Pub Date : 2024-08-17DOI: 10.1016/j.drup.2024.101139
Ruishan Liu , Yingying Chen , Hao Xu , Huanran Zhang , Yi Liu , Xiaojing Liu , Haowei Ye , Mantao Chen , Beiwen Zheng
Herein, we first isolated two MCR-9- and KPC-2-co-producing K. pneumoniae isolates. Notably, we observed a fusion event between the chromosome and plasmid, mediated by IS903B, in these two strains. This cointegration of chromosomes and plasmids introduces a new mode of transmission for antimicrobial resistance genes.
{"title":"Fusion event mediated by IS903B between chromosome and plasmid in two MCR-9- and KPC-2-co-producing Klebsiella pneumoniae isolates","authors":"Ruishan Liu , Yingying Chen , Hao Xu , Huanran Zhang , Yi Liu , Xiaojing Liu , Haowei Ye , Mantao Chen , Beiwen Zheng","doi":"10.1016/j.drup.2024.101139","DOIUrl":"10.1016/j.drup.2024.101139","url":null,"abstract":"<div><p>Herein, we first isolated two MCR-9- and KPC-2-co-producing <em>K. pneumoniae</em> isolates. Notably, we observed a fusion event between the chromosome and plasmid, mediated by IS<em>903B</em>, in these two strains. This cointegration of chromosomes and plasmids introduces a new mode of transmission for antimicrobial resistance genes.</p></div>","PeriodicalId":51022,"journal":{"name":"Drug Resistance Updates","volume":"77 ","pages":"Article 101139"},"PeriodicalIF":15.8,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142040454","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-16DOI: 10.1016/j.drup.2024.101140
Xue Yang , Min Li , Zi-Chang Jia , Yan Liu , Shun-Fan Wu , Mo-Xian Chen , Ge-Fei Hao , Qing Yang
Membrane protein-mediated resistance is a multidisciplinary challenge that spans fields such as medicine, agriculture, and environmental science. Understanding its complexity and devising innovative strategies are crucial for treating diseases like cancer and managing resistant pests in agriculture. This paper explores the dual nature of resistance mechanisms across different organisms: On one hand, animals, bacteria, fungi, plants, and insects exhibit convergent evolution, leading to the development of similar resistance mechanisms. On the other hand, influenced by diverse environmental pressures and structural differences among organisms, they also demonstrate divergent resistance characteristics. Membrane protein-mediated resistance mechanisms are prevalent across animals, bacteria, fungi, plants, and insects, reflecting their shared survival strategies evolved through convergent evolution to address similar survival challenges. However, variations in ecological environments and biological characteristics result in differing responses to resistance. Therefore, examining these differences not only enhances our understanding of adaptive resistance mechanisms but also provides crucial theoretical support and insights for addressing drug resistance and advancing pharmaceutical development.
{"title":"Unraveling the secrets: Evolution of resistance mediated by membrane proteins","authors":"Xue Yang , Min Li , Zi-Chang Jia , Yan Liu , Shun-Fan Wu , Mo-Xian Chen , Ge-Fei Hao , Qing Yang","doi":"10.1016/j.drup.2024.101140","DOIUrl":"10.1016/j.drup.2024.101140","url":null,"abstract":"<div><p>Membrane protein-mediated resistance is a multidisciplinary challenge that spans fields such as medicine, agriculture, and environmental science. Understanding its complexity and devising innovative strategies are crucial for treating diseases like cancer and managing resistant pests in agriculture. This paper explores the dual nature of resistance mechanisms across different organisms: On one hand, animals, bacteria, fungi, plants, and insects exhibit convergent evolution, leading to the development of similar resistance mechanisms. On the other hand, influenced by diverse environmental pressures and structural differences among organisms, they also demonstrate divergent resistance characteristics. Membrane protein-mediated resistance mechanisms are prevalent across animals, bacteria, fungi, plants, and insects, reflecting their shared survival strategies evolved through convergent evolution to address similar survival challenges. However, variations in ecological environments and biological characteristics result in differing responses to resistance. Therefore, examining these differences not only enhances our understanding of adaptive resistance mechanisms but also provides crucial theoretical support and insights for addressing drug resistance and advancing pharmaceutical development.</p></div>","PeriodicalId":51022,"journal":{"name":"Drug Resistance Updates","volume":"77 ","pages":"Article 101140"},"PeriodicalIF":15.8,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1368764624000980/pdfft?md5=f32ad03042bf67bda91992e6b1153808&pid=1-s2.0-S1368764624000980-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142148766","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-16DOI: 10.1016/j.drup.2024.101138
Xueqing Wu , Babek Alibayov , Xi Xiang , Santiago M. Lattar , Fuminori Sakai , Austin A. Medders , Brenda S. Antezana , Lance E. Keller , Ana G.J. Vidal , Yih-Ling Tzeng , D. Ashley Robinson , David S. Stephens , Yunsong Yu , Jorge E. Vidal
Aims
To investigate the molecular events associated with acquiring macrolide resistance genes [mefE/mel (Mega) or ermB] in Streptococcus pneumoniae (Spn) during nasopharyngeal colonization.
Methods and results
Genomic analysis of 128 macrolide-resistant Spn isolates revealed recombination events in genes of the conjugation apparatus, or the competence system, in strains carrying Tn916-related elements. Studies using confocal and electron microscopy demonstrated that during the transfer of Tn916-related elements in nasopharyngeal cell biofilms, pneumococcal strains formed clusters facilitating their acquisition of resistance determinants at a high recombination frequency (rF). Remarkably, these aggregates comprise both encapsulated and nonencapsulated pneumococci that span extracellular and intracellular compartments. rF assessments showed similar rates regardless Mega was associated with large integrative and conjugative elements (ICEs) (>23 kb) or not (∼5.4 kb). The rF for Mega Class IV(c) insertion region (∼53 kb) was three orders of magnitude higher than the transformation of the capsule locus. Metabolomics studies of the microenvironment created by colonization of human nasopharyngeal cells revealed a link between the acquisition of ICEs and the pathways involving nicotinic acid and sucrose.
Conclusions
Pneumococcal clusters, both extracellular and intracellular, facilitate macrolide resistance acquisition, and ICEs were acquired at a higher frequency than the capsule locus. Metabolic changes could serve as intervention targets.
{"title":"Ultrastructural, metabolic and genetic characteristics of determinants facilitating the acquisition of macrolide resistance by Streptococcus pneumoniae","authors":"Xueqing Wu , Babek Alibayov , Xi Xiang , Santiago M. Lattar , Fuminori Sakai , Austin A. Medders , Brenda S. Antezana , Lance E. Keller , Ana G.J. Vidal , Yih-Ling Tzeng , D. Ashley Robinson , David S. Stephens , Yunsong Yu , Jorge E. Vidal","doi":"10.1016/j.drup.2024.101138","DOIUrl":"10.1016/j.drup.2024.101138","url":null,"abstract":"<div><h3>Aims</h3><p>To investigate the molecular events associated with acquiring macrolide resistance genes [<em>mefE</em>/<em>mel</em> (Mega) or <em>ermB</em>] in <em>Streptococcus pneumoniae</em> (<em>Spn</em>) during nasopharyngeal colonization.</p></div><div><h3>Methods and results</h3><p>Genomic analysis of 128 macrolide-resistant <em>Spn</em> isolates revealed recombination events in genes of the conjugation apparatus, or the competence system, in strains carrying Tn<em>916</em>-related elements. Studies using confocal and electron microscopy demonstrated that during the transfer of Tn<em>916</em>-related elements in nasopharyngeal cell biofilms, pneumococcal strains formed clusters facilitating their acquisition of resistance determinants at a high recombination frequency (rF). Remarkably, these aggregates comprise both encapsulated and nonencapsulated pneumococci that span extracellular and intracellular compartments. rF assessments showed similar rates regardless Mega was associated with large integrative and conjugative elements (ICEs) (>23 kb) or not (∼5.4 kb). The rF for Mega Class IV(c) insertion region (∼53 kb) was three orders of magnitude higher than the transformation of the capsule locus. Metabolomics studies of the microenvironment created by colonization of human nasopharyngeal cells revealed a link between the acquisition of ICEs and the pathways involving nicotinic acid and sucrose.</p></div><div><h3>Conclusions</h3><p>Pneumococcal clusters, both extracellular and intracellular, facilitate macrolide resistance acquisition, and ICEs were acquired at a higher frequency than the capsule locus. Metabolic changes could serve as intervention targets.</p></div>","PeriodicalId":51022,"journal":{"name":"Drug Resistance Updates","volume":"77 ","pages":"Article 101138"},"PeriodicalIF":15.8,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142012656","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-16DOI: 10.1016/j.drup.2024.101141
Hui Li , Yao Chen , Ming Ding , Jingjing Liu , Huiying Sun , Houshun Fang , Samuel W. Brady , Yan Xu , Fabian Glaser , Xiaotu Ma , Yabin Tang , Liang Du , Xiaoyu Wu , Shuxuan Wang , Liang Zhu , Benshang Li , Shuhong Shen , Jinghui Zhang , Liang Zheng , Jiyang Yu , Bin-Bing S. Zhou
Aims
The antifolate methotrexate (MTX) is an anchor drug used in acute lymphoblastic leukemia (ALL) with poorly understood chemoresistance mechanisms in relapse. Herein we find decreased folate polyglutamylation network activities and inactivating FPGS mutations, both of which could induce MTX resistance and folate metabolic vulnerability in relapsed ALL.
Methods
We utilized integrated systems biology analysis of transcriptomic and genomic data from relapse ALL cohorts to infer hidden ALL relapse drivers and related genetic alternations during clonal evolution. The drug sensitivity assay was used to determine the impact of relapse-specific FPGS mutations on sensitivity to different antifolates and chemotherapeutics in ALL cells. We used liquid chromatography-mass spectrometry (LC-MS) to quantify MTX and folate polyglutamate levels in folylpoly-γ-glutamate synthetase (FPGS) mutant ALL cells. Enzymatic activity and protein degradation assays were also conducted to characterize the catalytic properties and protein stabilities of FPGS mutants. An ALL cell line-derived mouse leukemia xenograft model was used to evaluate the in vivo impact of FPGS inactivation on leukemogenesis and sensitivity to the polyglutamatable antifolate MTX as well as non-polyglutamatble lipophilic antifolate trimetrexate (TMQ).
Results
We found a significant decrease in folate polyglutamylation network activities during ALL relapse using RNA-seq data. Supported by functional evidence, we identified multifactorial mechanisms of FPGS inactivation in relapsed ALL, including its decreased network activity and gene expression, focal gene deletion, impaired catalytic activity, and increased protein degradation. These deleterious FPGS alterations induce MTX resistance and inevitably cause marked intracellular folate shrinkage, which could be efficiently targeted by a polyglutamylation-independent lipophilic antifolate TMQ in vitro and in vivo.
Conclusions
MTX resistance in relapsed ALL relies on FPGS inactivation, which inevitably induces a folate metabolic vulnerability, allowing for an efficacious antifolate ALL treatment strategy that is based upon TMQ, thereby surmounting chemoresistance in relapsed ALL.
目的 抗叶酸药物甲氨蝶呤(MTX)是治疗急性淋巴细胞白血病(ALL)的主要药物,其复发时的化疗耐药机制尚不清楚。在这里,我们发现叶酸多聚戊糖化网络活性的降低和失活的FPGS突变,这两种情况都可能诱发复发ALL的MTX耐药性和叶酸代谢脆弱性。药物敏感性测定用于确定复发特异性FPGS突变对ALL细胞中不同抗复发药物和化疗药物敏感性的影响。我们使用液相色谱-质谱法(LC-MS)对叶酸多谷氨酸合成酶(FPGS)突变型ALL细胞中的MTX和叶酸多谷氨酸水平进行了定量分析。此外,还进行了酶活性和蛋白质降解测定,以确定FPGS突变体的催化特性和蛋白质稳定性。结果我们利用RNA-seq数据发现,在ALL复发期间,叶酸多聚谷氨酰化网络活性显著下降。在功能证据的支持下,我们确定了复发 ALL 中 FPGS 失活的多因素机制,包括网络活性和基因表达的降低、局灶性基因缺失、催化活性受损以及蛋白质降解增加。这些有害的FPGS改变会诱导MTX耐药,并不可避免地导致细胞内叶酸的明显萎缩,而在体外和体内,一种不依赖于多聚谷氨酰化的亲脂性抗叶酸TMQ可以有效地靶向这些改变。结论复发性 ALL 的耐药依赖于 FPGS 失活,而 FPGS 失活不可避免地会诱发叶酸代谢脆弱性,因此可以采用基于 TMQ 的高效抗叶酸 ALL 治疗策略,从而克服复发性 ALL 的化疗耐药性。
{"title":"Folylpolyglutamate synthetase inactivation in relapsed ALL induces a druggable folate metabolic vulnerability","authors":"Hui Li , Yao Chen , Ming Ding , Jingjing Liu , Huiying Sun , Houshun Fang , Samuel W. Brady , Yan Xu , Fabian Glaser , Xiaotu Ma , Yabin Tang , Liang Du , Xiaoyu Wu , Shuxuan Wang , Liang Zhu , Benshang Li , Shuhong Shen , Jinghui Zhang , Liang Zheng , Jiyang Yu , Bin-Bing S. Zhou","doi":"10.1016/j.drup.2024.101141","DOIUrl":"10.1016/j.drup.2024.101141","url":null,"abstract":"<div><h3>Aims</h3><p>The antifolate methotrexate (MTX) is an anchor drug used in acute lymphoblastic leukemia (ALL) with poorly understood chemoresistance mechanisms in relapse. Herein we find decreased folate polyglutamylation network activities and inactivating <em>FPGS</em> mutations, both of which could induce MTX resistance and folate metabolic vulnerability in relapsed ALL.</p></div><div><h3>Methods</h3><p>We utilized integrated systems biology analysis of transcriptomic and genomic data from relapse ALL cohorts to infer hidden ALL relapse drivers and related genetic alternations during clonal evolution. The drug sensitivity assay was used to determine the impact of relapse-specific <em>FPGS</em> mutations on sensitivity to different antifolates and chemotherapeutics in ALL cells. We used liquid chromatography-mass spectrometry (LC-MS) to quantify MTX and folate polyglutamate levels in folylpoly-γ-glutamate synthetase (FPGS) mutant ALL cells. Enzymatic activity and protein degradation assays were also conducted to characterize the catalytic properties and protein stabilities of FPGS mutants. An ALL cell line-derived mouse leukemia xenograft model was used to evaluate the <em>in vivo</em> impact of <em>FPGS</em> inactivation on leukemogenesis and sensitivity to the polyglutamatable antifolate MTX as well as non-polyglutamatble lipophilic antifolate trimetrexate (TMQ).</p></div><div><h3>Results</h3><p>We found a significant decrease in folate polyglutamylation network activities during ALL relapse using RNA-seq data. Supported by functional evidence, we identified multifactorial mechanisms of <em>FPGS</em> inactivation in relapsed ALL, including its decreased network activity and gene expression, focal gene deletion, impaired catalytic activity, and increased protein degradation. These deleterious <em>FPGS</em> alterations induce MTX resistance and inevitably cause marked intracellular folate shrinkage, which could be efficiently targeted by a polyglutamylation-independent lipophilic antifolate TMQ <em>in vitro</em> and <em>in vivo</em>.</p></div><div><h3>Conclusions</h3><p>MTX resistance in relapsed ALL relies on <em>FPGS</em> inactivation, which inevitably induces a folate metabolic vulnerability, allowing for an efficacious antifolate ALL treatment strategy that is based upon TMQ, thereby surmounting chemoresistance in relapsed ALL.</p></div>","PeriodicalId":51022,"journal":{"name":"Drug Resistance Updates","volume":"77 ","pages":"Article 101141"},"PeriodicalIF":15.8,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142049364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-14DOI: 10.1016/j.drup.2024.101137
Xinmiao Jia , Ying Zhu , Peiyao Jia , Cuidan Li , Xiaobing Chu , Tianshu Sun , Xiaoyu Liu , Wei Yu , Fei Chen , Yingchun Xu , Qiwen Yang
Aims
Hypervirulent carbapenem-resistant Klebsiella pneumoniae (hv-CRKP), coharboring hypervirulence and carbapenem-resistance genes mediated by plasmids, causes infections with extremely high mortality and seriously impacts public health. Exploring the transfer mechanisms of virulence/carbapenem-resistance plasmids, as well as the formation and evolution pathway of hv-CRKP is of great significance to the control of hv-CRKP infections.
Methods
In this study, we identified the predominant clone of hv-CRKP in China and elucidated its genomic characteristics and formation route based on 239 multicenter clinical K. pneumoniae isolates and 1014 GenBank genomes by using comparative genomic analysis. Further, we revealed the factors affecting the transfer of virulence plasmids, and explained the genetic foundation for the prevalence of Chinese predominant hv-CRKP clone.
Results
ST11-KL64 is the predominant clone of hv-CRKP in China and primarily evolved from ST11-KL64 CRKP by acquiring the pLVPK-like virulence plasmid from hvKP. Significantly, the virulence gene cluster iroBCDN was lost in the virulence plasmid of ST11-KL64 hv-CRKP but existed in that of hvKP. Moreover, the absence of iroBCDN didn’t decrease the virulence of hv-CRKP, which was proved by bacterial test, cell-interaction test and mice infection model. On the contrary, loss of iroBCDN was observed to regulate virulence/carbapenem-resistance plasmid transfer and oxidative stress-related genes in strains and thus promoted the mobilization of nonconjugative virulence plasmid from hvKP into ST11-KL64 CRKP, forming hv-CRKP which finally had elevated antioxidant capacity and enhanced survival capacity in macrophages. The loss of iroBCDN increased the survival ability of hv-CRKP without decreasing its virulence, endowing it with an evolutionary advantage.
Conclusions
Our work provides new insights into the key role of iroBCDN loss in convergence of CRKP and hvKP, and the genetic and biological foundation for the widespread prevalence of ST11-KL64 hv-CRKP in China.
{"title":"The key role of iroBCDN-lacking pLVPK-like plasmid in the evolution of the most prevalent hypervirulent carbapenem-resistant ST11-KL64 Klebsiella pneumoniae in China","authors":"Xinmiao Jia , Ying Zhu , Peiyao Jia , Cuidan Li , Xiaobing Chu , Tianshu Sun , Xiaoyu Liu , Wei Yu , Fei Chen , Yingchun Xu , Qiwen Yang","doi":"10.1016/j.drup.2024.101137","DOIUrl":"10.1016/j.drup.2024.101137","url":null,"abstract":"<div><h3>Aims</h3><p>Hypervirulent carbapenem-resistant <em>Klebsiella pneumoniae</em> (hv-CRKP), coharboring hypervirulence and carbapenem-resistance genes mediated by plasmids, causes infections with extremely high mortality and seriously impacts public health. Exploring the transfer mechanisms of virulence/carbapenem-resistance plasmids, as well as the formation and evolution pathway of hv-CRKP is of great significance to the control of hv-CRKP infections.</p></div><div><h3>Methods</h3><p>In this study, we identified the predominant clone of hv-CRKP in China and elucidated its genomic characteristics and formation route based on 239 multicenter clinical <em>K. pneumoniae</em> isolates and 1014 GenBank genomes by using comparative genomic analysis. Further, we revealed the factors affecting the transfer of virulence plasmids, and explained the genetic foundation for the prevalence of Chinese predominant hv-CRKP clone.</p></div><div><h3>Results</h3><p>ST11-KL64 is the predominant clone of hv-CRKP in China and primarily evolved from ST11-KL64 CRKP by acquiring the pLVPK-like virulence plasmid from hvKP. Significantly, the virulence gene cluster <em>iroBCDN</em> was lost in the virulence plasmid of ST11-KL64 hv-CRKP but existed in that of hvKP. Moreover, the absence of <em>iroBCDN</em> didn’t decrease the virulence of hv-CRKP, which was proved by bacterial test, cell-interaction test and mice infection model. On the contrary, loss of <em>iroBCDN</em> was observed to regulate virulence/carbapenem-resistance plasmid transfer and oxidative stress-related genes in strains and thus promoted the mobilization of nonconjugative virulence plasmid from hvKP into ST11-KL64 CRKP, forming hv-CRKP which finally had elevated antioxidant capacity and enhanced survival capacity in macrophages. The loss of <em>iroBCDN</em> increased the survival ability of hv-CRKP without decreasing its virulence, endowing it with an evolutionary advantage.</p></div><div><h3>Conclusions</h3><p>Our work provides new insights into the key role of <em>iroBCDN</em> loss in convergence of CRKP and hvKP, and the genetic and biological foundation for the widespread prevalence of ST11-KL64 hv-CRKP in China.</p></div>","PeriodicalId":51022,"journal":{"name":"Drug Resistance Updates","volume":"77 ","pages":"Article 101137"},"PeriodicalIF":15.8,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1368764624000955/pdfft?md5=eabe17f35a7d1fc472d7ca2a4d2fd49b&pid=1-s2.0-S1368764624000955-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142040453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-12DOI: 10.1016/j.drup.2024.101136
Yunru Gu , Tingting Xu , Yuan Fang , Jun Shao , Tong Hu , Xi Wu , Haoyang Shen , Yangyue Xu , Jingxin Zhang , Yu Song , Yang Xia , Yongqian Shu , Pei Ma
Aims
As our comprehension of the intricate relationship between cellular senescence and tumor biology continues to evolve, the therapeutic potential of cellular senescence is gaining increasing recognition. Here, we identify chromobox 4 (CBX4), a Small Ubiquitin-related Modifier (SUMO) E3 ligase, as an antagonist of cellular senescence and elucidate a novel mechanism by which CBX4 promotes drug resistance and malignant progression of gastric cancer (GC).
Methods
In vitro and in vivo models were conducted to investigate the manifestation and impact of CBX4 on cellular senescence and chemoresistance. High-throughput sequencing, chromatin immunoprecipitation, and co-immunoprecipitation techniques were utilized to identify the upstream regulators and downstream effectors associated with CBX4, revealing its intricate regulatory network.
Results
CBX4 diminishes the sensitivity of GC cells to cellular senescence, facilitating chemoresistance and GC development by deactivating the senescence-related Hippo pathway. Mechanistically, low-dose cisplatin transcriptionally downregulates CBX4 through CEBPB. In addition, CBX4 preserves the stability and cytoplasm-nuclear transport of YAP1, the key player of Hippo pathway, by inducing SUMO1 modification at K97 and K280, which competitively inhibits YAP1-S127 phosphorylation.
Conclusions
Our study highlights the anti-senescence role of CBX4 and suggests that CBX4 inhibition in combination with low-dose cisplatin has the potential to overcome chemoresistance and effectively restrict GC progression.
{"title":"CBX4 counteracts cellular senescence to desensitize gastric cancer cells to chemotherapy by inducing YAP1 SUMOylation","authors":"Yunru Gu , Tingting Xu , Yuan Fang , Jun Shao , Tong Hu , Xi Wu , Haoyang Shen , Yangyue Xu , Jingxin Zhang , Yu Song , Yang Xia , Yongqian Shu , Pei Ma","doi":"10.1016/j.drup.2024.101136","DOIUrl":"10.1016/j.drup.2024.101136","url":null,"abstract":"<div><h3>Aims</h3><p>As our comprehension of the intricate relationship between cellular senescence and tumor biology continues to evolve, the therapeutic potential of cellular senescence is gaining increasing recognition. Here, we identify chromobox 4 (CBX4), a Small Ubiquitin-related Modifier (SUMO) E3 ligase, as an antagonist of cellular senescence and elucidate a novel mechanism by which CBX4 promotes drug resistance and malignant progression of gastric cancer (GC).</p></div><div><h3>Methods</h3><p><em>In vitro</em> and <em>in vivo</em> models were conducted to investigate the manifestation and impact of CBX4 on cellular senescence and chemoresistance. High-throughput sequencing, chromatin immunoprecipitation, and co-immunoprecipitation techniques were utilized to identify the upstream regulators and downstream effectors associated with CBX4, revealing its intricate regulatory network.</p></div><div><h3>Results</h3><p>CBX4 diminishes the sensitivity of GC cells to cellular senescence, facilitating chemoresistance and GC development by deactivating the senescence-related Hippo pathway. Mechanistically, low-dose cisplatin transcriptionally downregulates CBX4 through CEBPB. In addition, CBX4 preserves the stability and cytoplasm-nuclear transport of YAP1, the key player of Hippo pathway, by inducing SUMO1 modification at K97 and K280, which competitively inhibits YAP1-S127 phosphorylation.</p></div><div><h3>Conclusions</h3><p>Our study highlights the anti-senescence role of CBX4 and suggests that CBX4 inhibition in combination with low-dose cisplatin has the potential to overcome chemoresistance and effectively restrict GC progression.</p></div>","PeriodicalId":51022,"journal":{"name":"Drug Resistance Updates","volume":"77 ","pages":"Article 101136"},"PeriodicalIF":15.8,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141998435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-10DOI: 10.1016/j.drup.2024.101135
Qisi Lu, Suresh V. Ambudkar, Dong-Hua Yang
{"title":"Editorial: ABC transporters and drug resistance","authors":"Qisi Lu, Suresh V. Ambudkar, Dong-Hua Yang","doi":"10.1016/j.drup.2024.101135","DOIUrl":"10.1016/j.drup.2024.101135","url":null,"abstract":"","PeriodicalId":51022,"journal":{"name":"Drug Resistance Updates","volume":"77 ","pages":"Article 101135"},"PeriodicalIF":15.8,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142044781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-06DOI: 10.1016/j.drup.2024.101125
Daosong Dong , Xue Yu , Jingjing Xu , Na Yu , Zhe Liu , Yanbin Sun
Distant metastases and drug resistance account for poor survival of patients with gastrointestinal (GI) malignancies such as gastric cancer, pancreatic cancer, and colorectal cancer. GI cancers most commonly metastasize to the liver, which provides a unique immunosuppressive tumour microenvironment to support the development of a premetastatic niche for tumor cell colonization and metastatic outgrowth. Metastatic tumors often exhibit greater resistance to drugs than primary tumors, posing extra challenges in treatment. The liver metastases and drug resistance of GI cancers are regulated by complex, intertwined, and tumor-dependent cellular and molecular mechanisms that influence tumor cell behavior (e.g. epithelial-to-mesenchymal transition, or EMT), tumor microenvironment (TME) (e.g. the extracellular matrix, cancer-associated fibroblasts, and tumor-infiltrating immune cells), tumor cell-TME interactions (e.g. through cytokines and exosomes), liver microenvironment (e.g. hepatic stellate cells and macrophages), and the route and mechanism of tumor cell dissemination (e.g. circulating tumor cells). This review provides an overview of recent advances in the research on cellular and molecular mechanisms that regulate liver metastases and drug resistance of GI cancers. We also discuss recent advances in the development of mechanism-based therapy for these GI cancers. Targeting these cellular and molecular mechanisms, either alone or in combination, may potentially provide novel approaches to treat metastatic GI malignancies.
{"title":"Cellular and molecular mechanisms of gastrointestinal cancer liver metastases and drug resistance","authors":"Daosong Dong , Xue Yu , Jingjing Xu , Na Yu , Zhe Liu , Yanbin Sun","doi":"10.1016/j.drup.2024.101125","DOIUrl":"10.1016/j.drup.2024.101125","url":null,"abstract":"<div><p>Distant metastases and drug resistance account for poor survival of patients with gastrointestinal (GI) malignancies such as gastric cancer, pancreatic cancer, and colorectal cancer. GI cancers most commonly metastasize to the liver, which provides a unique immunosuppressive tumour microenvironment to support the development of a premetastatic niche for tumor cell colonization and metastatic outgrowth. Metastatic tumors often exhibit greater resistance to drugs than primary tumors, posing extra challenges in treatment. The liver metastases and drug resistance of GI cancers are regulated by complex, intertwined, and tumor-dependent cellular and molecular mechanisms that influence tumor cell behavior (e.g. epithelial-to-mesenchymal transition, or EMT), tumor microenvironment (TME) (e.g. the extracellular matrix, cancer-associated fibroblasts, and tumor-infiltrating immune cells), tumor cell-TME interactions (e.g. through cytokines and exosomes), liver microenvironment (e.g. hepatic stellate cells and macrophages), and the route and mechanism of tumor cell dissemination (e.g. circulating tumor cells). This review provides an overview of recent advances in the research on cellular and molecular mechanisms that regulate liver metastases and drug resistance of GI cancers. We also discuss recent advances in the development of mechanism-based therapy for these GI cancers. Targeting these cellular and molecular mechanisms, either alone or in combination, may potentially provide novel approaches to treat metastatic GI malignancies.</p></div>","PeriodicalId":51022,"journal":{"name":"Drug Resistance Updates","volume":"77 ","pages":"Article 101125"},"PeriodicalIF":15.8,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142012657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-06DOI: 10.1016/j.drup.2024.101126
Yutian Zou , Anli Yang , Bo Chen , Xinpei Deng , Jindong Xie , Danian Dai , Jinhui Zhang , Hailin Tang , Tao Wu , Zhigang Zhou , Xiaoming Xie , Jin Wang
Aims
With the wide application of trastuzumab deruxtecan (T-DXd), the survival of HER2-low breast cancer patients is dramatically improved. However, resistance to T-DXd still exists in a subset of patients, and the molecular mechanism remains unclear.
Methods
An in vivo shRNA lentiviral library functional screening was performed to identify potential circular RNA (crRNA) that mediates T-DXd resistance. RNA pull-down, mass spectrometry, RNA immunoprecipitation, and co-immunoprecipitation assays were conducted to investigate the molecular mechanism. Ferroptosis was detected using C11-BODIPY, Liperfluo, FerroOrange staining, glutathione quantification, malondialdehyde quantification, and transmission electron microscopy. Molecular docking, virtual screening, and patient-derived xenograft (PDX) models were used to validate therapeutic agents.
Results
VDAC3-derived crRNA (crVDAC3) ranked first in functional shRNA library screening. Knockdown of crVDAC3 increased the sensitivity of HER2-low breast cancer cells to T-DXd treatment. Further mechanistic research revealed that crVDAC3 specifically binds to HSPB1 protein and inhibits its ubiquitination degradation, leading to intracellular accumulation and increased levels of HSPB1 protein. Notably, suppression of crVDAC3 dramatically increases excessive ROS levels and labile iron pool accumulation. Inhibition of crVDAC3 induces ferroptosis in breast cancer cells by reducing HSPB1 expression, thereby mediating T-DXd resistance. Through virtual screening and experimental validation, we identified that paritaprevir could effectively bind to crVDAC3 and prevent its interaction with HSPB1 protein, thereby increasing ubiquitination degradation of HSPB1 protein to overcome T-DXd resistance. Finally, we validated the enhanced therapeutic efficacy of T-DXd by paritaprevir in a HER2-low PDX model.
Conclusion
This finding reveals the molecular mechanisms underlying T-DXd resistance in HER2-low breast cancer. Our study provides a new strategy to overcome T-DXd resistance by inhibiting the interaction between crVDAC3 and HSPB1 protein.
{"title":"crVDAC3 alleviates ferroptosis by impeding HSPB1 ubiquitination and confers trastuzumab deruxtecan resistance in HER2-low breast cancer","authors":"Yutian Zou , Anli Yang , Bo Chen , Xinpei Deng , Jindong Xie , Danian Dai , Jinhui Zhang , Hailin Tang , Tao Wu , Zhigang Zhou , Xiaoming Xie , Jin Wang","doi":"10.1016/j.drup.2024.101126","DOIUrl":"10.1016/j.drup.2024.101126","url":null,"abstract":"<div><h3>Aims</h3><p>With the wide application of trastuzumab deruxtecan (T-DXd), the survival of HER2-low breast cancer patients is dramatically improved. However, resistance to T-DXd still exists in a subset of patients, and the molecular mechanism remains unclear.</p></div><div><h3>Methods</h3><p>An <em>in vivo</em> shRNA lentiviral library functional screening was performed to identify potential circular RNA (crRNA) that mediates T-DXd resistance. RNA pull-down, mass spectrometry, RNA immunoprecipitation, and co-immunoprecipitation assays were conducted to investigate the molecular mechanism. Ferroptosis was detected using C11-BODIPY, Liperfluo, FerroOrange staining, glutathione quantification, malondialdehyde quantification, and transmission electron microscopy. Molecular docking, virtual screening, and patient-derived xenograft (PDX) models were used to validate therapeutic agents.</p></div><div><h3>Results</h3><p>VDAC3-derived crRNA (crVDAC3) ranked first in functional shRNA library screening. Knockdown of crVDAC3 increased the sensitivity of HER2-low breast cancer cells to T-DXd treatment. Further mechanistic research revealed that crVDAC3 specifically binds to HSPB1 protein and inhibits its ubiquitination degradation, leading to intracellular accumulation and increased levels of HSPB1 protein. Notably, suppression of crVDAC3 dramatically increases excessive ROS levels and labile iron pool accumulation. Inhibition of crVDAC3 induces ferroptosis in breast cancer cells by reducing HSPB1 expression, thereby mediating T-DXd resistance. Through virtual screening and experimental validation, we identified that paritaprevir could effectively bind to crVDAC3 and prevent its interaction with HSPB1 protein, thereby increasing ubiquitination degradation of HSPB1 protein to overcome T-DXd resistance. Finally, we validated the enhanced therapeutic efficacy of T-DXd by paritaprevir in a HER2-low PDX model.</p></div><div><h3>Conclusion</h3><p>This finding reveals the molecular mechanisms underlying T-DXd resistance in HER2-low breast cancer. Our study provides a new strategy to overcome T-DXd resistance by inhibiting the interaction between crVDAC3 and HSPB1 protein.</p></div>","PeriodicalId":51022,"journal":{"name":"Drug Resistance Updates","volume":"77 ","pages":"Article 101126"},"PeriodicalIF":15.8,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142146772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}