Pub Date : 2024-03-29DOI: 10.1016/j.drup.2024.101083
Qi Wang , Ruobing Wang , Shuyi Wang , Anru Zhang , Qiaoyan Duan , Shijun Sun , Longyang Jin , Xiaojuan Wang , Yawei Zhang , Chunlei Wang , Haiquan Kang , Zhijie Zhang , Kang Liao , Yinghui Guo , Liang Jin , Zhiwu Liu , Chunxia Yang , Hui Wang , on behalf of the China Carbapenem-Resistant Enterobacterales (CRE) Network
Aims
Carbapenem-resistant Klebsiella pneumonia (CRKP) is a global threat that varies by region. The global distribution, evolution, and clinical implications of the ST11 CRKP clone remain obscure.
Methods
We conducted a multicenter molecular epidemiological survey using isolates obtained from 28 provinces and municipalities across China between 2011 and 2021. We integrated sequences from public databases and performed genetic epidemiology analysis of ST11 CRKP.
Results
Among ST11 CRKP, KL64 serotypes exhibited considerable expansion, increasing from 1.54% to 46.08% between 2011 and 2021. Combining our data with public databases, the phylogenetic and phylogeography analyses indicated that ST11 CRKP appeared in the Americas in 1996 and spread worldwide, with key clones progressing from China’s southeastern coast to the inland by 2010. Global phylogenetic analysis showed that ST11 KL64 CRKP has evolved to a virulent, resistant clade with notable regional spread. Single-nucleotide polymorphism (SNP) analysis identified BMPPS (bmr3, mltC, pyrB, ppsC, and sdaC) as a key marker for this clade. The BMPPS SNP clade is associated with high mortality and has strong anti-phagocytic and competitive traits in vitro.
Conclusions
The high-risk ST11 KL64 CRKP subclone showed strong expansion potential and survival advantages, probably owing to genetic factors.
{"title":"Expansion and transmission dynamics of high risk carbapenem-resistant Klebsiella pneumoniae subclones in China: An epidemiological, spatial, genomic analysis","authors":"Qi Wang , Ruobing Wang , Shuyi Wang , Anru Zhang , Qiaoyan Duan , Shijun Sun , Longyang Jin , Xiaojuan Wang , Yawei Zhang , Chunlei Wang , Haiquan Kang , Zhijie Zhang , Kang Liao , Yinghui Guo , Liang Jin , Zhiwu Liu , Chunxia Yang , Hui Wang , on behalf of the China Carbapenem-Resistant Enterobacterales (CRE) Network","doi":"10.1016/j.drup.2024.101083","DOIUrl":"10.1016/j.drup.2024.101083","url":null,"abstract":"<div><h3>Aims</h3><p>Carbapenem-resistant <em>Klebsiella pneumonia</em> (CRKP) is a global threat that varies by region. The global distribution, evolution, and clinical implications of the ST11 CRKP clone remain obscure.</p></div><div><h3>Methods</h3><p>We conducted a multicenter molecular epidemiological survey using isolates obtained from 28 provinces and municipalities across China between 2011 and 2021. We integrated sequences from public databases and performed genetic epidemiology analysis of ST11 CRKP.</p></div><div><h3>Results</h3><p>Among ST11 CRKP, KL64 serotypes exhibited considerable expansion, increasing from 1.54% to 46.08% between 2011 and 2021. Combining our data with public databases, the phylogenetic and phylogeography analyses indicated that ST11 CRKP appeared in the Americas in 1996 and spread worldwide, with key clones progressing from China’s southeastern coast to the inland by 2010. Global phylogenetic analysis showed that ST11 KL64 CRKP has evolved to a virulent, resistant clade with notable regional spread. Single-nucleotide polymorphism (SNP) analysis identified BMPPS (<em>bmr3, mltC, pyrB, ppsC,</em> and <em>sdaC</em>) as a key marker for this clade. The BMPPS SNP clade is associated with high mortality and has strong anti-phagocytic and competitive traits <em>in vitro</em>.</p></div><div><h3>Conclusions</h3><p>The high-risk ST11 KL64 CRKP subclone showed strong expansion potential and survival advantages, probably owing to genetic factors.</p></div>","PeriodicalId":51022,"journal":{"name":"Drug Resistance Updates","volume":"74 ","pages":"Article 101083"},"PeriodicalIF":24.3,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1368764624000414/pdfft?md5=19e3e9a36084d1d1417245bb9050b0d4&pid=1-s2.0-S1368764624000414-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140406228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-26DOI: 10.1016/j.drup.2024.101082
Yuxian Huang , Yinjie Qin , Yingzhi He , Dezhi Qiu , Yeqin Zheng , Jiayue Wei , Lenghe Zhang , Dong‑Hua Yang , Yuhua Li
Molecular targeted drugs and chimeric antigen receptor (CAR) T cell therapy represent specific biological treatments that have significantly improved the efficacy of treating hematologic malignancies. However, they face challenges such as drug resistance and recurrence after treatment. Combining molecular targeted drugs and CAR-T cells could regulate immunity, improve tumor microenvironment (TME), promote cell apoptosis, and enhance sensitivity to tumor cell killing. This approach might provide a dual coordinated attack on cancer cells, effectively eliminating minimal residual disease and overcoming therapy resistance. Moreover, molecular targeted drugs can directly or indirectly enhance the anti-tumor effect of CAR-T cells by inducing tumor target antigen expression, reversing CAR-T cell exhaustion, and reducing CAR-T cell associated toxic side effects. Therefore, combining molecular targeted drugs with CAR-T cells is a promising and novel tactic for treating hematologic malignancies. In this review article, we focus on analyzing the mechanism of therapy resistance and its reversal of CAR-T cell therapy resistance, as well as the synergistic mechanism, safety, and future challenges in CAR-T cell therapy in combination with molecular targeted drugs. We aim to explore the benefits of this combination therapy for patients with hematologic malignancies and provide a rationale for subsequent clinical studies.
{"title":"Advances in molecular targeted drugs in combination with CAR-T cell therapy for hematologic malignancies","authors":"Yuxian Huang , Yinjie Qin , Yingzhi He , Dezhi Qiu , Yeqin Zheng , Jiayue Wei , Lenghe Zhang , Dong‑Hua Yang , Yuhua Li","doi":"10.1016/j.drup.2024.101082","DOIUrl":"https://doi.org/10.1016/j.drup.2024.101082","url":null,"abstract":"<div><p>Molecular targeted drugs and chimeric antigen receptor (CAR) T cell therapy represent specific biological treatments that have significantly improved the efficacy of treating hematologic malignancies. However, they face challenges such as drug resistance and recurrence after treatment. Combining molecular targeted drugs and CAR-T cells could regulate immunity, improve tumor microenvironment (TME), promote cell apoptosis, and enhance sensitivity to tumor cell killing. This approach might provide a dual coordinated attack on cancer cells, effectively eliminating minimal residual disease and overcoming therapy resistance. Moreover, molecular targeted drugs can directly or indirectly enhance the anti-tumor effect of CAR-T cells by inducing tumor target antigen expression, reversing CAR-T cell exhaustion, and reducing CAR-T cell associated toxic side effects. Therefore, combining molecular targeted drugs with CAR-T cells is a promising and novel tactic for treating hematologic malignancies. In this review article, we focus on analyzing the mechanism of therapy resistance and its reversal of CAR-T cell therapy resistance, as well as the synergistic mechanism, safety, and future challenges in CAR-T cell therapy in combination with molecular targeted drugs. We aim to explore the benefits of this combination therapy for patients with hematologic malignancies and provide a rationale for subsequent clinical studies.</p></div>","PeriodicalId":51022,"journal":{"name":"Drug Resistance Updates","volume":"74 ","pages":"Article 101082"},"PeriodicalIF":24.3,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1368764624000402/pdfft?md5=af65de610b056964260cd200f4500120&pid=1-s2.0-S1368764624000402-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140342459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-19DOI: 10.1016/j.drup.2024.101081
Alberto Diaz-Jimenez , Maria Ramos , Barbara Helm , Sara Chocarro , Dario Lucas Frey , Shubham Agrawal , Kalman Somogyi , Ursula Klingmüller , Junyan Lu , Rocio Sotillo
Precision oncology has revolutionized the treatment of ALK-positive lung cancer with targeted therapies. However, an unmet clinical need still to address is the treatment of refractory tumors that contain drug-induced resistant mutations in the driver oncogene or exhibit resistance through the activation of diverse mechanisms. In this study, we established mouse tumor-derived cell models representing the two most prevalent EML4-ALK variants in human lung adenocarcinomas and characterized their proteomic profiles to gain insights into the underlying resistance mechanisms. We showed that Eml4-Alk variant 3 confers a worse response to ALK inhibitors, suggesting its role in promoting resistance to targeted therapy. In addition, proteomic analysis of brigatinib-treated cells revealed the upregulation of SRC kinase, a protein frequently activated in cancer. Co-targeting of ALK and SRC showed remarkable inhibitory effects in both ALK-driven murine and ALK-patient-derived lung tumor cells. This combination induced cell death through a multifaceted mechanism characterized by profound perturbation of the (phospho)proteomic landscape and a synergistic suppressive effect on the mTOR pathway. Our study demonstrates that the simultaneous inhibition of ALK and SRC can potentially overcome resistance mechanisms and enhance clinical outcomes in ALK-positive lung cancer patients.
One Sentence Summary
Co-targeting ALK and SRC enhances ALK inhibitor response in lung cancer by affecting the proteomic profile, offering hope for overcoming resistance and improving clinical outcomes.
{"title":"Concurrent inhibition of ALK and SRC kinases disrupts the ALK lung tumor cell proteome","authors":"Alberto Diaz-Jimenez , Maria Ramos , Barbara Helm , Sara Chocarro , Dario Lucas Frey , Shubham Agrawal , Kalman Somogyi , Ursula Klingmüller , Junyan Lu , Rocio Sotillo","doi":"10.1016/j.drup.2024.101081","DOIUrl":"10.1016/j.drup.2024.101081","url":null,"abstract":"<div><p>Precision oncology has revolutionized the treatment of ALK-positive lung cancer with targeted therapies. However, an unmet clinical need still to address is the treatment of refractory tumors that contain drug-induced resistant mutations in the driver oncogene or exhibit resistance through the activation of diverse mechanisms. In this study, we established mouse tumor-derived cell models representing the two most prevalent <em>EML4-ALK</em> variants in human lung adenocarcinomas and characterized their proteomic profiles to gain insights into the underlying resistance mechanisms. We showed that <em>Eml4-Alk</em> variant 3 confers a worse response to ALK inhibitors, suggesting its role in promoting resistance to targeted therapy. In addition, proteomic analysis of brigatinib-treated cells revealed the upregulation of SRC kinase, a protein frequently activated in cancer. Co-targeting of ALK and SRC showed remarkable inhibitory effects in both ALK-driven murine and ALK-patient-derived lung tumor cells. This combination induced cell death through a multifaceted mechanism characterized by profound perturbation of the (phospho)proteomic landscape and a synergistic suppressive effect on the mTOR pathway. Our study demonstrates that the simultaneous inhibition of ALK and SRC can potentially overcome resistance mechanisms and enhance clinical outcomes in ALK-positive lung cancer patients.</p></div><div><h3>One Sentence Summary</h3><p>Co-targeting ALK and SRC enhances ALK inhibitor response in lung cancer by affecting the proteomic profile, offering hope for overcoming resistance and improving clinical outcomes.</p></div>","PeriodicalId":51022,"journal":{"name":"Drug Resistance Updates","volume":"74 ","pages":"Article 101081"},"PeriodicalIF":24.3,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1368764624000396/pdfft?md5=280130d588930412fb73ff68067c3adf&pid=1-s2.0-S1368764624000396-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140182568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-19DOI: 10.1016/j.drup.2024.101080
Gang Che , Jie Yin , Wankun Wang , Yandong Luo , Yiran Chen , Xiongfei Yu , Haiyong Wang , Xiaosun Liu , Zhendong Chen , Xing Wang , Yu Chen , Xujin Wang , Kaicheng Tang , Jiao Tang , Wei Shao , Chao Wu , Jianpeng Sheng , Qing Li , Jian Liu
Background
Gastric Cancer (GC) characteristically exhibits heterogeneous responses to treatment, particularly in relation to immuno plus chemo therapy, necessitating a precision medicine approach. This study is centered around delineating the cellular and molecular underpinnings of drug resistance in this context.
Methods
We undertook a comprehensive multi-omics exploration of postoperative tissues from GC patients undergoing the chemo and immuno-treatment regimen. Concurrently, an image deep learning model was developed to predict treatment responsiveness.
Results
Our initial findings associate apical membrane cells with resistance to fluorouracil and oxaliplatin, critical constituents of the therapy. Further investigation into this cell population shed light on substantial interactions with resident macrophages, underscoring the role of intercellular communication in shaping treatment resistance. Subsequent ligand-receptor analysis unveiled specific molecular dialogues, most notably TGFB1-HSPB1 and LTF-S100A14, offering insights into potential signaling pathways implicated in resistance. Our SVM model, incorporating these multi-omics and spatial data, demonstrated significant predictive power, with AUC values of 0.93 and 0.84 in the exploration and validation cohorts respectively. Hence, our results underscore the utility of multi-omics and spatial data in modeling treatment response.
Conclusion
Our integrative approach, amalgamating mIHC assays, feature extraction, and machine learning, successfully unraveled the complex cellular interplay underlying drug resistance. This robust predictive model may serve as a valuable tool for personalizing therapeutic strategies and enhancing treatment outcomes in gastric cancer.
{"title":"Circumventing drug resistance in gastric cancer: A spatial multi-omics exploration of chemo and immuno-therapeutic response dynamics","authors":"Gang Che , Jie Yin , Wankun Wang , Yandong Luo , Yiran Chen , Xiongfei Yu , Haiyong Wang , Xiaosun Liu , Zhendong Chen , Xing Wang , Yu Chen , Xujin Wang , Kaicheng Tang , Jiao Tang , Wei Shao , Chao Wu , Jianpeng Sheng , Qing Li , Jian Liu","doi":"10.1016/j.drup.2024.101080","DOIUrl":"10.1016/j.drup.2024.101080","url":null,"abstract":"<div><h3>Background</h3><p>Gastric Cancer (GC) characteristically exhibits heterogeneous responses to treatment, particularly in relation to immuno plus chemo therapy, necessitating a precision medicine approach. This study is centered around delineating the cellular and molecular underpinnings of drug resistance in this context.</p></div><div><h3>Methods</h3><p>We undertook a comprehensive multi-omics exploration of postoperative tissues from GC patients undergoing the chemo and immuno-treatment regimen. Concurrently, an image deep learning model was developed to predict treatment responsiveness.</p></div><div><h3>Results</h3><p>Our initial findings associate apical membrane cells with resistance to fluorouracil and oxaliplatin, critical constituents of the therapy. Further investigation into this cell population shed light on substantial interactions with resident macrophages, underscoring the role of intercellular communication in shaping treatment resistance. Subsequent ligand-receptor analysis unveiled specific molecular dialogues, most notably TGFB1-HSPB1 and LTF-S100A14, offering insights into potential signaling pathways implicated in resistance. Our SVM model, incorporating these multi-omics and spatial data, demonstrated significant predictive power, with AUC values of 0.93 and 0.84 in the exploration and validation cohorts respectively. Hence, our results underscore the utility of multi-omics and spatial data in modeling treatment response.</p></div><div><h3>Conclusion</h3><p>Our integrative approach, amalgamating mIHC assays, feature extraction, and machine learning, successfully unraveled the complex cellular interplay underlying drug resistance. This robust predictive model may serve as a valuable tool for personalizing therapeutic strategies and enhancing treatment outcomes in gastric cancer.</p></div>","PeriodicalId":51022,"journal":{"name":"Drug Resistance Updates","volume":"74 ","pages":"Article 101080"},"PeriodicalIF":24.3,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140182564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-13DOI: 10.1016/j.drup.2024.101078
Lu Yang , Arup Bhattacharya , Darrell Peterson , Yun Li , Xiaozhuo Liu , Elisabetta Marangoni , Valentina Robila , Yuesheng Zhang
Aims
Human epidermal growth factor receptor 2 (HER2) is an oncogenic receptor tyrosine kinase amplified in approximately 20% of breast cancer (BC). HER2-targeted therapies are the linchpin of treating HER2-positive BC. However, drug resistance is common, and the main resistance mechanism is unknown. We tested the hypothesis that drug resistance results mainly from inadequate or lack of inhibition of HER2 and its family member epidermal growth factor receptor (EGFR).
Methods
We used clinically relevant cell and tumor models to assess the impact of targeted degradation of HER2 and EGFR on trastuzumab resistance. Trastuzumab is the most common clinically used HER2 inhibitor. Targeted degradation of HER2 and EGFR was achieved using recombinant human protein PEPDG278D, which binds to the extracellular domains of the receptors. siRNA knockdown was used to assess the relative importance of EGFR and HER2 in trastuzumab resistance.
Results
Both HER2 and EGFR are overexpressed in all trastuzumab-resistant HER2-positive BC cell and tumor models and that all trastuzumab-resistant models are highly vulnerable to targeted degradation of HER2 and EGFR. Degradation of HER2 and EGFR induced by PEPDG278D causes extensive inhibition of oncogenic signaling in trastuzumab-resistant HER2-positive BC cells. This is accompanied by strong growth inhibition of cultured cells, orthotopic patient-derived xenografts, and metastatic lesions in the brain and lung of trastuzumab-resistant HER2-positive BC. siRNA knockdown indicates that eliminating both HER2 and EGFR is necessary to maximize therapeutic outcome.
Conclusions
This study unravels the therapeutic vulnerability of trastuzumab-resistant HER2-positive BC and shows that an agent that targets the degradation of both HER2 and EGFR is highly effective in overcoming drug resistance in this disease. The findings provide new insights and innovations for advancing treatment of drug-resistant HER2-positive breast cancer that remains an unmet problem.
{"title":"Targeted dual degradation of HER2 and EGFR obliterates oncogenic signaling, overcomes therapy resistance, and inhibits metastatic lesions in HER2-positive breast cancer models","authors":"Lu Yang , Arup Bhattacharya , Darrell Peterson , Yun Li , Xiaozhuo Liu , Elisabetta Marangoni , Valentina Robila , Yuesheng Zhang","doi":"10.1016/j.drup.2024.101078","DOIUrl":"10.1016/j.drup.2024.101078","url":null,"abstract":"<div><h3>Aims</h3><p>Human epidermal growth factor receptor 2 (HER2) is an oncogenic receptor tyrosine kinase amplified in approximately 20% of breast cancer (BC). HER2-targeted therapies are the linchpin of treating HER2-positive BC. However, drug resistance is common, and the main resistance mechanism is unknown. We tested the hypothesis that drug resistance results mainly from inadequate or lack of inhibition of HER2 and its family member epidermal growth factor receptor (EGFR).</p></div><div><h3>Methods</h3><p>We used clinically relevant cell and tumor models to assess the impact of targeted degradation of HER2 and EGFR on trastuzumab resistance. Trastuzumab is the most common clinically used HER2 inhibitor. Targeted degradation of HER2 and EGFR was achieved using recombinant human protein PEPD<sup>G278D</sup>, which binds to the extracellular domains of the receptors. siRNA knockdown was used to assess the relative importance of EGFR and HER2 in trastuzumab resistance.</p></div><div><h3>Results</h3><p>Both HER2 and EGFR are overexpressed in all trastuzumab-resistant HER2-positive BC cell and tumor models and that all trastuzumab-resistant models are highly vulnerable to targeted degradation of HER2 and EGFR. Degradation of HER2 and EGFR induced by PEPD<sup>G278D</sup> causes extensive inhibition of oncogenic signaling in trastuzumab-resistant HER2-positive BC cells. This is accompanied by strong growth inhibition of cultured cells, orthotopic patient-derived xenografts, and metastatic lesions in the brain and lung of trastuzumab-resistant HER2-positive BC. siRNA knockdown indicates that eliminating both HER2 and EGFR is necessary to maximize therapeutic outcome.</p></div><div><h3>Conclusions</h3><p>This study unravels the therapeutic vulnerability of trastuzumab-resistant HER2-positive BC and shows that an agent that targets the degradation of both HER2 and EGFR is highly effective in overcoming drug resistance in this disease. The findings provide new insights and innovations for advancing treatment of drug-resistant HER2-positive breast cancer that remains an unmet problem.</p></div>","PeriodicalId":51022,"journal":{"name":"Drug Resistance Updates","volume":"74 ","pages":"Article 101078"},"PeriodicalIF":24.3,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1368764624000360/pdfft?md5=e537c8dd06677de82f54fb8691471182&pid=1-s2.0-S1368764624000360-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140130004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-12DOI: 10.1016/j.drup.2024.101079
Wenjie Huang , Xiaojun Hu , Xiang He , Dongyue Pan , Zhaorong Huang , Zhanfeng Gu , Guobing Huang , Ping Wang , Chunhui Cui , Yingfang Fan
Aims
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal disease. Chemotherapy based on gemcitabine (GEM) remains the first-line drug for patients with advanced PDAC. However, GEM resistance impairs its therapeutic effectiveness. Therefore, identifying effective therapeutic targets are urgently needed to overcome GEM resistance.
Methods
The clinical significance of Tripartite Motif Containing 29 (TRIM29) was identified by exploring GEO datasets and TCGA database and its potential biological functions were predicted by GSEA analysis. The regulatory axis was established by bioinformatics analysis and validated by mechanical experiments. Then, in vitro and in vivo assays were performed to validate the roles of TRIM29 in PDAC GEM resistance.
Results
High TRIM29 expression was associated with poor prognosis of PDAC and functional experiments demonstrated that TRIM29 promoted GEM resistance in PDAC GEM-resistant (GR) cells. Furthermore, we revealed that circRPS29 promoted TRIM29 expression via competitive interaction with miR-770–5p and then activated MEK/ERK signaling pathway. Additionally, both in vitro and in vivo functional experiments demonstrated that circRPS29/miR-770–5p/TRIM29 axis promoted PDAC GEM resistance via activating MEK/ERK signaling pathway.
Conclusion
Our results identify the significance of the signaling axis, circRPS29/miR-770–5p/TRIM29-MEK/ERK, in PDAC GEM resistance, which will provide novel therapeutic targets for PDAC treatment.
{"title":"TRIM29 facilitates gemcitabine resistance via MEK/ERK pathway and is modulated by circRPS29/miR-770–5p axis in PDAC","authors":"Wenjie Huang , Xiaojun Hu , Xiang He , Dongyue Pan , Zhaorong Huang , Zhanfeng Gu , Guobing Huang , Ping Wang , Chunhui Cui , Yingfang Fan","doi":"10.1016/j.drup.2024.101079","DOIUrl":"10.1016/j.drup.2024.101079","url":null,"abstract":"<div><h3>Aims</h3><p>Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal disease. Chemotherapy based on gemcitabine (GEM) remains the first-line drug for patients with advanced PDAC. However, GEM resistance impairs its therapeutic effectiveness. Therefore, identifying effective therapeutic targets are urgently needed to overcome GEM resistance.</p></div><div><h3>Methods</h3><p>The clinical significance of Tripartite Motif Containing 29 (TRIM29) was identified by exploring GEO datasets and TCGA database and its potential biological functions were predicted by GSEA analysis. The regulatory axis was established by bioinformatics analysis and validated by mechanical experiments. Then, in vitro and in vivo assays were performed to validate the roles of TRIM29 in PDAC GEM resistance.</p></div><div><h3>Results</h3><p>High TRIM29 expression was associated with poor prognosis of PDAC and functional experiments demonstrated that TRIM29 promoted GEM resistance in PDAC GEM-resistant (GR) cells. Furthermore, we revealed that circRPS29 promoted TRIM29 expression via competitive interaction with miR-770–5p and then activated MEK/ERK signaling pathway. Additionally, both in vitro and in vivo functional experiments demonstrated that circRPS29/miR-770–5p/TRIM29 axis promoted PDAC GEM resistance via activating MEK/ERK signaling pathway.</p></div><div><h3>Conclusion</h3><p>Our results identify the significance of the signaling axis, circRPS29/miR-770–5p/TRIM29-MEK/ERK, in PDAC GEM resistance, which will provide novel therapeutic targets for PDAC treatment.</p></div>","PeriodicalId":51022,"journal":{"name":"Drug Resistance Updates","volume":"74 ","pages":"Article 101079"},"PeriodicalIF":24.3,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140130011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-06DOI: 10.1016/j.drup.2024.101077
Fang Wang , Xuejiao Yu , Jun Qian , Yumin Cao , Shunli Dong , Shenghua Zhan , Zhen Lu , Robert C. Bast Jr. , Qingxia Song , Youguo Chen , Yi Zhang , Jinhua Zhou
Purpose
Ovarian cancer patients with HR proficiency (HRP) have had limited benefits from PARP inhibitor treatment, highlighting the need for improved therapeutic strategies. In this study, we developed a novel SIK2 inhibitor, SIC-19, and investigated its potential to enhance the sensitivity and expand the clinical utility of PARP inhibitors in ovarian cancer.
Methods
The SIK2 protein was modeled using a Molecular Operating Environment (MOE), and the most favorable model was selected based on a GBVI/WSA dG scoring function. The Chembridge Compound Library was screened, and the top 20 candidate compounds were tested for their interaction with SIK2 and downstream substrates, AKT-pS473 and MYLK-pS343. SIC-19 emerged as the most promising drug candidate and was further evaluated using multiple assays.
Results
SIC-19 exhibited selective and potent inhibition of SIK2, leading to its degradation through the ubiquitination pathway. The IC50 of SIC-19 correlated inversely with endogenous SIK2 expression in ovarian cancer cell lines. Treatment with SIC-19 significantly inhibited cancer cell growth and sensitized cells to PARP inhibitors in vitro, as well as in ovarian cancer organoids and xenograft models. Mechanistically, SIK2 knockdown and SIC-19 treatment reduced RAD50 phosphorylation at Ser635, prevented nuclear translocation of RAD50, disrupted nuclear filament assembly, and impaired DNA homologous recombination repair, ultimately inducing apoptosis. These findings highlight the crucial role of SIK2 in the DNA HR repair pathway and demonstrate the significant PARP inhibitor sensitization achieved by SIC-19 in ovarian cancer.
Conclusions
SIC-19, a novel SIK2 inhibitor, effectively inhibits tumor cell growth in ovarian cancer by interfering with RAD50-mediated DNA HR repair. Furthermore, SIC-19 enhances the efficacy of PARP inhibitors, providing a promising therapeutic strategy to improve outcomes for ovarian cancer patients.
{"title":"A novel SIK2 inhibitor SIC-19 exhibits synthetic lethality with PARP inhibitors in ovarian cancer","authors":"Fang Wang , Xuejiao Yu , Jun Qian , Yumin Cao , Shunli Dong , Shenghua Zhan , Zhen Lu , Robert C. Bast Jr. , Qingxia Song , Youguo Chen , Yi Zhang , Jinhua Zhou","doi":"10.1016/j.drup.2024.101077","DOIUrl":"10.1016/j.drup.2024.101077","url":null,"abstract":"<div><h3>Purpose</h3><p>Ovarian cancer patients with HR proficiency (HRP) have had limited benefits from PARP inhibitor treatment, highlighting the need for improved therapeutic strategies. In this study, we developed a novel SIK2 inhibitor, SIC-19, and investigated its potential to enhance the sensitivity and expand the clinical utility of PARP inhibitors in ovarian cancer.</p></div><div><h3>Methods</h3><p>The SIK2 protein was modeled using a Molecular Operating Environment (MOE), and the most favorable model was selected based on a GBVI/WSA dG scoring function. The Chembridge Compound Library was screened, and the top 20 candidate compounds were tested for their interaction with SIK2 and downstream substrates, AKT-pS473 and MYLK-pS343. SIC-19 emerged as the most promising drug candidate and was further evaluated using multiple assays.</p></div><div><h3>Results</h3><p>SIC-19 exhibited selective and potent inhibition of SIK2, leading to its degradation through the ubiquitination pathway. The IC50 of SIC-19 correlated inversely with endogenous SIK2 expression in ovarian cancer cell lines. Treatment with SIC-19 significantly inhibited cancer cell growth and sensitized cells to PARP inhibitors in vitro, as well as in ovarian cancer organoids and xenograft models. Mechanistically, SIK2 knockdown and SIC-19 treatment reduced RAD50 phosphorylation at Ser635, prevented nuclear translocation of RAD50, disrupted nuclear filament assembly, and impaired DNA homologous recombination repair, ultimately inducing apoptosis. These findings highlight the crucial role of SIK2 in the DNA HR repair pathway and demonstrate the significant PARP inhibitor sensitization achieved by SIC-19 in ovarian cancer.</p></div><div><h3>Conclusions</h3><p>SIC-19, a novel SIK2 inhibitor, effectively inhibits tumor cell growth in ovarian cancer by interfering with RAD50-mediated DNA HR repair. Furthermore, SIC-19 enhances the efficacy of PARP inhibitors, providing a promising therapeutic strategy to improve outcomes for ovarian cancer patients.</p></div>","PeriodicalId":51022,"journal":{"name":"Drug Resistance Updates","volume":"74 ","pages":"Article 101077"},"PeriodicalIF":24.3,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1368764624000359/pdfft?md5=3ded3af8f90b410c4ce7fadd0299ea30&pid=1-s2.0-S1368764624000359-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140053606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-17DOI: 10.1016/j.drup.2024.101069
Carole Seguin-Devaux , Tomislav Mestrovic , Jacobus J. Arts , Didem Sen Karaman , Cristina Nativi , Dana Reichmann , Priyanka Sahariah , Younes Smani , Patricia Rijo , Mattia Mori , on behalf of the COST Action CA21145 EURESTOP
{"title":"Solving the antibacterial resistance in Europe: The multipronged approach of the COST Action CA21145 EURESTOP","authors":"Carole Seguin-Devaux , Tomislav Mestrovic , Jacobus J. Arts , Didem Sen Karaman , Cristina Nativi , Dana Reichmann , Priyanka Sahariah , Younes Smani , Patricia Rijo , Mattia Mori , on behalf of the COST Action CA21145 EURESTOP","doi":"10.1016/j.drup.2024.101069","DOIUrl":"10.1016/j.drup.2024.101069","url":null,"abstract":"","PeriodicalId":51022,"journal":{"name":"Drug Resistance Updates","volume":"74 ","pages":"Article 101069"},"PeriodicalIF":24.3,"publicationDate":"2024-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139916201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-13DOI: 10.1016/j.drup.2024.101068
Binglei Zhang , Jianxiang Shi , Xiaojing Shi , Xiaolu Xu , Le Gao , Song Li , Mengmeng Liu , Mengya Gao , Shuiling Jin , Jian Zhou , Dandan Fan , Fang Wang , Zhenyu Ji , Zhilei Bian , Yongping Song , Wenzhi Tian , Yichao Zheng , Linping Xu , Wei Li
The treatment for trastuzumab-resistant breast cancer (BC) remains a challenge in clinical settings. It was known that CD47 is preferentially upregulated in HER2+ BC cells, which is correlated with drug resistance to trastuzumab. Here, we developed a novel anti-CD47/HER2 bispecific antibody (BsAb) against trastuzumab-resistant BC, named IMM2902. IMM2902 demonstrated high binding affinity, blocking activity, antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP), and internalization degradation effects against both trastuzumab-sensitive and trastuzumab-resistant BC cells in vitro. The in vivo experimental data indicated that IMM2902 was more effective than their respective controls in inhibiting tumor growth in a trastuzumab-sensitive BT474 mouse model, a trastuzumab-resistant HCC1954 mouse model, two trastuzumab-resistant patient-derived xenograft (PDX) mouse models and a cord blood (CB)-humanized HCC1954 mouse model. Through spatial transcriptome assays, multiplex immunofluorescence (mIFC) and in vitro assays, our findings provided evidence that IMM2902 effectively stimulates macrophages to generate C-X-C motif chemokine ligand (CXCL) 9 and CXCL10, thereby facilitating the recruitment of T cells and NK cells to the tumor site. Moreover, IMM2902 demonstrated a high safety profile regarding anemia and non-specific cytokines release. Collectively, our results highlighted a novel therapeutic approach for the treatment of HER2+ BCs and this approach exhibits significant anti-tumor efficacy without causing off-target toxicity in trastuzumab-resistant BC cells.
曲妥珠单抗耐药乳腺癌(BC)的治疗在临床上仍是一项挑战。众所周知,CD47在HER2+ BC细胞中优先上调,这与曲妥珠单抗的耐药性相关。在此,我们开发了一种新型抗CD47/HER2双特异性抗体(BsAb),用于抗曲妥珠单抗耐药的BC细胞,命名为IMM2902。IMM2902在体外对曲妥珠单抗敏感和曲妥珠单抗耐药的BC细胞均表现出很高的结合亲和力、阻断活性、抗体依赖性细胞毒性(ADCC)、抗体依赖性细胞吞噬作用(ADCP)和内化降解作用。体内实验数据表明,在曲妥珠单抗敏感的BT474小鼠模型、曲妥珠单抗耐药的HCC1954小鼠模型、两种曲妥珠单抗耐药的患者异种移植(PDX)小鼠模型和脐带血(CB)人源化HCC1954小鼠模型中,IMM2902抑制肿瘤生长的效果优于各自的对照组。通过空间转录组检测、多重免疫荧光(mIFC)和体外检测,我们的研究结果证明,IMM2902 能有效刺激巨噬细胞生成 C-X-C motif 趋化因子配体(CXCL)9 和 CXCL10,从而促进 T 细胞和 NK 细胞招募到肿瘤部位。此外,IMM2902 在贫血和非特异性细胞因子释放方面表现出较高的安全性。总之,我们的研究结果凸显了一种治疗 HER2+ BCs 的新型疗法,这种疗法对曲妥珠单抗耐药的 BC 细胞具有显著的抗肿瘤疗效,且不会引起脱靶毒性。
{"title":"Development and evaluation of a human CD47/HER2 bispecific antibody for Trastuzumab-resistant breast cancer immunotherapy","authors":"Binglei Zhang , Jianxiang Shi , Xiaojing Shi , Xiaolu Xu , Le Gao , Song Li , Mengmeng Liu , Mengya Gao , Shuiling Jin , Jian Zhou , Dandan Fan , Fang Wang , Zhenyu Ji , Zhilei Bian , Yongping Song , Wenzhi Tian , Yichao Zheng , Linping Xu , Wei Li","doi":"10.1016/j.drup.2024.101068","DOIUrl":"10.1016/j.drup.2024.101068","url":null,"abstract":"<div><p>The treatment for trastuzumab-resistant breast cancer (BC) remains a challenge in clinical settings. It was known that CD47 is preferentially upregulated in HER2<sup>+</sup> BC cells, which is correlated with drug resistance to trastuzumab. Here, we developed a novel anti-CD47/HER2 bispecific antibody (BsAb) against trastuzumab-resistant BC, named IMM2902. IMM2902 demonstrated high binding affinity, blocking activity, antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP), and internalization degradation effects against both trastuzumab-sensitive and trastuzumab-resistant BC cells <em>in vitro.</em> The <em>in vivo</em> experimental data indicated that IMM2902 was more effective than their respective controls in inhibiting tumor growth in a trastuzumab-sensitive BT474 mouse model, a trastuzumab-resistant HCC1954 mouse model, two trastuzumab-resistant patient-derived xenograft (PDX) mouse models and a cord blood (CB)-humanized HCC1954 mouse model. Through spatial transcriptome assays, multiplex immunofluorescence (mIFC) and <em>in vitro</em> assays, our findings provided evidence that IMM2902 effectively stimulates macrophages to generate C-X-C motif chemokine ligand (CXCL) 9 and CXCL10, thereby facilitating the recruitment of T cells and NK cells to the tumor site. Moreover, IMM2902 demonstrated a high safety profile regarding anemia and non-specific cytokines release. Collectively, our results highlighted a novel therapeutic approach for the treatment of HER2<sup>+</sup> BCs and this approach exhibits significant anti-tumor efficacy without causing off-target toxicity in trastuzumab-resistant BC cells.</p></div>","PeriodicalId":51022,"journal":{"name":"Drug Resistance Updates","volume":"74 ","pages":"Article 101068"},"PeriodicalIF":24.3,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139830333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-10DOI: 10.1016/j.drup.2024.101067
Cesar de la Fuente-Nunez
{"title":"AI in infectious diseases: The role of datasets","authors":"Cesar de la Fuente-Nunez","doi":"10.1016/j.drup.2024.101067","DOIUrl":"10.1016/j.drup.2024.101067","url":null,"abstract":"","PeriodicalId":51022,"journal":{"name":"Drug Resistance Updates","volume":"73 ","pages":"Article 101067"},"PeriodicalIF":24.3,"publicationDate":"2024-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139884634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}