Katie J. A. Goodwin, Nathalie I. Chardon, Kavya Pradhan, Janneke Hille Ris Lambers, Amy L. Angert
Climate change is causing many species' ranges to shift upslope to higher elevations as species track their climatic requirements. However, many species have not shifted in pace with recent warming (i.e. ‘range stasis'), possibly due to demographic lags or microclimatic buffering. The ‘lagged-response hypothesis' posits that range stasis disguises an underlying climatic sensitivity if range shifts lag the velocity of climate change due to slow colonization (i.e. colonization credits) or mortality (i.e. extinction debt). Alternatively, the ‘microclimatic buffering hypothesis' proposes that small-scale variation within the landscape, such as canopy cover, creates patches of suitable habitat within otherwise unsuitable macroclimates that create climate refugia and buffer range contractions. We simultaneously test both hypotheses by combining a large seed addition experiment of 25 plant species across macro- and micro-scale climate gradients with adult occurrence records to compare patterns of seedling recruitment relative to adult ranges and microclimate in the North Cascades, USA. Despite high species-to-species variability in recruitment, community-level patterns monitored for five years supported the lagged response hypothesis, with a mismatch between where seedlings recruit versus adults occur. On average, the seedling recruitment optimum shifted from the adult climatic range centre to historically cooler, wetter regions and many species recruited beyond their cold (e.g. leading) range edge. Meanwhile, successful recruitment occurred at warm and dry edges, despite recent climate change, suggesting that macroclimatic effects on recruitment do not drive trailing range dynamics. We did not detect evidence of microclimatic buffering due to canopy cover in recruitment patterns. Combined, our results suggest apparent range stasis in our system is a lagged response to climate change at the cool ends of species ranges, with range expansions likely to occur slowly or in a punctuated fashion.
{"title":"Lagged climate-driven range shifts at species' leading, but not trailing, range edges revealed by multispecies seed addition experiment","authors":"Katie J. A. Goodwin, Nathalie I. Chardon, Kavya Pradhan, Janneke Hille Ris Lambers, Amy L. Angert","doi":"10.1111/ecog.07331","DOIUrl":"https://doi.org/10.1111/ecog.07331","url":null,"abstract":"Climate change is causing many species' ranges to shift upslope to higher elevations as species track their climatic requirements. However, many species have not shifted in pace with recent warming (i.e. ‘range stasis'), possibly due to demographic lags or microclimatic buffering. The ‘lagged-response hypothesis' posits that range stasis disguises an underlying climatic sensitivity if range shifts lag the velocity of climate change due to slow colonization (i.e. colonization credits) or mortality (i.e. extinction debt). Alternatively, the ‘microclimatic buffering hypothesis' proposes that small-scale variation within the landscape, such as canopy cover, creates patches of suitable habitat within otherwise unsuitable macroclimates that create climate refugia and buffer range contractions. We simultaneously test both hypotheses by combining a large seed addition experiment of 25 plant species across macro- and micro-scale climate gradients with adult occurrence records to compare patterns of seedling recruitment relative to adult ranges and microclimate in the North Cascades, USA. Despite high species-to-species variability in recruitment, community-level patterns monitored for five years supported the lagged response hypothesis, with a mismatch between where seedlings recruit versus adults occur. On average, the seedling recruitment optimum shifted from the adult climatic range centre to historically cooler, wetter regions and many species recruited beyond their cold (e.g. leading) range edge. Meanwhile, successful recruitment occurred at warm and dry edges, despite recent climate change, suggesting that macroclimatic effects on recruitment do not drive trailing range dynamics. We did not detect evidence of microclimatic buffering due to canopy cover in recruitment patterns. Combined, our results suggest apparent range stasis in our system is a lagged response to climate change at the cool ends of species ranges, with range expansions likely to occur slowly or in a punctuated fashion.","PeriodicalId":51026,"journal":{"name":"Ecography","volume":"26 1","pages":""},"PeriodicalIF":5.9,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142975476","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Giovanni Poggiato, Jérémy Andréoletti, Laura J. Pollock, Wilfried Thuiller
Biotic interactions play a fundamental role in shaping multitrophic species communities, yet incorporating these interactions into species distribution models (SDMs) remains challenging. With the growing availability of species interaction networks, it is now feasible to integrate these interactions into SDMs for more comprehensive predictions. Here, we propose a novel framework that combines trophic interaction networks with Bayesian structural equation models, enabling each species to be modeled based on its interactions with predators or prey alongside environmental factors. This framework addresses issues of multicollinearity and error propagation, making it possible to predict species distributions in unobserved locations or under future environmental conditions, even when prey or predator distributions are unknown. We tested and validated our framework on realistic simulated communities spanning different theoretical models and ecological setups. scenarios. Our approach significantly improved the estimation of both potential and realized niches compared to single SDMs, with mean performance gains of 8% and 6%, respectively. These improvements were especially notable for species strongly regulated by biotic factors, thereby enhancing model predictive accuracy. Our framework supports integration with various SDM extensions, such as occupancy and integrated models, offering flexibility and adaptability for future developments. While not a universal solution that consistently outperforms single SDMs, our approach provides a valuable new tool for modeling multitrophic community distributions when biotic interactions are known or assumed.
{"title":"Integrating food webs in species distribution models can improve ecological niche estimation and predictions","authors":"Giovanni Poggiato, Jérémy Andréoletti, Laura J. Pollock, Wilfried Thuiller","doi":"10.1111/ecog.07546","DOIUrl":"https://doi.org/10.1111/ecog.07546","url":null,"abstract":"Biotic interactions play a fundamental role in shaping multitrophic species communities, yet incorporating these interactions into species distribution models (SDMs) remains challenging. With the growing availability of species interaction networks, it is now feasible to integrate these interactions into SDMs for more comprehensive predictions. Here, we propose a novel framework that combines trophic interaction networks with Bayesian structural equation models, enabling each species to be modeled based on its interactions with predators or prey alongside environmental factors. This framework addresses issues of multicollinearity and error propagation, making it possible to predict species distributions in unobserved locations or under future environmental conditions, even when prey or predator distributions are unknown. We tested and validated our framework on realistic simulated communities spanning different theoretical models and ecological setups. scenarios. Our approach significantly improved the estimation of both potential and realized niches compared to single SDMs, with mean performance gains of 8% and 6%, respectively. These improvements were especially notable for species strongly regulated by biotic factors, thereby enhancing model predictive accuracy. Our framework supports integration with various SDM extensions, such as occupancy and integrated models, offering flexibility and adaptability for future developments. While not a universal solution that consistently outperforms single SDMs, our approach provides a valuable new tool for modeling multitrophic community distributions when biotic interactions are known or assumed.","PeriodicalId":51026,"journal":{"name":"Ecography","volume":"51 1","pages":""},"PeriodicalIF":5.9,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142974570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Katherine M. Magoulick, Erin E. Saupe, Alexander Farnsworth, Paul J. Valdes, Charles R. Marshall
The formation of the Isthmus of Panama allowed for migrations between the once separated continents of North and South America. This led to one of the greatest documented interchanges of biota in Earth history, wherein an array of species across many groups migrated between the continents. Glyptotherium, a giant extinct armadillo‐like grazer, is an example of a taxon that likely originated in South America and migrated to North America. Here we use Ecological niche modeling to test the extent of suitable conditions for Glyptotherium in Central America and surrounding regions during the intervals when the taxon is thought to have dispersed, allowing for assessment of plausible migration routes and the hypothesis that the genus migrated from North America back to South America during the Rancholabrean (14 000–240 000 years ago). Our niche modeling results show suitable abiotic conditions for Glyptotherium in Central America and the surrounding area throughout the Plio‐Pleistocene, with western South America (the ‘high road') suggested as their ancestors' route northwards. Depending on the extent of suitable conditions, it may have been possible for Glyptotherium to return to South America during the Rancholabrean. The results support previous hypotheses that the range of Glyptotherium was constrained by the need for warm, wet environments.
{"title":"Evaluating migration hypotheses for the extinct Glyptotherium using ecological niche modeling","authors":"Katherine M. Magoulick, Erin E. Saupe, Alexander Farnsworth, Paul J. Valdes, Charles R. Marshall","doi":"10.1111/ecog.07499","DOIUrl":"https://doi.org/10.1111/ecog.07499","url":null,"abstract":"The formation of the Isthmus of Panama allowed for migrations between the once separated continents of North and South America. This led to one of the greatest documented interchanges of biota in Earth history, wherein an array of species across many groups migrated between the continents. <jats:italic>Glyptotherium</jats:italic>, a giant extinct armadillo‐like grazer, is an example of a taxon that likely originated in South America and migrated to North America. Here we use Ecological niche modeling to test the extent of suitable conditions for <jats:italic>Glyptotherium</jats:italic> in Central America and surrounding regions during the intervals when the taxon is thought to have dispersed, allowing for assessment of plausible migration routes and the hypothesis that the genus migrated from North America back to South America during the Rancholabrean (14 000–240 000 years ago). Our niche modeling results show suitable abiotic conditions for <jats:italic>Glyptotherium</jats:italic> in Central America and the surrounding area throughout the Plio‐Pleistocene, with western South America (the ‘high road') suggested as their ancestors' route northwards. Depending on the extent of suitable conditions, it may have been possible for <jats:italic>Glyptotherium</jats:italic> to return to South America during the Rancholabrean. The results support previous hypotheses that the range of <jats:italic>Glyptotherium</jats:italic> was constrained by the need for warm, wet environments.","PeriodicalId":51026,"journal":{"name":"Ecography","volume":"90 1","pages":""},"PeriodicalIF":5.9,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142974571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Eeva M. Soininen, Magnus Magnusson, Jane U. Jepsen, Nina E. Eide, Nigel G. Yoccoz, Anders Angerbjörn, Jo Inge Breisjøberget, Frauke Ecke, Dorothee Ehrich, Erik Framstad, Heikki Henttonen, Birger Hörnfeldt, Siw Killengreen, Johan Olofsson, Lauri Oksanen, Tarja Oksanen, Ole Einar Tveito, Rolf A. Ims
Long‐term studies of cyclic rodent populations have contributed fundamentally to the development of population ecology. Pioneering rodent studies have shown macroecological patterns of population dynamics in relation to latitude and have inspired similar studies in several other taxa. Nevertheless, such studies have not been able to disentangle the role of different environmental variables in shaping the macroecological patterns. We collected rodent time‐series from 26 locations spanning 10 latitudinal degrees in the tundra biome of Fennoscandia and assessed how population dynamics characteristics of the most prevalent species varied with latitude and environmental variables. While we found no relationship between latitude and population cycle peak interval, other characteristics of population dynamics showed latitudinal patterns. The environmental predictor variables provided insight into causes of these patterns, as 1) increased proportion of optimal habitat in the landscape led to higher density amplitudes in all species and 2) mid‐winter climate variability lowered the amplitude in Norwegian lemmings and grey‐sided voles. These results indicate that biome‐scale climate and landscape change can be expected to have profound impacts on rodent population cycles and that the macro‐ecology of such functionally important tundra ecosystem characteristics is likely to be subjected to transient dynamics.
{"title":"Macroecological patterns of rodent population dynamics shaped by bioclimatic gradients","authors":"Eeva M. Soininen, Magnus Magnusson, Jane U. Jepsen, Nina E. Eide, Nigel G. Yoccoz, Anders Angerbjörn, Jo Inge Breisjøberget, Frauke Ecke, Dorothee Ehrich, Erik Framstad, Heikki Henttonen, Birger Hörnfeldt, Siw Killengreen, Johan Olofsson, Lauri Oksanen, Tarja Oksanen, Ole Einar Tveito, Rolf A. Ims","doi":"10.1111/ecog.07058","DOIUrl":"https://doi.org/10.1111/ecog.07058","url":null,"abstract":"Long‐term studies of cyclic rodent populations have contributed fundamentally to the development of population ecology. Pioneering rodent studies have shown macroecological patterns of population dynamics in relation to latitude and have inspired similar studies in several other taxa. Nevertheless, such studies have not been able to disentangle the role of different environmental variables in shaping the macroecological patterns. We collected rodent time‐series from 26 locations spanning 10 latitudinal degrees in the tundra biome of Fennoscandia and assessed how population dynamics characteristics of the most prevalent species varied with latitude and environmental variables. While we found no relationship between latitude and population cycle peak interval, other characteristics of population dynamics showed latitudinal patterns. The environmental predictor variables provided insight into causes of these patterns, as 1) increased proportion of optimal habitat in the landscape led to higher density amplitudes in all species and 2) mid‐winter climate variability lowered the amplitude in Norwegian lemmings and grey‐sided voles. These results indicate that biome‐scale climate and landscape change can be expected to have profound impacts on rodent population cycles and that the macro‐ecology of such functionally important tundra ecosystem characteristics is likely to be subjected to transient dynamics.","PeriodicalId":51026,"journal":{"name":"Ecography","volume":"54 1","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142888927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gavia Lertzman‐Lepofsky, Aleksandra J. Dolezal, Mia Tayler Waters, Alexandre Fuster‐Calvo, Emily N. Black, Stephanie Flaman, Sam Straus, Ryan E. Langendorf, Isaac Eckert, Sophia Fan, Haley A. Branch, Nathalie Isabelle Chardon, Courtney G. Collins
Linking changes in taxon abundance to biotic and abiotic drivers over space and time is critical for understanding biodiversity responses to global change. Furthermore, deciphering temporal trends in relationships among taxa, including correlated abundance changes (e.g. synchrony), can facilitate predictions of future shifts. However, what drives these correlated changes over large scales are complex and understudied, impeding our ability to predict shifts in ecological communities. We used two global datasets containing abundance time‐series (BioTIME) and biotic interactions (GloBI) to quantify correlations among yearly changes in the abundance of pairs of geographically proximal taxa (genus pairs). We used a hierarchical linear model and cross‐validation to test the overall magnitude, direction and predictive accuracy of correlated abundance changes among genera at the global scale. We then tested how correlated abundance changes are influenced by latitude, biotic interactions, disturbance and time‐series length while accounting for differences among studies and taxonomic categories. We found that abundance changes between genus pairs are, on average, positively correlated over time, suggesting synchrony at the global scale. Furthermore, we found that abundance changes are more positively correlated with longer time‐series, with known biotic interactions and in disturbed habitats. However, the magnitude of these ecological drivers alone are relatively weak, with model predictive accuracy increasing approximately two‐fold with the inclusion of study identity and taxonomic category. This suggests that while patterns in abundance correlations are shaped by ecological drivers at the global scale, these drivers have limited utility in forecasting changes in abundances among unknown taxa or in the context of future global change. Our study indicates that including taxonomy and known ecological drivers can improve predictions of biodiversity loss over large spatial and temporal scales, but also that idiosyncrasies of different studies continue to weaken our ability to make global predictions.
{"title":"Temporal changes in taxon abundances are positively correlated but poorly predicted at the global scale","authors":"Gavia Lertzman‐Lepofsky, Aleksandra J. Dolezal, Mia Tayler Waters, Alexandre Fuster‐Calvo, Emily N. Black, Stephanie Flaman, Sam Straus, Ryan E. Langendorf, Isaac Eckert, Sophia Fan, Haley A. Branch, Nathalie Isabelle Chardon, Courtney G. Collins","doi":"10.1111/ecog.07195","DOIUrl":"https://doi.org/10.1111/ecog.07195","url":null,"abstract":"Linking changes in taxon abundance to biotic and abiotic drivers over space and time is critical for understanding biodiversity responses to global change. Furthermore, deciphering temporal trends in relationships among taxa, including correlated abundance changes (e.g. synchrony), can facilitate predictions of future shifts. However, what drives these correlated changes over large scales are complex and understudied, impeding our ability to predict shifts in ecological communities. We used two global datasets containing abundance time‐series (BioTIME) and biotic interactions (GloBI) to quantify correlations among yearly changes in the abundance of pairs of geographically proximal taxa (genus pairs). We used a hierarchical linear model and cross‐validation to test the overall magnitude, direction and predictive accuracy of correlated abundance changes among genera at the global scale. We then tested how correlated abundance changes are influenced by latitude, biotic interactions, disturbance and time‐series length while accounting for differences among studies and taxonomic categories. We found that abundance changes between genus pairs are, on average, positively correlated over time, suggesting synchrony at the global scale. Furthermore, we found that abundance changes are more positively correlated with longer time‐series, with known biotic interactions and in disturbed habitats. However, the magnitude of these ecological drivers alone are relatively weak, with model predictive accuracy increasing approximately two‐fold with the inclusion of study identity and taxonomic category. This suggests that while patterns in abundance correlations are shaped by ecological drivers at the global scale, these drivers have limited utility in forecasting changes in abundances among unknown taxa or in the context of future global change. Our study indicates that including taxonomy and known ecological drivers can improve predictions of biodiversity loss over large spatial and temporal scales, but also that idiosyncrasies of different studies continue to weaken our ability to make global predictions.","PeriodicalId":51026,"journal":{"name":"Ecography","volume":"12 1","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142888321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Julia Indivero, Sean C. Anderson, Lewis A. K. Barnett, Timothy E. Essington, Eric J. Ward
Species distribution modeling is increasingly used to describe and anticipate consequences of a warming ocean. These models often identify statistical associations between distribution and environmental conditions such as temperature and oxygen, but rarely consider the mechanisms by which these environmental variables affect metabolism. Oxygen and temperature jointly govern the balance of oxygen supply to oxygen demand, and theory predicts thresholds below which population densities are diminished. However, parameterizing models with this joint dependence is challenging because of the paucity of experimental work for most species, and the limited applicability of experimental findings in situ. Here we ask whether the temperature-sensitivity of oxygen can be reliably inferred from species distribution observations in the field, using the U.S. Pacific Coast as a model system. We developed a statistical model that adapted the metabolic index — a compound metric that incorporates these joint effects on the ratio of oxygen supply and oxygen demand by applying an Arrhenius equation — and used a non-linear threshold function to link the index to fish distribution. Through simulation testing, we found that our statistical model could not precisely estimate the parameters due to inherent features of the distribution data. However, the model reliably estimated an overall metabolic index threshold effect. When applied to case studies of real data for two groundfish species, this new model provided a better fit to spatial distribution of one species, sablefish Anoplopoma fimbria, than previously used models, but did not for the other, longspine thornyhead Sebastolobus altivelis. This physiological framework may improve predictions of species distribution, even in novel environmental conditions. Further efforts to combine insights from physiology and realized species distributions will improve forecasts of species' responses to future environmental changes.
{"title":"Estimating a physiological threshold to oxygen and temperature from marine monitoring data reveals challenges and opportunities for forecasting distribution shifts","authors":"Julia Indivero, Sean C. Anderson, Lewis A. K. Barnett, Timothy E. Essington, Eric J. Ward","doi":"10.1111/ecog.07413","DOIUrl":"https://doi.org/10.1111/ecog.07413","url":null,"abstract":"Species distribution modeling is increasingly used to describe and anticipate consequences of a warming ocean. These models often identify statistical associations between distribution and environmental conditions such as temperature and oxygen, but rarely consider the mechanisms by which these environmental variables affect metabolism. Oxygen and temperature jointly govern the balance of oxygen supply to oxygen demand, and theory predicts thresholds below which population densities are diminished. However, parameterizing models with this joint dependence is challenging because of the paucity of experimental work for most species, and the limited applicability of experimental findings in situ. Here we ask whether the temperature-sensitivity of oxygen can be reliably inferred from species distribution observations in the field, using the U.S. Pacific Coast as a model system. We developed a statistical model that adapted the metabolic index — a compound metric that incorporates these joint effects on the ratio of oxygen supply and oxygen demand by applying an Arrhenius equation — and used a non-linear threshold function to link the index to fish distribution. Through simulation testing, we found that our statistical model could not precisely estimate the parameters due to inherent features of the distribution data. However, the model reliably estimated an overall metabolic index threshold effect. When applied to case studies of real data for two groundfish species, this new model provided a better fit to spatial distribution of one species, sablefish <i>Anoplopoma fimbria</i>, than previously used models, but did not for the other, longspine thornyhead <i>Sebastolobus altivelis</i>. This physiological framework may improve predictions of species distribution, even in novel environmental conditions. Further efforts to combine insights from physiology and realized species distributions will improve forecasts of species' responses to future environmental changes.","PeriodicalId":51026,"journal":{"name":"Ecography","volume":"25 1","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142849566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Christian Neumann, Tuanjit Sritongchuay, Ralf Seppelt
There is well‐established evidence that land use is the main driver of terrestrial biodiversity loss. In contrast, the combined effects of land‐use and climate changes on food webs, particularly on terrestrial trophic networks, are understudied. In this study, we investigate the combined effects of climate change (temperature, precipitation) and land‐use intensification on food webs using a process‐based general mechanistic ecosystem model (‘MadingleyR'). We simulated the ecosystem dynamics of four regions in different climatic zones (Brazil, Namibia, Finland and France) according to trait‐based functional groups of species (ectothermic and endothermic herbivores, carnivores and omnivores). The simulation results were consistent across the selected regions, with land‐use intensification negatively affecting endotherms, whereas ectotherms were under increased pressure from rising temperatures. Land‐use intensification led to the downsizing of endotherms, and thus, to smaller organisms in the food web. In combination with climate change, land‐use intensification had the greatest effect on higher trophic levels, culminating in the extinction of endothermic carnivores in Namibia and Finland and endothermic omnivores in Namibia. Arid and tropical regions showed a slightly higher response of total biomass to climate change under a high‐emissions scenario with rising temperatures, whereas areas with low net primary productivity showed the most negative response to land‐use intensification. Our results suggest that 1) further land‐use intensification will significantly affect larger organisms and predators, leading to a major restructuring of global food webs. 2) Arid low‐productivity regions will experience significant changes in community composition due to global change. 3) Climate changes appear to have slightly greater effects in tropical and arid climates, whereas land‐use intensification tends to affect less productive environments. This paper shows how general ecosystem models deepen our understanding of multitrophic interactions and how climate change or land‐use drivers affect ecosystems in different biomes.
{"title":"Model‐based impact analysis of climate change and land‐use intensification on trophic networks","authors":"Christian Neumann, Tuanjit Sritongchuay, Ralf Seppelt","doi":"10.1111/ecog.07533","DOIUrl":"https://doi.org/10.1111/ecog.07533","url":null,"abstract":"There is well‐established evidence that land use is the main driver of terrestrial biodiversity loss. In contrast, the combined effects of land‐use and climate changes on food webs, particularly on terrestrial trophic networks, are understudied. In this study, we investigate the combined effects of climate change (temperature, precipitation) and land‐use intensification on food webs using a process‐based general mechanistic ecosystem model (‘MadingleyR'). We simulated the ecosystem dynamics of four regions in different climatic zones (Brazil, Namibia, Finland and France) according to trait‐based functional groups of species (ectothermic and endothermic herbivores, carnivores and omnivores). The simulation results were consistent across the selected regions, with land‐use intensification negatively affecting endotherms, whereas ectotherms were under increased pressure from rising temperatures. Land‐use intensification led to the downsizing of endotherms, and thus, to smaller organisms in the food web. In combination with climate change, land‐use intensification had the greatest effect on higher trophic levels, culminating in the extinction of endothermic carnivores in Namibia and Finland and endothermic omnivores in Namibia. Arid and tropical regions showed a slightly higher response of total biomass to climate change under a high‐emissions scenario with rising temperatures, whereas areas with low net primary productivity showed the most negative response to land‐use intensification. Our results suggest that 1) further land‐use intensification will significantly affect larger organisms and predators, leading to a major restructuring of global food webs. 2) Arid low‐productivity regions will experience significant changes in community composition due to global change. 3) Climate changes appear to have slightly greater effects in tropical and arid climates, whereas land‐use intensification tends to affect less productive environments. This paper shows how general ecosystem models deepen our understanding of multitrophic interactions and how climate change or land‐use drivers affect ecosystems in different biomes.","PeriodicalId":51026,"journal":{"name":"Ecography","volume":"33 1","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142841451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sarah C. McColl-Gausden, Lauren T. Bennett, Casey Visintin, Trent D. Penman
Individual and interactive effects of changing climate and shifting fire regimes are influencing many plant species across the globe. Climate change will likely have significant impacts on plant population viability over time by altering environmental conditions and wildfire regimes as well as influencing species demographic traits. However, the outcomes of these complex interactions for different plant functional types under future climate conditions have been rarely examined. We used a proof-of-concept case-study approach to model multiple plant species across two functional plant types, obligate seeder and facultative resprouter, to examine the interactive effects of demographic shifts and fire regime change on population persistence across two landscapes of over 7000 km2 in temperate southeastern Australia. Our approach involves a novel combination of a fire regime simulation tool with a spatially explicit population viability analysis model. We simulated fire regimes under six different future climates representing different temperature and precipitation shifts and combined them with 16 hypothetical plant demographic change scenarios, characterised by changes to individual or multiple plant demographic processes. Plant populations were more likely to decline or become extinct due to changes in demographic processes than in the fire regime alone. Although both functional types were vulnerable to climate-induced changes in demography, obligate seeder persistence was also negatively influenced by future fire regimes characterised by shorter fire intervals. Integrating fire regime simulations with spatially explicit population viability analyses increased our capacity to identify those plant functional types most at risk of extinction, and why, as fire regimes change with climate change. This flexible framework is a first step in exploring the complex interactions that will determine plant viability under changing climates and will improve research and fire management prioritisation for species into the future.
{"title":"Demographic processes and fire regimes interact to influence plant population persistence under changing climates","authors":"Sarah C. McColl-Gausden, Lauren T. Bennett, Casey Visintin, Trent D. Penman","doi":"10.1111/ecog.07502","DOIUrl":"https://doi.org/10.1111/ecog.07502","url":null,"abstract":"Individual and interactive effects of changing climate and shifting fire regimes are influencing many plant species across the globe. Climate change will likely have significant impacts on plant population viability over time by altering environmental conditions and wildfire regimes as well as influencing species demographic traits. However, the outcomes of these complex interactions for different plant functional types under future climate conditions have been rarely examined. We used a proof-of-concept case-study approach to model multiple plant species across two functional plant types, obligate seeder and facultative resprouter, to examine the interactive effects of demographic shifts and fire regime change on population persistence across two landscapes of over 7000 km<sup>2</sup> in temperate southeastern Australia. Our approach involves a novel combination of a fire regime simulation tool with a spatially explicit population viability analysis model. We simulated fire regimes under six different future climates representing different temperature and precipitation shifts and combined them with 16 hypothetical plant demographic change scenarios, characterised by changes to individual or multiple plant demographic processes. Plant populations were more likely to decline or become extinct due to changes in demographic processes than in the fire regime alone. Although both functional types were vulnerable to climate-induced changes in demography, obligate seeder persistence was also negatively influenced by future fire regimes characterised by shorter fire intervals. Integrating fire regime simulations with spatially explicit population viability analyses increased our capacity to identify those plant functional types most at risk of extinction, and why, as fire regimes change with climate change. This flexible framework is a first step in exploring the complex interactions that will determine plant viability under changing climates and will improve research and fire management prioritisation for species into the future.","PeriodicalId":51026,"journal":{"name":"Ecography","volume":"47 1","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142825013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shannon R. Conradie, Blair O. Wolf, Susan J. Cunningham, Amanda Bourne, Tanja van de Ven, Amanda R. Ridley, Andrew E. McKechnie
Climate change threatens biodiversity by compromising the ability to balance energy and water, influencing animal behaviour, species interactions, distribution and ultimately survival. Predicting climate change effects on thermal physiology is complicated by interspecific variation in thermal tolerance limits, thermoregulatory behaviour and heterogenous thermal landscapes. We develop an approach for assessing thermal vulnerability for endotherms by incorporating behaviour and microsite data into a biophysical model. We parameterised the model using species-specific functional traits and published behavioural data on hotter (maximum daily temperature, Tmax > 35°C) and cooler days (Tmax < 35°C). Incorporating continuous time-activity focal observations of behaviour into the biophysical approach reveals that the three insectivorous birds modelled here are at greater risk of lethal hyperthermia than dehydration under climate change, contrary to previous thermal risk assessments. Southern yellow-billed hornbills Tockus leucomelas, southern pied babblers Turdoides bicolor and southern fiscals Lanius collaris are predicted to experience a risk of lethal hyperthermia on ~ 24, 65 and 40 more days year−1, respectively, in 2100 relative to current conditions. Maintaining water balance may also become increasingly challenging. Babblers are predicted to experience a 57% increase (to ~186 days year−1) in exposure to conditions associated with net negative 24 h water balance in the absence of drinking, with ~ 86 of those days associated with a risk of lethal dehydration. Hornbills and fiscals are predicted to experience ~ 84 and 100 days year−1, respectively, associated with net negative 24 h water balance, with ≤ 20 of those days associated with a risk of lethal dehydration. Integrating continuous time-activity focal data is vital to understand and predict thermal challenges animals likely experience. We provide a comprehensive thermal risk assessment and emphasise the importance of thermoregulatory and drinking behaviour for endotherm persistence in coming decades.
{"title":"Integrating fine-scale behaviour and microclimate data into biophysical models highlights the risk of lethal hyperthermia and dehydration","authors":"Shannon R. Conradie, Blair O. Wolf, Susan J. Cunningham, Amanda Bourne, Tanja van de Ven, Amanda R. Ridley, Andrew E. McKechnie","doi":"10.1111/ecog.07432","DOIUrl":"https://doi.org/10.1111/ecog.07432","url":null,"abstract":"Climate change threatens biodiversity by compromising the ability to balance energy and water, influencing animal behaviour, species interactions, distribution and ultimately survival. Predicting climate change effects on thermal physiology is complicated by interspecific variation in thermal tolerance limits, thermoregulatory behaviour and heterogenous thermal landscapes. We develop an approach for assessing thermal vulnerability for endotherms by incorporating behaviour and microsite data into a biophysical model. We parameterised the model using species-specific functional traits and published behavioural data on hotter (maximum daily temperature, <i>T</i><sub>max</sub> > 35°C) and cooler days (<i>T</i><sub>max</sub> < 35°C). Incorporating continuous time-activity focal observations of behaviour into the biophysical approach reveals that the three insectivorous birds modelled here are at greater risk of lethal hyperthermia than dehydration under climate change, contrary to previous thermal risk assessments. Southern yellow-billed hornbills <i>Tockus leucomelas</i>, southern pied babblers <i>Turdoides bicolor</i> and southern fiscals <i>Lanius collaris</i> are predicted to experience a risk of lethal hyperthermia on ~ 24, 65 and 40 more days year<sup>−1</sup>, respectively, in 2100 relative to current conditions. Maintaining water balance may also become increasingly challenging. Babblers are predicted to experience a 57% increase (to ~186 days year<sup>−1</sup>) in exposure to conditions associated with net negative 24 h water balance in the absence of drinking, with ~ 86 of those days associated with a risk of lethal dehydration. Hornbills and fiscals are predicted to experience ~ 84 and 100 days year<sup>−1</sup>, respectively, associated with net negative 24 h water balance, with ≤ 20 of those days associated with a risk of lethal dehydration. Integrating continuous time-activity focal data is vital to understand and predict thermal challenges animals likely experience. We provide a comprehensive thermal risk assessment and emphasise the importance of thermoregulatory and drinking behaviour for endotherm persistence in coming decades.","PeriodicalId":51026,"journal":{"name":"Ecography","volume":"14 1","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142825012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anran Fan, Steven Ni, Graham A. McCulloch, Jonathan M. Waters
Major disturbance events can profoundly influence biodiversity patterns, although the extent to which such shifts are predictable remains poorly understood. We used environmental DNA (eDNA) to compare forested versus recently deforested stream insect communities across disjunct regions of New Zealand, to test for parallel shifts in response to widescale disturbance. Although eDNA analyses revealed highly distinct species pools across regions, they detected concordant functional diversity shifts linked to recent deforestation, including parallel decreases in the diversity of grazing taxa. The finding that taxonomically distinct freshwater biotas have experienced broadly concordant functional shifts in the wake of deforestation indicates that disturbance can drive deterministic ecological change. By contrast, the finding that some closely related species within functional groups show discordant responses to deforestation suggests that ecological differentiation among cryptic taxa may contribute to idiosyncratic shifts. These findings highlight the potential of eDNA for resolving subtle species-level differences among anthropogenically impacted ecological assemblages.
{"title":"Disturbance drives concordant functional biodiversity shifts across regions: new evidence from river eDNA","authors":"Anran Fan, Steven Ni, Graham A. McCulloch, Jonathan M. Waters","doi":"10.1111/ecog.07264","DOIUrl":"https://doi.org/10.1111/ecog.07264","url":null,"abstract":"Major disturbance events can profoundly influence biodiversity patterns, although the extent to which such shifts are predictable remains poorly understood. We used environmental DNA (eDNA) to compare forested versus recently deforested stream insect communities across disjunct regions of New Zealand, to test for parallel shifts in response to widescale disturbance. Although eDNA analyses revealed highly distinct species pools across regions, they detected concordant functional diversity shifts linked to recent deforestation, including parallel decreases in the diversity of grazing taxa. The finding that taxonomically distinct freshwater biotas have experienced broadly concordant functional shifts in the wake of deforestation indicates that disturbance can drive deterministic ecological change. By contrast, the finding that some closely related species within functional groups show discordant responses to deforestation suggests that ecological differentiation among cryptic taxa may contribute to idiosyncratic shifts. These findings highlight the potential of eDNA for resolving subtle species-level differences among anthropogenically impacted ecological assemblages.","PeriodicalId":51026,"journal":{"name":"Ecography","volume":"29 1","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142825014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}