Pub Date : 2023-08-10DOI: 10.1142/s021974992350034x
Ahmed Abulfotooh Eid, N. Metwally
{"title":"Entangled kernel of coded information using quantum string","authors":"Ahmed Abulfotooh Eid, N. Metwally","doi":"10.1142/s021974992350034x","DOIUrl":"https://doi.org/10.1142/s021974992350034x","url":null,"abstract":"","PeriodicalId":51058,"journal":{"name":"International Journal of Quantum Information","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46350792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-14DOI: 10.1142/s0219749923500338
Wenwen Hu, Ri-gui Zhou, SheXiang Jiang
{"title":"Semi-quantum key distribution using qudit systems and security proof","authors":"Wenwen Hu, Ri-gui Zhou, SheXiang Jiang","doi":"10.1142/s0219749923500338","DOIUrl":"https://doi.org/10.1142/s0219749923500338","url":null,"abstract":"","PeriodicalId":51058,"journal":{"name":"International Journal of Quantum Information","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2023-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46413887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-07DOI: 10.1142/s0219749923500326
Zhonghua Sun, Xinyue Liu, Shixin Zhu
{"title":"Two classes of quantum codes from almost MDS codes","authors":"Zhonghua Sun, Xinyue Liu, Shixin Zhu","doi":"10.1142/s0219749923500326","DOIUrl":"https://doi.org/10.1142/s0219749923500326","url":null,"abstract":"","PeriodicalId":51058,"journal":{"name":"International Journal of Quantum Information","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2023-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46160772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-30DOI: 10.1142/s0219749923500296
H. Shen, T. Luan, Y. H. Zhou, Z. Shi, X. Yi
In this paper, we show that the photon blockade (PB) can be observed in a nonreciprocal way with a driven spinning atom-cavity coupled filled with [Formula: see text] nonlinear medium. We analytically derive the optimal conditions for strong photon antibunching, which are in good agreement with those obtained by numerical simulations. Under the weak driving condition, we discuss the physical origins of the nonreciprocal unconventional photon blockade (UPB), which originates from the destructive quantum interference between different paths from the ground state to two-photon states by driving the device from the left side. While the quantum interference paths are broken when the device is driven from the right side, which leads to the occurrence of the photon bunching. Moreover in the opposite direction of driving the device, we also observe another nonreciprocal UPB effect, which can occur by generating bunching and antibunching effects via driving the device from the left and right sides under the derived optimal conditions, respectively. Finally, we cannot observe the nonreciprocal UPB phenomenon with the large cavity decay compared to the atomic spontaneous emission rate (or the bad cavity limit), and give the physical reason behind it. Possible experimental implementation for this scheme is presented.
{"title":"Nonreciprocal unconventional photon blockade in atom-cavity with χ(2) nonlinear medium","authors":"H. Shen, T. Luan, Y. H. Zhou, Z. Shi, X. Yi","doi":"10.1142/s0219749923500296","DOIUrl":"https://doi.org/10.1142/s0219749923500296","url":null,"abstract":"In this paper, we show that the photon blockade (PB) can be observed in a nonreciprocal way with a driven spinning atom-cavity coupled filled with [Formula: see text] nonlinear medium. We analytically derive the optimal conditions for strong photon antibunching, which are in good agreement with those obtained by numerical simulations. Under the weak driving condition, we discuss the physical origins of the nonreciprocal unconventional photon blockade (UPB), which originates from the destructive quantum interference between different paths from the ground state to two-photon states by driving the device from the left side. While the quantum interference paths are broken when the device is driven from the right side, which leads to the occurrence of the photon bunching. Moreover in the opposite direction of driving the device, we also observe another nonreciprocal UPB effect, which can occur by generating bunching and antibunching effects via driving the device from the left and right sides under the derived optimal conditions, respectively. Finally, we cannot observe the nonreciprocal UPB phenomenon with the large cavity decay compared to the atomic spontaneous emission rate (or the bad cavity limit), and give the physical reason behind it. Possible experimental implementation for this scheme is presented.","PeriodicalId":51058,"journal":{"name":"International Journal of Quantum Information","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45320279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-23DOI: 10.1142/s0219749923500466
M. Schwetz, R. Noack
Measurement-based quantum computing (MBQC), an alternate paradigm for formulating quantum algorithms, can lead to potentially more flexible and efficient implementations as well as to theoretical insights on the role of entanglement in a quantum algorithm. Using the graph-theoretical ZX-calculus, we describe and apply a general scheme for reformulating quantum circuits as MBQC implementations. After illustrating the method using the two-qubit Deutsch-Jozsa algorithm, we derive a ZX graph-diagram that encodes a general MBQC implementation for the three-qubit Deutsch-Jozsa algorithm. This graph describes an 11-qubit cluster state on which single-qubit measurements are used to execute the algorithm. Particular sets of choices of the axes for the measurements can be used to implement any realization of the oracle. In addition, we derive an equivalent lattice cluster state for the algorithm.
{"title":"Three-Qubit Deutsch-Jozsa in Measurement-Based Quantum Computing","authors":"M. Schwetz, R. Noack","doi":"10.1142/s0219749923500466","DOIUrl":"https://doi.org/10.1142/s0219749923500466","url":null,"abstract":"Measurement-based quantum computing (MBQC), an alternate paradigm for formulating quantum algorithms, can lead to potentially more flexible and efficient implementations as well as to theoretical insights on the role of entanglement in a quantum algorithm. Using the graph-theoretical ZX-calculus, we describe and apply a general scheme for reformulating quantum circuits as MBQC implementations. After illustrating the method using the two-qubit Deutsch-Jozsa algorithm, we derive a ZX graph-diagram that encodes a general MBQC implementation for the three-qubit Deutsch-Jozsa algorithm. This graph describes an 11-qubit cluster state on which single-qubit measurements are used to execute the algorithm. Particular sets of choices of the axes for the measurements can be used to implement any realization of the oracle. In addition, we derive an equivalent lattice cluster state for the algorithm.","PeriodicalId":51058,"journal":{"name":"International Journal of Quantum Information","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139368912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-21DOI: 10.1142/s0219749923500272
Xiao-Ying Zhang, Ming-Ming Wang
Quantum machine learning has shown advantages in many ways compared to classical machine learning. In machine learning, a difficult problem is how to learn a model with high robustness and strong generalization ability from a limited feature space. Combining multiple models as base learners, ensemble learning (EL) can effectively improve the accuracy, generalization ability and robustness of the final model. The key to EL lies in two aspects, the performance of base learners and the choice of the combination strategy. Recently, quantum EL (QEL) has been studied. However, existing combination strategies in QEL are inadequate in considering the accuracy and variance among base learners. This paper presents a hybrid EL framework that combines quantum and classical advantages. More importantly, we propose an efficient combination strategy for improving the accuracy of classification in the framework. We verify the feasibility and efficiency of our framework and strategy by using the MNIST dataset. Simulation results show that the hybrid EL framework with our combination strategy not only has a higher accuracy and lower variance than the single model without the ensemble, but also has a better accuracy than the majority voting and the weighted voting strategies in most cases.
{"title":"An efficient combination strategy for hybrid quantum ensemble classifier","authors":"Xiao-Ying Zhang, Ming-Ming Wang","doi":"10.1142/s0219749923500272","DOIUrl":"https://doi.org/10.1142/s0219749923500272","url":null,"abstract":"Quantum machine learning has shown advantages in many ways compared to classical machine learning. In machine learning, a difficult problem is how to learn a model with high robustness and strong generalization ability from a limited feature space. Combining multiple models as base learners, ensemble learning (EL) can effectively improve the accuracy, generalization ability and robustness of the final model. The key to EL lies in two aspects, the performance of base learners and the choice of the combination strategy. Recently, quantum EL (QEL) has been studied. However, existing combination strategies in QEL are inadequate in considering the accuracy and variance among base learners. This paper presents a hybrid EL framework that combines quantum and classical advantages. More importantly, we propose an efficient combination strategy for improving the accuracy of classification in the framework. We verify the feasibility and efficiency of our framework and strategy by using the MNIST dataset. Simulation results show that the hybrid EL framework with our combination strategy not only has a higher accuracy and lower variance than the single model without the ensemble, but also has a better accuracy than the majority voting and the weighted voting strategies in most cases.","PeriodicalId":51058,"journal":{"name":"International Journal of Quantum Information","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136296399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-16DOI: 10.1142/s0219749923500314
Meera Ramachadran, S. Balakrishnan
{"title":"Correspondence Between Quantum Communication Protocol and Quantum Game Theory","authors":"Meera Ramachadran, S. Balakrishnan","doi":"10.1142/s0219749923500314","DOIUrl":"https://doi.org/10.1142/s0219749923500314","url":null,"abstract":"","PeriodicalId":51058,"journal":{"name":"International Journal of Quantum Information","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2023-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45496917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-12DOI: 10.1142/s0219749923500247
Zhanhong Wei, W. Sun, Shangchao Zhu, Mengdi Han, Huijuan Yin
{"title":"An efficient framework for quantum video and video editing","authors":"Zhanhong Wei, W. Sun, Shangchao Zhu, Mengdi Han, Huijuan Yin","doi":"10.1142/s0219749923500247","DOIUrl":"https://doi.org/10.1142/s0219749923500247","url":null,"abstract":"","PeriodicalId":51058,"journal":{"name":"International Journal of Quantum Information","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2023-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48432399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-28DOI: 10.1142/s021974992302001x
A. Avella, F. Piacentini, M. Gramegna, I. R. Berchera, Milena D'Angelo, Francesco Pepe, P. Olivero
{"title":"Foreword","authors":"A. Avella, F. Piacentini, M. Gramegna, I. R. Berchera, Milena D'Angelo, Francesco Pepe, P. Olivero","doi":"10.1142/s021974992302001x","DOIUrl":"https://doi.org/10.1142/s021974992302001x","url":null,"abstract":"","PeriodicalId":51058,"journal":{"name":"International Journal of Quantum Information","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45485197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}