information of an online survey carried out in Quito, Ecuador. We found that perceptions of unpleasant odors and noise pollution influence self-perceived health, self-perceived happiness, and satisfaction with life. The obtained results may support the incorporation of citizens’ perspectives to better understand environmental pollution and to enrich local planning for urban sustainability.
{"title":"Impact of Perceptions of Air Pollution and Noise on Subjective Well-Being and Health","authors":"C. Herrera, Pablo Cabrera-Barona","doi":"10.3390/earth3030047","DOIUrl":"https://doi.org/10.3390/earth3030047","url":null,"abstract":"With a growing interest in the study of urban life and health, evidence indicates that the quality of the environment in which we live can have implications for our subjective well-being and health. This study assesses the potential impacts of perceptions of visual air pollution, olfactory air pollution, and noise pollution on self-perceived health, self-perceived happiness, and satisfaction with life, through the calculation of ordinal logistic regressions, using the information of an online survey carried out in Quito, Ecuador. We found that perceptions of unpleasant odors and noise pollution influence self-perceived health, self-perceived happiness, and satisfaction with life. The obtained results may support the incorporation of citizens’ perspectives to better understand environmental pollution and to enrich local planning for urban sustainability.","PeriodicalId":51020,"journal":{"name":"Earth Interactions","volume":"28 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2022-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78233839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Taheriyoun, H. Marzban, M. Geranmehr, Mohammad Nazari-Sharabian
Water quality management of rivers is one of the challenges in the analysis of water resource systems. The optimal operation of the pollutant carrying capacity of these systems provides significant economic value and could reduce treatment costs. In this study, the application of the trading ratio system is investigated to control the cost of pollutants in a river and make a fair deal. In this regard, transfer coefficients between pollution sources, along with the trade coefficients, are determined, considering the system limitations and each pollutant’s contaminant impact. To provide allowable limits of river water quality concentrations, the total cost of all sources and the system is minimized, using the linear programming method. Finally, the new trading discharge permits are calculated for each source. The proposed method is successfully applied to Dez River as a case study. Results show that using a trading ratio system could maintain water quality at a standard level containing economic benefits for the participants of this program.
{"title":"Optimization of Pollutant Discharge Permits, Using the Trading Ratio System: A Case Study","authors":"M. Taheriyoun, H. Marzban, M. Geranmehr, Mohammad Nazari-Sharabian","doi":"10.3390/earth3030046","DOIUrl":"https://doi.org/10.3390/earth3030046","url":null,"abstract":"Water quality management of rivers is one of the challenges in the analysis of water resource systems. The optimal operation of the pollutant carrying capacity of these systems provides significant economic value and could reduce treatment costs. In this study, the application of the trading ratio system is investigated to control the cost of pollutants in a river and make a fair deal. In this regard, transfer coefficients between pollution sources, along with the trade coefficients, are determined, considering the system limitations and each pollutant’s contaminant impact. To provide allowable limits of river water quality concentrations, the total cost of all sources and the system is minimized, using the linear programming method. Finally, the new trading discharge permits are calculated for each source. The proposed method is successfully applied to Dez River as a case study. Results show that using a trading ratio system could maintain water quality at a standard level containing economic benefits for the participants of this program.","PeriodicalId":51020,"journal":{"name":"Earth Interactions","volume":"99 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2022-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81080631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gelidium corneum (Giant Gelidium or Atlantic agar) is a well-known red seaweed harvested for its high-quality agar content. Agar is a mixture of the polysaccharides used in the food industry as a gelling, thickener, clarifying, and stabilizer agent. The best agar quality is also used in the laboratory as bacteriological agar. Yet, in recent years, the species has been studied for many other applications. Examples of uses are pharmaceuticals, cosmetics, food supplements, bioremediation, biofuels, biofertilizers and biostimulants, biomaterials, and nanocrystals, among others. The use of this biomass, though, raises concerns about the sustainability of the resource, since this is not a cultivated species, being harvested in the wild. Thus, other uses of G. corneum biomass increase pressure on wild stocks already stressed due to climate change. However, in a biorefinery approach, a new trend is emerging, using waste biomass rather than harvested biomass to produce new bio-based materials. These are smart solutions that transform waste into innovative products, useful for various sectors of society while reducing the impact of biomass exploitation. The aim of this review paper, thus, is to address the current state of G. corneum biology, ecology, threats, its current uses and market, and the ongoing research on innovative proposals in a circular economy framework.
{"title":"The Red Seaweed Giant Gelidium (Gelidium corneum) for New Bio-Based Materials in a Circular Economy Framework","authors":"T. Mouga, Isabel Fernandes","doi":"10.3390/earth3030045","DOIUrl":"https://doi.org/10.3390/earth3030045","url":null,"abstract":"Gelidium corneum (Giant Gelidium or Atlantic agar) is a well-known red seaweed harvested for its high-quality agar content. Agar is a mixture of the polysaccharides used in the food industry as a gelling, thickener, clarifying, and stabilizer agent. The best agar quality is also used in the laboratory as bacteriological agar. Yet, in recent years, the species has been studied for many other applications. Examples of uses are pharmaceuticals, cosmetics, food supplements, bioremediation, biofuels, biofertilizers and biostimulants, biomaterials, and nanocrystals, among others. The use of this biomass, though, raises concerns about the sustainability of the resource, since this is not a cultivated species, being harvested in the wild. Thus, other uses of G. corneum biomass increase pressure on wild stocks already stressed due to climate change. However, in a biorefinery approach, a new trend is emerging, using waste biomass rather than harvested biomass to produce new bio-based materials. These are smart solutions that transform waste into innovative products, useful for various sectors of society while reducing the impact of biomass exploitation. The aim of this review paper, thus, is to address the current state of G. corneum biology, ecology, threats, its current uses and market, and the ongoing research on innovative proposals in a circular economy framework.","PeriodicalId":51020,"journal":{"name":"Earth Interactions","volume":"4 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2022-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87802774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lazaro J. Mangewa, P. Ndakidemi, R. D. Alward, Hamza K. Kija, J. Bukombe, Emmanuel Nasolwa, L. Munishi
Habitat condition is a vital ecological attribute in wildlife conservation and management in protected areas, including the Burunge wildlife management areas in Tanzania. Traditional techniques, including satellite remote sensing and ground-based techniques used to assess habitat condition, have limitations in terms of costs and low resolution of satellite platforms. The Normalized Difference Vegetation Index (NDVI) and Green NDVI (GNDVI) have potential for assessing habitat condition, e.g., forage quantity and quality, vegetation cover and degradation, soil erosion and salinization, fire, and pollution of vegetation cover. We, therefore, examined how the recently emerged Unmanned Aerial Vehicle (UAV) platform and the traditional Sentinel-2 differs in indications of habitat condition using NDVI and GNDVI. We assigned 13 survey plots to random locations in the major land cover types: three survey plots in grasslands, shrublands, and woodlands, and two in riverine and mosaics cover types. We used a UAV-mounted, multi-spectral sensor and obtained Sentinel-2 imagery between February and March 2020. We categorized NDVI and GNDVI values into habitat condition classes (very good, good, poor, and very poor). We analyzed data using descriptive statistics and linear regression model in R-software. The results revealed higher sensitivity and ability of UAV to provide the necessary preliminary diagnostic indications of habitat condition. The UAV-based NDVI and GNDVI maps showed more details of all classes of habitat conditions than the Sentinel-2 maps. The linear regressions results showed strong positive correlations between the two platforms (p < 0.001). The differences were attributed primarily to spatial resolution and minor atmospheric effects. We recommend further studies to test other vegetation indices.
{"title":"Comparative Assessment of UAV and Sentinel-2 NDVI and GNDVI for Preliminary Diagnosis of Habitat Conditions in Burunge Wildlife Management Area, Tanzania","authors":"Lazaro J. Mangewa, P. Ndakidemi, R. D. Alward, Hamza K. Kija, J. Bukombe, Emmanuel Nasolwa, L. Munishi","doi":"10.3390/earth3030044","DOIUrl":"https://doi.org/10.3390/earth3030044","url":null,"abstract":"Habitat condition is a vital ecological attribute in wildlife conservation and management in protected areas, including the Burunge wildlife management areas in Tanzania. Traditional techniques, including satellite remote sensing and ground-based techniques used to assess habitat condition, have limitations in terms of costs and low resolution of satellite platforms. The Normalized Difference Vegetation Index (NDVI) and Green NDVI (GNDVI) have potential for assessing habitat condition, e.g., forage quantity and quality, vegetation cover and degradation, soil erosion and salinization, fire, and pollution of vegetation cover. We, therefore, examined how the recently emerged Unmanned Aerial Vehicle (UAV) platform and the traditional Sentinel-2 differs in indications of habitat condition using NDVI and GNDVI. We assigned 13 survey plots to random locations in the major land cover types: three survey plots in grasslands, shrublands, and woodlands, and two in riverine and mosaics cover types. We used a UAV-mounted, multi-spectral sensor and obtained Sentinel-2 imagery between February and March 2020. We categorized NDVI and GNDVI values into habitat condition classes (very good, good, poor, and very poor). We analyzed data using descriptive statistics and linear regression model in R-software. The results revealed higher sensitivity and ability of UAV to provide the necessary preliminary diagnostic indications of habitat condition. The UAV-based NDVI and GNDVI maps showed more details of all classes of habitat conditions than the Sentinel-2 maps. The linear regressions results showed strong positive correlations between the two platforms (p < 0.001). The differences were attributed primarily to spatial resolution and minor atmospheric effects. We recommend further studies to test other vegetation indices.","PeriodicalId":51020,"journal":{"name":"Earth Interactions","volume":"38 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2022-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72900060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yangxing Zheng, M. Bourassa, D. Dukhovskoy, M. M. Ali
Dmitry Dukhovskoy was not included as an author in the original publication [...]
Dmitry Dukhovskoy并未作为作者出现在原始出版物中[…]
{"title":"Correction: Zheng et al. Upper-Ocean Processes Controlling the Near-Surface Temperature in the Western Gulf of Mexico from a Multidecadal Numerical Simulation. Earth 2022, 3, 493–521","authors":"Yangxing Zheng, M. Bourassa, D. Dukhovskoy, M. M. Ali","doi":"10.3390/earth3030043","DOIUrl":"https://doi.org/10.3390/earth3030043","url":null,"abstract":"Dmitry Dukhovskoy was not included as an author in the original publication [...]","PeriodicalId":51020,"journal":{"name":"Earth Interactions","volume":"1 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2022-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82944431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Understanding near-surface atmosphere behavior in the tropics is imperative given the role of tropical energy fluxes in Earth’s climate cycles, but this area is complicated by a land-atmosphere interaction that includes rugged topography, seasonal weather drivers, and frequent environmental disturbances. This study examines variation in near-surface atmosphere behaviors in northeastern Puerto Rico using a synthesis of data from lowland and montane locations under different land covers (forest, urban, and rural) during 2008 to 2021, when a severe drought, large hurricanes (Irma and Maria), and the COVID-19 mobility-reducing lockdown occurred. Ceilometer, weather, air quality, radiosonde, and satellite data were analyzed for annual patterns and monthly time series of data and data correlations. The results showed a system strongly dominated by easterly trade-winds transmitting regional oceanic patterns over terrain. Environmental disturbances affected land-atmosphere interaction for short time periods after events. Events that reduce the land signature, (reducing greenness: e.g., drought and hurricanes, or reducing land pollution: e.g., COVID-19 lockdown) were evidenced to strengthen the transmission of the oceanic pattern. The most variation in near-surface atmosphere behavior was seen in the mountainous areas that were influenced by both factors, trade-winds and terrain-induced orographic lifting. As an exception to the rest of the near-surface atmosphere behavior, pollutants other than ozone did not correlate positively or negatively with stronger trade-winds at all sites across the region. Instead, these pollutants were hypothesized to be more anthropogenically influenced. Once Covid-19 lockdown persisted for three months, urban pollution decreased, and cloud base may have increased.
{"title":"Near-surface atmospheric behavior over complex tropical topography in Puerto Rico dominated by seasonal patterns despite frequent environmental changes","authors":"A. V. Van Beusekom, G. González","doi":"10.1175/ei-d-21-0020.1","DOIUrl":"https://doi.org/10.1175/ei-d-21-0020.1","url":null,"abstract":"\u0000Understanding near-surface atmosphere behavior in the tropics is imperative given the role of tropical energy fluxes in Earth’s climate cycles, but this area is complicated by a land-atmosphere interaction that includes rugged topography, seasonal weather drivers, and frequent environmental disturbances. This study examines variation in near-surface atmosphere behaviors in northeastern Puerto Rico using a synthesis of data from lowland and montane locations under different land covers (forest, urban, and rural) during 2008 to 2021, when a severe drought, large hurricanes (Irma and Maria), and the COVID-19 mobility-reducing lockdown occurred. Ceilometer, weather, air quality, radiosonde, and satellite data were analyzed for annual patterns and monthly time series of data and data correlations. The results showed a system strongly dominated by easterly trade-winds transmitting regional oceanic patterns over terrain. Environmental disturbances affected land-atmosphere interaction for short time periods after events. Events that reduce the land signature, (reducing greenness: e.g., drought and hurricanes, or reducing land pollution: e.g., COVID-19 lockdown) were evidenced to strengthen the transmission of the oceanic pattern. The most variation in near-surface atmosphere behavior was seen in the mountainous areas that were influenced by both factors, trade-winds and terrain-induced orographic lifting. As an exception to the rest of the near-surface atmosphere behavior, pollutants other than ozone did not correlate positively or negatively with stronger trade-winds at all sites across the region. Instead, these pollutants were hypothesized to be more anthropogenically influenced. Once Covid-19 lockdown persisted for three months, urban pollution decreased, and cloud base may have increased.","PeriodicalId":51020,"journal":{"name":"Earth Interactions","volume":" ","pages":""},"PeriodicalIF":2.0,"publicationDate":"2022-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42266288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
L. D. de Freitas, Jener Fernando Leite de Moraes, Adriana Monteiro da Costa, Letícia Lopes Martins, B. M. Silva, J. C. Avanzi, Alexandre Uezu
Water resources are paramount for the maintenance of the Earth’s system equilibrium; however, they face various threats and need increased conservation and better management. To restore water resources, nature-based solutions can be applied. Nevertheless, it is unclear which solution promotes greater water supply resilience: restoring riparian vegetation, improving management practices in key areas for water recharge, or both? In addition, how significant are these results in the face of climate change effects? To answer this, we used the SWAT (Soil and Water Assessment Tool) model to simulate and compare four different land use scenarios under three climate conditions (i.e., observed climate and two of the IPCC’s future climate projections). Focusing on key areas contributed more to increasing water supply resilience than forest restoration. Applying both solutions, however, yielded the greatest increases in resilience and groundwater recharge and the greatest decreases in surface runoff and sediment loads. None of the solutions caused a significant difference in streamflow and water yield. Furthermore, according to both of the IPCC climate projections evaluated, by the end of this century, the average annual streamflow will be lower than the historical mean for the region. Climate adaptation strategies alone will be insufficient to ensure future water access, highlighting the need for implementing drastic mitigation actions.
{"title":"How Far Can Nature-Based Solutions Increase Water Supply Resilience to Climate Change in One of the Most Important Brazilian Watersheds?","authors":"L. D. de Freitas, Jener Fernando Leite de Moraes, Adriana Monteiro da Costa, Letícia Lopes Martins, B. M. Silva, J. C. Avanzi, Alexandre Uezu","doi":"10.3390/earth3030042","DOIUrl":"https://doi.org/10.3390/earth3030042","url":null,"abstract":"Water resources are paramount for the maintenance of the Earth’s system equilibrium; however, they face various threats and need increased conservation and better management. To restore water resources, nature-based solutions can be applied. Nevertheless, it is unclear which solution promotes greater water supply resilience: restoring riparian vegetation, improving management practices in key areas for water recharge, or both? In addition, how significant are these results in the face of climate change effects? To answer this, we used the SWAT (Soil and Water Assessment Tool) model to simulate and compare four different land use scenarios under three climate conditions (i.e., observed climate and two of the IPCC’s future climate projections). Focusing on key areas contributed more to increasing water supply resilience than forest restoration. Applying both solutions, however, yielded the greatest increases in resilience and groundwater recharge and the greatest decreases in surface runoff and sediment loads. None of the solutions caused a significant difference in streamflow and water yield. Furthermore, according to both of the IPCC climate projections evaluated, by the end of this century, the average annual streamflow will be lower than the historical mean for the region. Climate adaptation strategies alone will be insufficient to ensure future water access, highlighting the need for implementing drastic mitigation actions.","PeriodicalId":51020,"journal":{"name":"Earth Interactions","volume":"273 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2022-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88414604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}