Pub Date : 2024-09-22DOI: 10.1007/s12013-024-01516-1
Sadaf Khan, Neha Kausar Ansari, Aabgeena Naeem
Neurodegenerative disorders are associated with the accumulation of disease-related proteins intracellularly and extracellularly. Extracellular chaperones play a crucial role in clearing the extracellularly accumulated proteins. In this study, we observed the extracellular chaperone-like potential of BSA at physiological concentrations on model protein cytochrome c (cyt c). Kinetics of heat-induced aggregation of cyt c suggest the nucleation independent first order aggregation kinetics. Aggregation of cyt c was studied in the presence of varying concentrations of BSA to assess its chaperone nature. At lower concentrations of BSA when the sub molar ratio of cyt c:BSA are 1:0.6 and 1:1.2, heat-induced unfolded cyt c promotes the aggregation of BSA. However, as the ratio of cyt c:BSA increases to 1:1.8, the aggregation of cyt c is reduced. When the concentration of BSA reaches physiological levels, yielding a cyt c:BSA ratio of 1:2.4, the rate of aggregation drastically decreases reflecting its chaperone potential. These observations indicate that under physiological conditions, macromolecular crowding stabilizes the native structure of both proteins and enhances their interaction that results in the reduced aggregation of cyt c. Additionally, the presence of the phytochemical chlorogenic acid at a sub-molar ratio of 1:1 stabilizes cyt c and prevents its unfolding and facilitates the binding of cyt c to BSA at physiological concentrations. This interaction further decreases the overall aggregation of cyt c and stabilizes its native fold.
神经退行性疾病与疾病相关蛋白质在细胞内和细胞外的积累有关。细胞外伴侣在清除细胞外积累的蛋白质方面起着至关重要的作用。在这项研究中,我们观察了 BSA 在生理浓度下对模型蛋白质细胞色素 c(cyt c)的细胞外伴侣样潜力。热诱导细胞色素 c 聚集的动力学表明,成核与一阶聚集动力学无关。研究了细胞色素 c 在不同浓度的 BSA 存在下的聚集情况,以评估其伴侣性质。当细胞 c 与 BSA 的亚摩尔比为 1:0.6 和 1:1.2 时,BSA 浓度较低,热诱导的未折叠细胞 c 会促进 BSA 的聚集。然而,当细胞 c 与 BSA 的比例增加到 1:1.8 时,细胞 c 的聚集就会减少。当 BSA 的浓度达到生理水平,即 cyt c:BSA 的比例为 1:2.4 时,聚集率急剧下降,这反映了其伴侣潜能。这些观察结果表明,在生理条件下,大分子拥挤稳定了两种蛋白质的原生结构,并增强了它们之间的相互作用,从而降低了细胞 c 的聚集。此外,亚摩尔比为 1:1 的植物化学物质绿原酸的存在稳定了细胞 c,防止了它的解折,并在生理浓度下促进了细胞 c 与 BSA 的结合。这种相互作用进一步减少了 cyt c 的整体聚集,并稳定了其原生折叠。
{"title":"Chlorogenic Acid Enhances the Chaperone Potential of BSA at Physiological Concentrations on Model Protein Cytochrome c.","authors":"Sadaf Khan, Neha Kausar Ansari, Aabgeena Naeem","doi":"10.1007/s12013-024-01516-1","DOIUrl":"https://doi.org/10.1007/s12013-024-01516-1","url":null,"abstract":"<p><p>Neurodegenerative disorders are associated with the accumulation of disease-related proteins intracellularly and extracellularly. Extracellular chaperones play a crucial role in clearing the extracellularly accumulated proteins. In this study, we observed the extracellular chaperone-like potential of BSA at physiological concentrations on model protein cytochrome c (cyt c). Kinetics of heat-induced aggregation of cyt c suggest the nucleation independent first order aggregation kinetics. Aggregation of cyt c was studied in the presence of varying concentrations of BSA to assess its chaperone nature. At lower concentrations of BSA when the sub molar ratio of cyt c:BSA are 1:0.6 and 1:1.2, heat-induced unfolded cyt c promotes the aggregation of BSA. However, as the ratio of cyt c:BSA increases to 1:1.8, the aggregation of cyt c is reduced. When the concentration of BSA reaches physiological levels, yielding a cyt c:BSA ratio of 1:2.4, the rate of aggregation drastically decreases reflecting its chaperone potential. These observations indicate that under physiological conditions, macromolecular crowding stabilizes the native structure of both proteins and enhances their interaction that results in the reduced aggregation of cyt c. Additionally, the presence of the phytochemical chlorogenic acid at a sub-molar ratio of 1:1 stabilizes cyt c and prevents its unfolding and facilitates the binding of cyt c to BSA at physiological concentrations. This interaction further decreases the overall aggregation of cyt c and stabilizes its native fold.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142278441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-21DOI: 10.1007/s12013-024-01531-2
Xiqian Wang, Dejin Wang, Bin Hao
This study aimed to investigate the role and underlying mechanisms of the platelet-derived growth factor (PDGF)/protein kinase B (AKT) signaling pathway in pressure overload-induced ventricular remodeling. Ventricular remodeling, a critical pathological process in heart failure, is commonly triggered by pressure overload. While PDGF is known to promote cell proliferation and growth, the AKT pathway is crucial for cell growth, survival, and metabolism. However, the specific role of the PDGF/AKT pathway in pressure overload-induced ventricular remodeling remains unclear. Thus, this study aimed to elucidate the precise mechanisms of PDGF/AKT involvement in this process using animal models and cell experiments. 45 female C57BL/6 mice were utilized, randomly divided into three groups: model group (M group, n = 15), control group (C group, n = 15), and experimental group (E group, n = 15). M group mice underwent thoracotomy without aortic constriction (AC). C group mice received phosphate-buffered saline (PBS) and dimethyl sulfoxide (DMSO) treatment following AC surgery. E group mice were treated with the PDGF receptor inhibitor AG1296 and PBS solution after AC surgery. Additionally, 293 T cells were categorized into three groups: PDGF shRNA transfected group (downregulating PDGF expression, D group), PDGF overexpression group (B group), and control group (NV group). Left ventricular end-systolic volume (LVESV) and ejection fraction (FS) of the mice were measured via echocardiography. Western blot analysis was conducted to assess the expression levels of p-AKT and t-AKT in myocardial tissues. Furthermore, myocardial cell area was measured using hematoxylin and eosin (HE) staining and image analysis software. The LVESV in the C group was significantly higher than in the M and E groups (48.32 ± 3.08 mL vs. 18.24 ± 3.19 mL and 25.44 ± 3.12 mL, P < 0.05). The FS in the C group was significantly lower compared to the M and E groups (21.18 ± 2.99% vs. 42.45 ± 3.02% and 26.89 ± 2.54%, P < 0.05). Western blot analysis revealed that p-AKT and t-AKT levels were significantly elevated in the C group and PDGF overexpression group (B group) compared to the M and PDGF shRNA groups (D group) (P < 0.05). HE staining showed a significant increase in myocardial cell cross-sectional area in the C and D groups, with the most pronounced enlargement in the D group (P < 0.05). PDGF facilitates pressure overload-induced ventricular remodeling and myocardial fibrosis. Inhibition of the PDGF/AKT signaling pathway effectively mitigates myocardial cell hypertrophy and ventricular remodeling. These findings offer novel potential targets and therapeutic strategies for the treatment of pressure overload-related heart failure.
本研究旨在探讨血小板衍生生长因子(PDGF)/蛋白激酶B(AKT)信号通路在压力过载诱导的心室重构中的作用及其内在机制。心室重塑是心力衰竭的一个关键病理过程,通常由压力过载引发。众所周知,PDGF 可促进细胞增殖和生长,而 AKT 通路对细胞生长、存活和新陈代谢至关重要。然而,PDGF/AKT 通路在压力过载诱导的心室重塑中的具体作用仍不清楚。因此,本研究旨在利用动物模型和细胞实验阐明 PDGF/AKT 参与这一过程的确切机制。45只雌性C57BL/6小鼠被随机分为三组:模型组(M组,n = 15)、对照组(C组,n = 15)和实验组(E组,n = 15)。M 组小鼠接受开胸手术,不进行主动脉收缩(AC)。C 组小鼠在主动脉缩窄术后接受磷酸盐缓冲液(PBS)和二甲基亚砜(DMSO)治疗。E 组小鼠在 AC 手术后接受 PDGF 受体抑制剂 AG1296 和 PBS 溶液治疗。此外,293 个 T 细胞被分为三组:PDGF shRNA 转染组(下调 PDGF 表达,D 组)、PDGF 过表达组(B 组)和对照组(NV 组)。通过超声心动图测量小鼠的左室收缩末期容积(LVESV)和射血分数(FS)。通过 Western 印迹分析评估 p-AKT 和 t-AKT 在心肌组织中的表达水平。此外,还使用苏木精和伊红(HE)染色及图像分析软件测量了心肌细胞面积。C 组的 LVESV 明显高于 M 组和 E 组(48.32 ± 3.08 mL vs. 18.24 ± 3.19 mL 和 25.44 ± 3.12 mL,P<0.05)。
{"title":"Role and Mechanism of Lamellar Derived Growth Factor /AKT Pathway in Ventricular Remodeling Induced by Pressure Overload.","authors":"Xiqian Wang, Dejin Wang, Bin Hao","doi":"10.1007/s12013-024-01531-2","DOIUrl":"https://doi.org/10.1007/s12013-024-01531-2","url":null,"abstract":"<p><p>This study aimed to investigate the role and underlying mechanisms of the platelet-derived growth factor (PDGF)/protein kinase B (AKT) signaling pathway in pressure overload-induced ventricular remodeling. Ventricular remodeling, a critical pathological process in heart failure, is commonly triggered by pressure overload. While PDGF is known to promote cell proliferation and growth, the AKT pathway is crucial for cell growth, survival, and metabolism. However, the specific role of the PDGF/AKT pathway in pressure overload-induced ventricular remodeling remains unclear. Thus, this study aimed to elucidate the precise mechanisms of PDGF/AKT involvement in this process using animal models and cell experiments. 45 female C57BL/6 mice were utilized, randomly divided into three groups: model group (M group, n = 15), control group (C group, n = 15), and experimental group (E group, n = 15). M group mice underwent thoracotomy without aortic constriction (AC). C group mice received phosphate-buffered saline (PBS) and dimethyl sulfoxide (DMSO) treatment following AC surgery. E group mice were treated with the PDGF receptor inhibitor AG1296 and PBS solution after AC surgery. Additionally, 293 T cells were categorized into three groups: PDGF shRNA transfected group (downregulating PDGF expression, D group), PDGF overexpression group (B group), and control group (NV group). Left ventricular end-systolic volume (LVESV) and ejection fraction (FS) of the mice were measured via echocardiography. Western blot analysis was conducted to assess the expression levels of p-AKT and t-AKT in myocardial tissues. Furthermore, myocardial cell area was measured using hematoxylin and eosin (HE) staining and image analysis software. The LVESV in the C group was significantly higher than in the M and E groups (48.32 ± 3.08 mL vs. 18.24 ± 3.19 mL and 25.44 ± 3.12 mL, P < 0.05). The FS in the C group was significantly lower compared to the M and E groups (21.18 ± 2.99% vs. 42.45 ± 3.02% and 26.89 ± 2.54%, P < 0.05). Western blot analysis revealed that p-AKT and t-AKT levels were significantly elevated in the C group and PDGF overexpression group (B group) compared to the M and PDGF shRNA groups (D group) (P < 0.05). HE staining showed a significant increase in myocardial cell cross-sectional area in the C and D groups, with the most pronounced enlargement in the D group (P < 0.05). PDGF facilitates pressure overload-induced ventricular remodeling and myocardial fibrosis. Inhibition of the PDGF/AKT signaling pathway effectively mitigates myocardial cell hypertrophy and ventricular remodeling. These findings offer novel potential targets and therapeutic strategies for the treatment of pressure overload-related heart failure.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142278445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-20DOI: 10.1007/s12013-024-01524-1
Xueyong Li, Cuixia Liu, Yi Gao
Gastric cancer (GC) is a malignant tumor with high incidence rate. H3K9me3 is related to transcriptional suppression and modulated by histone methyltransferase suppressor of variegation 3-9 homolog 1 (SUV39H1). SUV39H1 is dysregulated in assorted cancers and exerts the regulatory function. Nevertheless, the specific biofunction of SUV39H1 in GC needs further confirmation. SUV39H1 and H3K9me3 expressions were tested through RT-qPCR and western blot. Colony formation, wound healing, and transwell assays were employed for testing cell behaviors. ChIP assay was utilized for assessing the interaction between H3K9me3 and aldolase B (ALDOB). Xenograft experiment was employed for measuring tumor growth. We found that SUV39H1 and H3K9me3 were overexpressed in GC tissues and cells. SUV39H1 knockdown notably suppressed GC cell proliferative, migratory, and invasive capabilities. The treatment of chaetocin or F5446 (inhibitors of SUV39H1 enzymatic activity) also restrained GC cell behaviors. In addition, we discovered that SUV39H1 could negatively regulate ALDOB expression. SUV39H1 depletion reduced H3K9me3 modification to ALDOB promoter region. In rescue assays, we proved that ALDOB reduction reversed the inhibitory functions of SUV39H1 silencing on GC progression. Furthermore, tumor growth of mice was suppressed by sh-SUV39H1 transfection, chaetocin treatment, or F5446 treatment. In conclusion, SUV39H1 promoted GC progression by modulating the H3K9me3/ALDOB axis.
{"title":"SUV39H1 Regulates Gastric Cancer Progression via the H3K9me3/ALDOB Axis.","authors":"Xueyong Li, Cuixia Liu, Yi Gao","doi":"10.1007/s12013-024-01524-1","DOIUrl":"https://doi.org/10.1007/s12013-024-01524-1","url":null,"abstract":"<p><p>Gastric cancer (GC) is a malignant tumor with high incidence rate. H3K9me3 is related to transcriptional suppression and modulated by histone methyltransferase suppressor of variegation 3-9 homolog 1 (SUV39H1). SUV39H1 is dysregulated in assorted cancers and exerts the regulatory function. Nevertheless, the specific biofunction of SUV39H1 in GC needs further confirmation. SUV39H1 and H3K9me3 expressions were tested through RT-qPCR and western blot. Colony formation, wound healing, and transwell assays were employed for testing cell behaviors. ChIP assay was utilized for assessing the interaction between H3K9me3 and aldolase B (ALDOB). Xenograft experiment was employed for measuring tumor growth. We found that SUV39H1 and H3K9me3 were overexpressed in GC tissues and cells. SUV39H1 knockdown notably suppressed GC cell proliferative, migratory, and invasive capabilities. The treatment of chaetocin or F5446 (inhibitors of SUV39H1 enzymatic activity) also restrained GC cell behaviors. In addition, we discovered that SUV39H1 could negatively regulate ALDOB expression. SUV39H1 depletion reduced H3K9me3 modification to ALDOB promoter region. In rescue assays, we proved that ALDOB reduction reversed the inhibitory functions of SUV39H1 silencing on GC progression. Furthermore, tumor growth of mice was suppressed by sh-SUV39H1 transfection, chaetocin treatment, or F5446 treatment. In conclusion, SUV39H1 promoted GC progression by modulating the H3K9me3/ALDOB axis.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142278447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-20DOI: 10.1007/s12013-024-01507-2
Gideon A Gyebi, Saheed O Afolabi, Oludare M Ogunyemi, Ibrahim M Ibrahim, Olufunke E Olorundare, Joseph O Adebayo, Mamoru Koketsu
Prostate cancer is a major cause of cancer-related mortality in men worldwide. The anti-proliferative activity of Gongronema latifolium leaf extracts on some cancer cells has been reported. Herein, we investigated the growth inhibitory effect of the Gongronema latilolium leaf methanol extract and isolated pregnane (iloneoside) against prostate cancer cell lines using the MTT cell proliferation assay, apoptosis quantification, cell cycle analysis using flow cytometry and computational analysis molecular docking, molecular dynamics simulation (MDs), binding free energy computation and cluster analysis. In addition, UPLC-ESI-TOFMS chemical fingerprinting of previously isolated compounds was performed. The extract inhibited the growth of the cell lines with an IC50 of 49.3 µg/ml and 28.4 µg/ml for 24 h and 48 h, respectively, for PC3; and 43.7 µg/ml and 22.3 µg/ml for 24 h and 48 h, respectively, for DU145. Iloneoside demonstrated low inhibitory activities against PC3 and DU145 (IC50 > 80 μM). Apoptotic quantification and cell cycle analysis further showed that iloneoside induced apoptosis in a few cells at a dose of 200 uM. The ensemble-based molecular docking of the iloneoside to BCL-XL and BCL-2 proteins, and docking to MCL-1, BCL-A1 and BFL-1 proteins, respectively, presented binding energies of -7.22 ± 0.5, -8.12 ± 0.55, -7.1, -7.2 and -6.3 kcal/mol, while the MM/PBSA binding free energy was -25.72 ± 7.22 and -27.76 ± 11.32 kcal/mol for BCL-XL and BCL-2 proteins. Furthermore, iloneoside was stable during the 100 ns MDs analysis, while the clustering of the MDs trajectories showed that the interactions were strongly preserved. Iloneoside, in part, or in synergy with other constituents, may be responsible for the antiproliferative activities of the leaf, subject to further investigation.
{"title":"Apoptotic Potential of Iloneoside from Gongronema latifolium Benth against Prostate Cancer Cells Using In Vitro and In Silico Approach.","authors":"Gideon A Gyebi, Saheed O Afolabi, Oludare M Ogunyemi, Ibrahim M Ibrahim, Olufunke E Olorundare, Joseph O Adebayo, Mamoru Koketsu","doi":"10.1007/s12013-024-01507-2","DOIUrl":"https://doi.org/10.1007/s12013-024-01507-2","url":null,"abstract":"<p><p>Prostate cancer is a major cause of cancer-related mortality in men worldwide. The anti-proliferative activity of Gongronema latifolium leaf extracts on some cancer cells has been reported. Herein, we investigated the growth inhibitory effect of the Gongronema latilolium leaf methanol extract and isolated pregnane (iloneoside) against prostate cancer cell lines using the MTT cell proliferation assay, apoptosis quantification, cell cycle analysis using flow cytometry and computational analysis molecular docking, molecular dynamics simulation (MDs), binding free energy computation and cluster analysis. In addition, UPLC-ESI-TOFMS chemical fingerprinting of previously isolated compounds was performed. The extract inhibited the growth of the cell lines with an IC<sub>50</sub> of 49.3 µg/ml and 28.4 µg/ml for 24 h and 48 h, respectively, for PC3; and 43.7 µg/ml and 22.3 µg/ml for 24 h and 48 h, respectively, for DU145. Iloneoside demonstrated low inhibitory activities against PC3 and DU145 (IC<sub>50</sub> > 80 μM). Apoptotic quantification and cell cycle analysis further showed that iloneoside induced apoptosis in a few cells at a dose of 200 uM. The ensemble-based molecular docking of the iloneoside to BCL-XL and BCL-2 proteins, and docking to MCL-1, BCL-A1 and BFL-1 proteins, respectively, presented binding energies of -7.22 ± 0.5, -8.12 ± 0.55, -7.1, -7.2 and -6.3 kcal/mol, while the MM/PBSA binding free energy was -25.72 ± 7.22 and -27.76 ± 11.32 kcal/mol for BCL-XL and BCL-2 proteins. Furthermore, iloneoside was stable during the 100 ns MDs analysis, while the clustering of the MDs trajectories showed that the interactions were strongly preserved. Iloneoside, in part, or in synergy with other constituents, may be responsible for the antiproliferative activities of the leaf, subject to further investigation.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142278440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-16DOI: 10.1007/s12013-024-01330-9
Tao Wang, Yanan Du, Haiyang Song, Jiewei Sun, Wenjin Jiang, Zhiying Xu
Recently, numerous studies have revealed the participation of circular RNAs (circRNAs) in cancer progression. Likewise, this research focused on circRNAs in hepatocellular carcinoma (HCC). A lowly expressed circRNA hsa_circ_0072309 in HCC was screened by analyzing the circRNA microarray GSE242797 and GSE216115 and identified in clinical specimens and cells. Subsequently, CCK-8, colony formation, and transwell assays were performed. The results revealed that hsa_circ_0072309 overexpression suppressed HCC cell proliferation, migration, invasion, and sorafenib resistance, whereas its suppression showed opposite results. Mechanistic investigation found an interaction between hsa_circ_0072309 and its host gene leukemia inhibitory factor receptor (LIFR) in HCC. We found that LIFR overexpression promoted the hsa_circ_0072309 formation. In turn, hsa_circ_0072309 recruited the E1A binding protein p300 to promote the enrichment of H3K27 acetylation (H3K27ac) in the LIFR enhancer, thus transcriptionally promoting LIFR expression. To conclude, we revealed a hsa_circ_0072309/LIFR regulatory loop in HCC, which may provide a potential target for HCC treatment.
{"title":"hsa_circ_0072309 Inhibits Oncogenesis in Hepatocellular Carcinoma by Epigenetic Activation of its Host Gene","authors":"Tao Wang, Yanan Du, Haiyang Song, Jiewei Sun, Wenjin Jiang, Zhiying Xu","doi":"10.1007/s12013-024-01330-9","DOIUrl":"10.1007/s12013-024-01330-9","url":null,"abstract":"<div><p>Recently, numerous studies have revealed the participation of circular RNAs (circRNAs) in cancer progression. Likewise, this research focused on circRNAs in hepatocellular carcinoma (HCC). A lowly expressed circRNA hsa_circ_0072309 in HCC was screened by analyzing the circRNA microarray GSE242797 and GSE216115 and identified in clinical specimens and cells. Subsequently, CCK-8, colony formation, and transwell assays were performed. The results revealed that hsa_circ_0072309 overexpression suppressed HCC cell proliferation, migration, invasion, and sorafenib resistance, whereas its suppression showed opposite results. Mechanistic investigation found an interaction between hsa_circ_0072309 and its host gene leukemia inhibitory factor receptor (LIFR) in HCC. We found that LIFR overexpression promoted the hsa_circ_0072309 formation. In turn, hsa_circ_0072309 recruited the E1A binding protein p300 to promote the enrichment of H3K27 acetylation (H3K27ac) in the LIFR enhancer, thus transcriptionally promoting LIFR expression. To conclude, we revealed a hsa_circ_0072309/LIFR regulatory loop in HCC, which may provide a potential target for HCC treatment.</p></div>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":"82 4","pages":"3251 - 3263"},"PeriodicalIF":1.8,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142262116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-13DOI: 10.1007/s12013-024-01482-8
Miah Roney, Abdul Rashid Issahaku, A K M Moyeenul Huq, Suhaila Sapari, Fazira Ilyana Abdul Razak, Anke Wilhelm, Normaiza Binti Zamri, Sabrina Sharmin, Md Rabiul Islam, Mohd Fadhlizil Fasihi Mohd Aluwi
{"title":"Correction: In Silico Exploration of Isoxazole Derivatives of Usnic Acid: Novel Therapeutic Prospects Against α-Amylase for Diabetes Treatment.","authors":"Miah Roney, Abdul Rashid Issahaku, A K M Moyeenul Huq, Suhaila Sapari, Fazira Ilyana Abdul Razak, Anke Wilhelm, Normaiza Binti Zamri, Sabrina Sharmin, Md Rabiul Islam, Mohd Fadhlizil Fasihi Mohd Aluwi","doi":"10.1007/s12013-024-01482-8","DOIUrl":"https://doi.org/10.1007/s12013-024-01482-8","url":null,"abstract":"","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142278443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Selenium (Se) plays a crucial role in modulating inflammation and oxidative stress within the human system. Biogenic selenium nanoparticles (SeNPs) synthesized by Lactobacillus casei (L. casei) exhibit anti-inflammatory and anti-oxidative properties, positioning them as a promising alternative to traditional supplements characterized by limited bioavailability. With this context in mind, this study investigates the impact of selenium and L. casei in ameliorating inflammation and oxidative stress using a cell line model. The study is centered on the biosynthesis of selenium nanoparticles (SeNPs) by L. casei 393 under anaerobic conditions using a solution of sodium selenite (Na2SeO3) in the bacterial culture medium. The generation of SeNPs ensued from the interaction of L. casei bacteria with selenium ions, a process characterized via transmission electron microscopy (TEM) to confirm the synthesis of SeNPs. To induce inflammation, the human colonic adenocarcinoma cell line, Caco-2 was subjected to interleukin-1 beta (IL-1β) at concentrations of 0.5 and 25 ng/ml. Subsequent analyses encompass the evaluation of SeNPs derived from L. casei, its supernatant, commercial selenium, and L. casei probiotic on Caco2 cell line. Finally, we assessed the inflammatory and oxidative stress markers. The assessment of inflammation involved the quantification of NF-κB and TGF-β gene expression levels, while oxidative stress was evaluated through the measurement of Nrf2, Keap1, NOX1, and SOD2 gene levels. L. casei successfully produced SeNPs, as confirmed by the color change in the culture medium and TEM analysis showing their uniform distribution within the bacteria. In the inflamed Caco-2 cell line, the NF-κB gene was upregulated, but treatment with L. casei-SeNPs and selenium increased TGF-β expression. Moreover, L. casei-SeNPs upregulated SOD2 and Nrf2 genes, while downregulating NOX1, Keap1, and NF-κB genes. These results demonstrated the potential of L. casei-SeNPs for reducing inflammation and managing oxidative stress in the Caco-2 cell line. The study underscores the ability of L. casei-SeNPs to reduce oxidative stress and inflammation in inflamed Caco-2 cell lines, emphasizing the effectiveness of L. casei as a source of selenium. These insights hold significant promise for the development of SeNPs derived from L. casei as potent anti-inflammatory and anti-cancer agents, paving the way for novel therapeutic applications in the field.
{"title":"Exploring the Anti-Inflammatory and Antioxidative Potential of Selenium Nanoparticles Biosynthesized by Lactobacillus casei 393 on an Inflamed Caco-2 Cell Line","authors":"Azadeh Aghamohammadi Sendani, Maryam Farmani, Kasra Jahankhani, Nesa Kazemifard, Shaghayegh Baradaran Ghavami, Hamidreza Houri, Fatemeh Ashrafi, Amir Sadeghi","doi":"10.1007/s12013-024-01356-z","DOIUrl":"10.1007/s12013-024-01356-z","url":null,"abstract":"<div><p>Selenium (Se) plays a crucial role in modulating inflammation and oxidative stress within the human system. Biogenic selenium nanoparticles (SeNPs) synthesized by <i>Lactobacillus casei</i> (<i>L. casei</i>) exhibit anti-inflammatory and anti-oxidative properties, positioning them as a promising alternative to traditional supplements characterized by limited bioavailability. With this context in mind, this study investigates the impact of selenium and <i>L. casei</i> in ameliorating inflammation and oxidative stress using a cell line model. The study is centered on the biosynthesis of selenium nanoparticles (SeNPs) by <i>L. casei 393</i> under anaerobic conditions using a solution of sodium selenite (Na2SeO3) in the bacterial culture medium. The generation of SeNPs ensued from the interaction of <i>L. casei</i> bacteria with selenium ions, a process characterized via transmission electron microscopy (TEM) to confirm the synthesis of SeNPs. To induce inflammation, the human colonic adenocarcinoma cell line, Caco-2 was subjected to interleukin-1 beta (IL-1β) at concentrations of 0.5 and 25 ng/ml. Subsequent analyses encompass the evaluation of SeNPs derived from <i>L. casei</i>, its supernatant, commercial selenium, and <i>L. casei</i> probiotic on Caco2 cell line. Finally, we assessed the inflammatory and oxidative stress markers. The assessment of inflammation involved the quantification of NF-κB and TGF-β gene expression levels, while oxidative stress was evaluated through the measurement of Nrf2, Keap1, NOX1, and SOD2 gene levels. <i>L. casei</i> successfully produced SeNPs, as confirmed by the color change in the culture medium and TEM analysis showing their uniform distribution within the bacteria. In the inflamed Caco-2 cell line, the NF-κB gene was upregulated, but treatment with <i>L. casei</i>-SeNPs and selenium increased TGF-β expression. Moreover, <i>L. casei</i>-SeNPs upregulated SOD2 and Nrf2 genes, while downregulating NOX1, Keap1, and NF-κB genes. These results demonstrated the potential of <i>L. casei</i>-SeNPs for reducing inflammation and managing oxidative stress in the Caco-2 cell line. The study underscores the ability of <i>L. casei</i>-SeNPs to reduce oxidative stress and inflammation in inflamed Caco-2 cell lines, emphasizing the effectiveness of <i>L. casei</i> as a source of selenium. These insights hold significant promise for the development of SeNPs derived from <i>L. casei</i> as potent anti-inflammatory and anti-cancer agents, paving the way for novel therapeutic applications in the field.</p></div>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":"82 4","pages":"3265 - 3276"},"PeriodicalIF":1.8,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142184814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-09DOI: 10.1007/s12013-024-01502-7
Lu Min, Xuewei Li, Lily Liang, Zheng Ruan, Shaohui Yu
One of the leading causes of mortality for women is gynecologic cancer (GC). Numerous molecules (tumor suppressor genes or oncogenes) are involved in this form of cancer's invasion, metastasis, tumorigenic process, and therapy resistance. Currently, there is a shortage of efficient methods to eliminate these diseases, hence it is crucial to carry out more extensive studies on GCs. Novel pharmaceuticals are required to surmount this predicament. Highly conserved molecular chaperon, heat shock protein (HSP) 90, is essential for the maturation of recently produced polypeptides and offers a refuge for misfolding or denatured proteins to be turned around. In cancer, the client proteins of HSP90 play a role in the entire process of oncogenesis, which is linked to all the characteristic features of cancer. In this study, we explore the various functions of HSPs in GC progression. We also discuss their potential as promising targets for pharmacological therapy.
{"title":"Targeting HSP90 in Gynecologic Cancer: Molecular Mechanisms and Therapeutic Approaches.","authors":"Lu Min, Xuewei Li, Lily Liang, Zheng Ruan, Shaohui Yu","doi":"10.1007/s12013-024-01502-7","DOIUrl":"https://doi.org/10.1007/s12013-024-01502-7","url":null,"abstract":"<p><p>One of the leading causes of mortality for women is gynecologic cancer (GC). Numerous molecules (tumor suppressor genes or oncogenes) are involved in this form of cancer's invasion, metastasis, tumorigenic process, and therapy resistance. Currently, there is a shortage of efficient methods to eliminate these diseases, hence it is crucial to carry out more extensive studies on GCs. Novel pharmaceuticals are required to surmount this predicament. Highly conserved molecular chaperon, heat shock protein (HSP) 90, is essential for the maturation of recently produced polypeptides and offers a refuge for misfolding or denatured proteins to be turned around. In cancer, the client proteins of HSP90 play a role in the entire process of oncogenesis, which is linked to all the characteristic features of cancer. In this study, we explore the various functions of HSPs in GC progression. We also discuss their potential as promising targets for pharmacological therapy.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142152918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
One of the common side effects of chemotherapy drugs is ovarian failure and uterine dysfunction, which can occur after the administration of doxorubicin and/or cyclophosphamide. In clinics, gonadotropin-releasing hormone agonists (GnRHa) are used to modulate the toxic effect of chemotherapy and intercept infertility with some controversy and limited histological knowledge. This study aimed to evaluate the serological and histological features of protective effects of triptorelin, (GnRHa), on utero-ovarian tissue in the mice treated with cyclophosphamide and/or doxorubicin. Forty-eight female BALB/c mice were randomly divided into 8 groups as follows: Group I: normal saline; Group II: triptorelin; Group III: cyclophosphamide; Group IV: doxorubicin; Group V: cyclophosphamide + doxorubicin; and Groups VI, VII, and VIII: after injection of cyclophosphamide, doxorubicin, or cyclophosphamide + doxorubicin, administration of triptorelin (1 mg/kg; intraperitoneally) for 15 consecutive days, respectively. On the 21st day, the ovaries and uterine horns were dissected and weighed. Then, tissue processing and staining were performed for further histological and stereological studies. Triptorelin treatment in the damaged groups significantly increased the number of primordial and pre-antral follicles and granulosa cells. It decreased the number of atretic follicles compared to cyclophosphamide and/or doxorubicin-treated groups (P < 0.05). Triptorelin also significantly improved the volume of the ovary, cortex, medulla, oocytes in the primordial and antral follicles, uterus, endometrium, myometrium, uterine glands, and endometrial blood vessels in the damaged groups (P < 0.05). Triptorelin treatment prevents the destructive effects of cyclophosphamide and/or doxorubicin on utero-ovarian tissue.
{"title":"The Protective Effect of GnRH Agonist Triptorelin on the Histomorphometric Parameters of the Utero-ovarian Tissue in the Doxorubicin- and Cyclophosphamide-treated Mice.","authors":"Soghra Bahmanpour, Negin Ameri, Nehleh Zareifard, Fatemeh Karimi","doi":"10.1007/s12013-024-01487-3","DOIUrl":"https://doi.org/10.1007/s12013-024-01487-3","url":null,"abstract":"<p><p>One of the common side effects of chemotherapy drugs is ovarian failure and uterine dysfunction, which can occur after the administration of doxorubicin and/or cyclophosphamide. In clinics, gonadotropin-releasing hormone agonists (GnRHa) are used to modulate the toxic effect of chemotherapy and intercept infertility with some controversy and limited histological knowledge. This study aimed to evaluate the serological and histological features of protective effects of triptorelin, (GnRHa), on utero-ovarian tissue in the mice treated with cyclophosphamide and/or doxorubicin. Forty-eight female BALB/c mice were randomly divided into 8 groups as follows: Group I: normal saline; Group II: triptorelin; Group III: cyclophosphamide; Group IV: doxorubicin; Group V: cyclophosphamide + doxorubicin; and Groups VI, VII, and VIII: after injection of cyclophosphamide, doxorubicin, or cyclophosphamide + doxorubicin, administration of triptorelin (1 mg/kg; intraperitoneally) for 15 consecutive days, respectively. On the 21st day, the ovaries and uterine horns were dissected and weighed. Then, tissue processing and staining were performed for further histological and stereological studies. Triptorelin treatment in the damaged groups significantly increased the number of primordial and pre-antral follicles and granulosa cells. It decreased the number of atretic follicles compared to cyclophosphamide and/or doxorubicin-treated groups (P < 0.05). Triptorelin also significantly improved the volume of the ovary, cortex, medulla, oocytes in the primordial and antral follicles, uterus, endometrium, myometrium, uterine glands, and endometrial blood vessels in the damaged groups (P < 0.05). Triptorelin treatment prevents the destructive effects of cyclophosphamide and/or doxorubicin on utero-ovarian tissue.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142152919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-08DOI: 10.1007/s12013-024-01510-7
Dongxun Xu, Wenhui Fan, Bing Fu, Hongxia Nie
Parkinson's disease (PD) is a prevalent neurodegenerative disorder for which novel treatment approaches are continuously sought. This study investigates the role of high-mobility group A1 (HMGA1) in modulating inflammatory responses and oxidative stress injury in PD. We utilized the murine dopaminergic neuronal cell line MN9D, treating cells with 1-methyl-4-phenylpyridinium ion (MPP+) to mimic PD conditions. The expression levels of HMGA1 and insulin receptor substrate 2 (IRS2) were measured using quantitative polymerase chain reaction and Western blot assay. Cell damage was assessed with cell counting kit-8 and lactate dehydrogenase assays. Inflammatory response and oxidative stress were evaluated by quantifying interleukin (IL)-1β, IL-6, tumor necrosis factor-α, reactive oxygen species, superoxide dismutase, and malondialdehyde (MDA) levels using enzyme-linked immunosorbent assay and commercial kits. The binding interaction between HMGA1 and IRS2 was analyzed using chromatin immunoprecipitation (ChIP) and dual-luciferase reporter assays. Our findings revealed that MPP+ treatment increased the expression of HMGA1 and IRS2. Downregulation of HMGA1 enhanced cell viability, reduced inflammation, and mitigated oxidative stress in MPP+-induced cells. Further investigation demonstrated that HMGA1 bounded to the IRS2 promoter, enhancing IRS2 expression. Overexpression of IRS2 counteracted the protective effects of HMGA1 downregulation. In conclusion, HMGA1 exacerbates MPP+-induced cell damage by activating IRS2 transcription, which in turn heightens inflammation and oxidative stress. These findings suggest that targeting HMGA1 could be a potential therapeutic strategy for PD.
{"title":"HMGA1 Regulates IRS2 to Promote Inflammatory Responses and Oxidative Stress Injury in MPP<sup>+</sup>-Induced cells.","authors":"Dongxun Xu, Wenhui Fan, Bing Fu, Hongxia Nie","doi":"10.1007/s12013-024-01510-7","DOIUrl":"https://doi.org/10.1007/s12013-024-01510-7","url":null,"abstract":"<p><p>Parkinson's disease (PD) is a prevalent neurodegenerative disorder for which novel treatment approaches are continuously sought. This study investigates the role of high-mobility group A1 (HMGA1) in modulating inflammatory responses and oxidative stress injury in PD. We utilized the murine dopaminergic neuronal cell line MN9D, treating cells with 1-methyl-4-phenylpyridinium ion (MPP<sup>+</sup>) to mimic PD conditions. The expression levels of HMGA1 and insulin receptor substrate 2 (IRS2) were measured using quantitative polymerase chain reaction and Western blot assay. Cell damage was assessed with cell counting kit-8 and lactate dehydrogenase assays. Inflammatory response and oxidative stress were evaluated by quantifying interleukin (IL)-1β, IL-6, tumor necrosis factor-α, reactive oxygen species, superoxide dismutase, and malondialdehyde (MDA) levels using enzyme-linked immunosorbent assay and commercial kits. The binding interaction between HMGA1 and IRS2 was analyzed using chromatin immunoprecipitation (ChIP) and dual-luciferase reporter assays. Our findings revealed that MPP<sup>+</sup> treatment increased the expression of HMGA1 and IRS2. Downregulation of HMGA1 enhanced cell viability, reduced inflammation, and mitigated oxidative stress in MPP<sup>+</sup>-induced cells. Further investigation demonstrated that HMGA1 bounded to the IRS2 promoter, enhancing IRS2 expression. Overexpression of IRS2 counteracted the protective effects of HMGA1 downregulation. In conclusion, HMGA1 exacerbates MPP<sup>+</sup>-induced cell damage by activating IRS2 transcription, which in turn heightens inflammation and oxidative stress. These findings suggest that targeting HMGA1 could be a potential therapeutic strategy for PD.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142152917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}