Our perception of objects depends on non-oculomotor depth cues, such as pictorial distance cues and binocular disparity, and oculomotor depth cues, such as vergence and accommodation. Although vergence eye movements are always involved in perceiving real distance, previous studies have mainly focused on the effect of oculomotor state via "proprioception" on distance and size perception. It remains unclear whether the oculomotor command of vergence eye movement would also influence visual processing. To address this question, we placed a light at 28.5 cm and a screen for stimulus presentation at 57 cm from the participants. In the NoDivergence condition, participants were asked to maintain fixation on the light regardless of stimulus presentation throughout the trial. In the WithDivergence condition, participants were instructed to initially maintain fixation on the near light and then turn their two eyes outward to look at the stimulus on the far screen. The stimulus was presented for 100 msec, entirely within the preparation stage of the divergence eye movement. We found that participants perceived the stimulus as larger but were less sensitive to stimulus sizes in the WithDivergence condition than in the NoDivergence condition. The earliest visual evoked component C1 (peak latency 80 msec), which varied with stimulus size in the NoDivergence condition, showed similar amplitudes for larger and smaller stimuli in the WithDivergence condition. These results show that vergence eye movement planning affects the earliest visual processing and size perception, and demonstrate an example of the effect of motor command on sensory processing.
In primates, the presence of a face in a visual scene captures attention and rapidly directs the observer's gaze to the face, even when the face is not relevant to the task at hand. Here, we explored a neural circuit that might potentially play a causal role in this powerful behavior. In our previous research, two monkeys received microinfusions of muscimol, a GABAA-receptor agonist, or saline (as a control condition) in separate sessions into individual or pairs of four inferotemporal face patches (middle and anterior lateral and fundal), as identified by a preceding face localizer experiment. Then, using fMRI, we measured the impact of each inactivation condition on responses in the other face patches relative to the control condition. In this study, we used the same method and measured the impact of each inactivation condition on responses in the FEF and the lateral intraparietal area, two regions associated with attentional processing, while face and nonface object stimuli were viewed. Our results revealed potential relationships between inferotemporal face patches and these two attention-related regions: The inactivation of the middle lateral and anterior fundal face patches had a pronounced impact on FEF, whereas the inactivation of the middle and anterior lateral face patches might have a noticeable influence on lateral intraparietal area. Together, these initial exploratory findings document a circuit that potentially underlies the attentional capture of faces. Confirmation of the role of this circuit remains to be accomplished in the context of paradigm explicitly testing the attentional capture of faces.
Leslie Ungerleider had a tremendous impact across many different areas of cognitive neuroscience. Her ideas and her approach, as well as her findings, will continue to impact the field for generations to come. One of the most impactful aspects of her approach was her focus on the ways that anatomical connections constrain functional communications among brain regions. Furthermore, she emphasized that changes in these functional communications, whether from lesions to the anatomical connections or temporary modulations of the efficacy of information transmission resulting from selective attention, have consequences for cognition and behavior. By necessity, this short review cannot cover the vast amount of research that contributed to or benefited from Leslie's work. Rather, we focus on one line of research that grew directly from some of Leslie's early work and her mentoring on these important concepts. This research and the many other lines of research that arose from these same origins has helped develop our understanding of the visual system, and cognitive systems more generally, as collections of highly organized, specialized, dynamic, and interacting subsystems.