Ovarian cancer (OC) is a frequently occurring gynecological tumor, and its global incidence has recently increased. Coronin-like actin-binding protein 1C (CORO1C) is known to activate the phosphoinositide 3-kinase (PI3K)-protein kinase B (AKT) pathway and promote tumor progression. However, its role in OC remains unclear. This study investigated the role of CORO1C in OC malignancy. In this study, quantitative real-time polymerase chain reaction (qRT-PCR) was used to examine AKT and CORO1C mRNA expression in clinical OC tissues and cells. Immunohistochemical analysis and western blotting were used to examine protein expression in OC tissues and cells, respectively. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), scratch wound-healing, and Transwell assays were performed to examine cell proliferation and migration. RNA-Seq was used to validate the relationship between AKT and CORO1C expression. The results showed that CORO1C was highly expressed in clinical OC tissues and SKOV3 cells, correlating with the International Federation of Gynecology and Obstetrics (FIGO) stage. Furthermore, CORO1C knockout inhibited the proliferation, migration, and invasion of SKOV3 cells; altered the gene expression patterns in these cells; and was closely associated with the PI3K/AKT pathway. Western blotting confirmed that CORO1C knockout reduced the levels of phosphorylated PI3K and AKT. Additionally, CORO1C knockout increased phosphatase and tensin homologs deleted on chromosome 10 (PTEN) protein expression, whereas CORO1C overexpression decreased it. In conclusion, this study demonstrated that high CORO1C levels in OC are associated with greater metastasis and worse prognosis. CORO1C negatively regulates PTEN expression, activates the PI3K/AKT pathway, and promotes OC cell malignancy In patients with OC, CORO1C may function as an effective therapeutic and predictive biomarker.
{"title":"CORO1C Regulates the Malignant Biological Behavior of Ovarian Cancer Cells and Modulates the mRNA Expression Profile through the PI3K/AKT Signaling Pathway.","authors":"Na Lu, Yongfeng Guo, Lixin Ren, Hongwei Zhao, Lijun Yan, Haiqiong Han, Sanyuan Zhang","doi":"10.1007/s12013-024-01591-4","DOIUrl":"https://doi.org/10.1007/s12013-024-01591-4","url":null,"abstract":"<p><p>Ovarian cancer (OC) is a frequently occurring gynecological tumor, and its global incidence has recently increased. Coronin-like actin-binding protein 1C (CORO1C) is known to activate the phosphoinositide 3-kinase (PI3K)-protein kinase B (AKT) pathway and promote tumor progression. However, its role in OC remains unclear. This study investigated the role of CORO1C in OC malignancy. In this study, quantitative real-time polymerase chain reaction (qRT-PCR) was used to examine AKT and CORO1C mRNA expression in clinical OC tissues and cells. Immunohistochemical analysis and western blotting were used to examine protein expression in OC tissues and cells, respectively. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), scratch wound-healing, and Transwell assays were performed to examine cell proliferation and migration. RNA-Seq was used to validate the relationship between AKT and CORO1C expression. The results showed that CORO1C was highly expressed in clinical OC tissues and SKOV3 cells, correlating with the International Federation of Gynecology and Obstetrics (FIGO) stage. Furthermore, CORO1C knockout inhibited the proliferation, migration, and invasion of SKOV3 cells; altered the gene expression patterns in these cells; and was closely associated with the PI3K/AKT pathway. Western blotting confirmed that CORO1C knockout reduced the levels of phosphorylated PI3K and AKT. Additionally, CORO1C knockout increased phosphatase and tensin homologs deleted on chromosome 10 (PTEN) protein expression, whereas CORO1C overexpression decreased it. In conclusion, this study demonstrated that high CORO1C levels in OC are associated with greater metastasis and worse prognosis. CORO1C negatively regulates PTEN expression, activates the PI3K/AKT pathway, and promotes OC cell malignancy In patients with OC, CORO1C may function as an effective therapeutic and predictive biomarker.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142455183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-19DOI: 10.1007/s12013-024-01559-4
Shengnan Yang, Yun Zhang, Chenghong Zheng
Podocyte injury plays a pivotal role in the pathogenesis of diabetic nephropathy (DN), leading to proteinuria formation. β-Sitosterol is a natural compound with anti-inflammatory, anti-diabetic, nephroprotective and antioxidant properties. The studyaimed to explore whether and how β-Sitosterol protected podocytes against high glucose (HG)-induced inflammatory andoxidative injury. DN cell models were established by stimulating podocytes or renal tubular epithelial cells (HK-2) cells with 25 mM glucose. Cell viability and apoptosis were evaluated using cell counting kit-8 assays and flow cytometry analyses. Westernblotting was used to quantify protein levels of genes related to podocyte injury, HK-2 cell damage, inflammation, and TLR4/NF-кB pathway. Contents of oxidative stress biomarkers were evaluated by corresponding commercial kits while proinflammatorycytokine levels were determined by enzyme-linked immunosorbent assay. Immunofluorescence staining was performed todetect intracellular levels of reactive oxygen species (ROS) and Nrf2 nuclear translocation. Experimental results revealed that HG treatment induced podocyte dysfunction by impairing cell viability while accelerating theapoptosis, and the changes were reversed by β-sitosterol treatment. Moreover, β-sitosterol repressed HG-evoked oxidative stressby reducing ROS and malondialdehyde (MDA) levels while increasing activities of antioxidant enzymes. The reduction ofproinflammatory cytokines mediated by β-sitosterol in HG-stimulated podocytes suggested the anti-inflammatory role of β-sitosterol. Additionally, the activation of the TLR4/NF-кB signaling induced by HG was inhibited by β-sitosterol in podocytes.Inactivation of the TLR4 using TAK-242 enhanced the protective effects of β-sitosterol against HG-mediated oxidative stressand inflammation. Similarly, β-sitosterol also protected HK-2 cells from HG-induced oxidative stress, inflammation, andapoptosis. In summary, β-sitosterol exerts anti-inflammatory, anti-oxidative, and anti-apoptotic activities in HG-induced podocytes or HK-2 cells by inhibiting TLR4/NF-кB signaling.
{"title":"β-Sitosterol Mitigates Apoptosis, Oxidative Stress and Inflammatory Response by Inactivating TLR4/NF-кB Pathway in Cell Models of Diabetic Nephropathy.","authors":"Shengnan Yang, Yun Zhang, Chenghong Zheng","doi":"10.1007/s12013-024-01559-4","DOIUrl":"https://doi.org/10.1007/s12013-024-01559-4","url":null,"abstract":"<p><p>Podocyte injury plays a pivotal role in the pathogenesis of diabetic nephropathy (DN), leading to proteinuria formation. β-Sitosterol is a natural compound with anti-inflammatory, anti-diabetic, nephroprotective and antioxidant properties. The studyaimed to explore whether and how β-Sitosterol protected podocytes against high glucose (HG)-induced inflammatory andoxidative injury. DN cell models were established by stimulating podocytes or renal tubular epithelial cells (HK-2) cells with 25 mM glucose. Cell viability and apoptosis were evaluated using cell counting kit-8 assays and flow cytometry analyses. Westernblotting was used to quantify protein levels of genes related to podocyte injury, HK-2 cell damage, inflammation, and TLR4/NF-кB pathway. Contents of oxidative stress biomarkers were evaluated by corresponding commercial kits while proinflammatorycytokine levels were determined by enzyme-linked immunosorbent assay. Immunofluorescence staining was performed todetect intracellular levels of reactive oxygen species (ROS) and Nrf2 nuclear translocation. Experimental results revealed that HG treatment induced podocyte dysfunction by impairing cell viability while accelerating theapoptosis, and the changes were reversed by β-sitosterol treatment. Moreover, β-sitosterol repressed HG-evoked oxidative stressby reducing ROS and malondialdehyde (MDA) levels while increasing activities of antioxidant enzymes. The reduction ofproinflammatory cytokines mediated by β-sitosterol in HG-stimulated podocytes suggested the anti-inflammatory role of β-sitosterol. Additionally, the activation of the TLR4/NF-кB signaling induced by HG was inhibited by β-sitosterol in podocytes.Inactivation of the TLR4 using TAK-242 enhanced the protective effects of β-sitosterol against HG-mediated oxidative stressand inflammation. Similarly, β-sitosterol also protected HK-2 cells from HG-induced oxidative stress, inflammation, andapoptosis. In summary, β-sitosterol exerts anti-inflammatory, anti-oxidative, and anti-apoptotic activities in HG-induced podocytes or HK-2 cells by inhibiting TLR4/NF-кB signaling.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142455235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-19DOI: 10.1007/s12013-024-01585-2
Hussein Salim Abed, Enwa Felix Oghenemaro, Aziz Kubaev, Zuhair Mohammed Ali Jeddoa, RenukaJyothi S, Shilpa Sharma, Raghav Vashishth, Majid S Jabir, Sabrean Farhan Jawad, Ahmed Hussein Zwamel
Inflammatory bowel disease (IBD) is an idiopathic disease caused by a dysregulated immune response to host intestinal microflora. A hyperactive inflammatory and immunological response in the gut has been shown to be one of the disease's long-term causes despite the complexity of the clinical pathology of IBD. The innate immune system activator known as human gut inflammasome is thought to be a significant underlying cause of pathology and is closely linked to the development of IBD. It is essential to comprehend the function of inflammasome activation in IBD to treat it effectively. Systemic inflammasome regulation may be a proper therapeutic and clinical strategy to manage IBD symptoms since inflammasomes may have a significant function in IBD. Non-coding RNAs (ncRNAs) are a type of RNA transcript that is incapable of encoding proteins or peptides. In IBD, inflammation develops and worsens as a result of its imbalance. Culminating evidence has been shown that ncRNAs, and particularly long non-coding RNAs (lncRNAs), may play a role in the regulation of NLR family pyrin domain containing 3 (NLRP3) inflammasome activation in IBD. The relationship between IBD and the gut inflammasome, as well as current developments in IBD research and treatment approaches, have been the main topics of this review. We have covered inflammasomes and their constituents, results from in vivo research, inflammasome inhibitors, and advancements in inflammasome-targeted therapeutics for IBD.
{"title":"Non-coding RNAs as a Critical Player in the Regulation of Inflammasome in Inflammatory Bowel Diseases; Emphasize on lncRNAs.","authors":"Hussein Salim Abed, Enwa Felix Oghenemaro, Aziz Kubaev, Zuhair Mohammed Ali Jeddoa, RenukaJyothi S, Shilpa Sharma, Raghav Vashishth, Majid S Jabir, Sabrean Farhan Jawad, Ahmed Hussein Zwamel","doi":"10.1007/s12013-024-01585-2","DOIUrl":"https://doi.org/10.1007/s12013-024-01585-2","url":null,"abstract":"<p><p>Inflammatory bowel disease (IBD) is an idiopathic disease caused by a dysregulated immune response to host intestinal microflora. A hyperactive inflammatory and immunological response in the gut has been shown to be one of the disease's long-term causes despite the complexity of the clinical pathology of IBD. The innate immune system activator known as human gut inflammasome is thought to be a significant underlying cause of pathology and is closely linked to the development of IBD. It is essential to comprehend the function of inflammasome activation in IBD to treat it effectively. Systemic inflammasome regulation may be a proper therapeutic and clinical strategy to manage IBD symptoms since inflammasomes may have a significant function in IBD. Non-coding RNAs (ncRNAs) are a type of RNA transcript that is incapable of encoding proteins or peptides. In IBD, inflammation develops and worsens as a result of its imbalance. Culminating evidence has been shown that ncRNAs, and particularly long non-coding RNAs (lncRNAs), may play a role in the regulation of NLR family pyrin domain containing 3 (NLRP3) inflammasome activation in IBD. The relationship between IBD and the gut inflammasome, as well as current developments in IBD research and treatment approaches, have been the main topics of this review. We have covered inflammasomes and their constituents, results from in vivo research, inflammasome inhibitors, and advancements in inflammasome-targeted therapeutics for IBD.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142455190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-18DOI: 10.1007/s12013-024-01566-5
Min Jiang, Hong Yu
Ginsenoside 20(S)-Rg3 (20(S)-Rg3) belongs to a natural chemical with an anti-tumor function, but its potential function and underlying mechanism in esophageal squamous cell carcinoma (ESCC) are unknown. Several reports have manifested that microRNA (miRNA) miR-210-3p functions as a tumor repressor in tumors, but its biofunction in ESCC remains obscure. Herein, the role and interaction of 20(S)-Rg3 and miR-210-3p in ESCC cells were investigated. We performed a series of functional experiments to validate that 20(S)-Rg3 notably restrained ESCC cell proliferation and migration while promoting cell apoptosis. Besides, miR-210-3p was found to be lowly expressed in ESCC cells. Overexpressing miR-210-3p suppressed the malignant behaviors of ESCC cells. More importantly, 20(S)-Rg3 could upregulate miR-210-3p expression in ESCC cells. MiR-210-3p knockdown offset the inhibitive impacts of 20(S)-Rg3 treatment on ESCC cell growth and migration. Furthermore, through luciferase reporter assay, beta-1,4-galactosyltransferase 5 (B4GALT5) was certified to be targeted by miR-210-3p. B4GALT5 upregulation neutralized the suppressive function of 20(S)-Rg3 on ESCC progression. Overall, 20(S)-Rg3 attenuated malignant behaviors of ESCC cells by modulating miR-210-3p/B4GALT5 axis, indicating 20(S)-Rg3 has therapeutic potential for ESCC.
{"title":"Ginsenoside 20(S)-Rg3 Hinders Esophageal Squamous Cell Carcinoma Cells Malignant Behaviors by miR-210-3p/B4GALT5 Axis.","authors":"Min Jiang, Hong Yu","doi":"10.1007/s12013-024-01566-5","DOIUrl":"https://doi.org/10.1007/s12013-024-01566-5","url":null,"abstract":"<p><p>Ginsenoside 20(S)-Rg3 (20(S)-Rg3) belongs to a natural chemical with an anti-tumor function, but its potential function and underlying mechanism in esophageal squamous cell carcinoma (ESCC) are unknown. Several reports have manifested that microRNA (miRNA) miR-210-3p functions as a tumor repressor in tumors, but its biofunction in ESCC remains obscure. Herein, the role and interaction of 20(S)-Rg3 and miR-210-3p in ESCC cells were investigated. We performed a series of functional experiments to validate that 20(S)-Rg3 notably restrained ESCC cell proliferation and migration while promoting cell apoptosis. Besides, miR-210-3p was found to be lowly expressed in ESCC cells. Overexpressing miR-210-3p suppressed the malignant behaviors of ESCC cells. More importantly, 20(S)-Rg3 could upregulate miR-210-3p expression in ESCC cells. MiR-210-3p knockdown offset the inhibitive impacts of 20(S)-Rg3 treatment on ESCC cell growth and migration. Furthermore, through luciferase reporter assay, beta-1,4-galactosyltransferase 5 (B4GALT5) was certified to be targeted by miR-210-3p. B4GALT5 upregulation neutralized the suppressive function of 20(S)-Rg3 on ESCC progression. Overall, 20(S)-Rg3 attenuated malignant behaviors of ESCC cells by modulating miR-210-3p/B4GALT5 axis, indicating 20(S)-Rg3 has therapeutic potential for ESCC.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142455187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-18DOI: 10.1007/s12013-024-01587-0
Saade Abdalkareem Jasim, Farag M A Altalbawy, Mohammad Abohassan, Enwa Felix Oghenemaro, Ashok Kumar Bishoyi, Ravindra Pal Singh, Parjinder Kaur, G V Sivaprasad, Jaafaru Sani Mohammed, Hanen Mahmod Hulail
The histone acetyl transferases (HATs) and histone deacetylases (HDACs), which are mostly recognized for their involvement in regulating chromatin remodeling via histone acetylation/deacetylation, have been shown to also change several non-histone proteins to regulate other cellular processes. Acetylation affects the activity or function of cytokine receptors, nuclear hormone receptors, intracellular signaling molecules, and transcription factors in connection to inflammation. Some small-molecule HDAC inhibitors are utilized as anticancer medications in clinical settings due to their capability to regulate cellular growth arrest, differentiation, and death. Here, we summarize our present knowledge of the innate and adaptive immunological pathways that classical HDAC enzymes control. The aim is to justify the targeted (or non-targeted) use of inhibitors against certain HDAC enzymes in inflammatory diseases such as arthritis, inflammatory bowel diseases (IBD), airways inflammation and neurological diseases.
{"title":"Histone Deacetylases (HDACs) Roles in Inflammation-mediated Diseases; Current Knowledge.","authors":"Saade Abdalkareem Jasim, Farag M A Altalbawy, Mohammad Abohassan, Enwa Felix Oghenemaro, Ashok Kumar Bishoyi, Ravindra Pal Singh, Parjinder Kaur, G V Sivaprasad, Jaafaru Sani Mohammed, Hanen Mahmod Hulail","doi":"10.1007/s12013-024-01587-0","DOIUrl":"https://doi.org/10.1007/s12013-024-01587-0","url":null,"abstract":"<p><p>The histone acetyl transferases (HATs) and histone deacetylases (HDACs), which are mostly recognized for their involvement in regulating chromatin remodeling via histone acetylation/deacetylation, have been shown to also change several non-histone proteins to regulate other cellular processes. Acetylation affects the activity or function of cytokine receptors, nuclear hormone receptors, intracellular signaling molecules, and transcription factors in connection to inflammation. Some small-molecule HDAC inhibitors are utilized as anticancer medications in clinical settings due to their capability to regulate cellular growth arrest, differentiation, and death. Here, we summarize our present knowledge of the innate and adaptive immunological pathways that classical HDAC enzymes control. The aim is to justify the targeted (or non-targeted) use of inhibitors against certain HDAC enzymes in inflammatory diseases such as arthritis, inflammatory bowel diseases (IBD), airways inflammation and neurological diseases.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142455188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-18DOI: 10.1007/s12013-024-01581-6
Manisha Shukla, Mahesh Narayan
Proteostasis (protein homeostasis) refers to the general biological process that maintains the proper balance between the synthesis of proteins, their folding, trafficking, and degradation. It ensures proteins are functional, locally distributed, and appropriately folded inside cells. Genetic information enclosed in mRNA is translated into proteins. To ensure newly synthesized proteins take on the exact three-dimensional conformation, molecular chaperones assist in proper folding. Misfolded proteins can be refolded or targeted for elimination to stop aggregation. Cells utilize different degradation pathways, for instance, the ubiquitin-proteasome system, the autophagy-lysosome pathway, and the unfolded protein response, to degrade unwanted or damaged proteins. Quality control systems of the cell monitor the folding of proteins. These checkpoint mechanisms are aimed at degrading or refolding misfolded or damaged proteins. Under stress response pathways, such as heat shock response and unfolded protein response, which are triggered under conditions that perturb proteostasis, the capacity for folding is increased, and degradation pathways are activated to help cells handle stressful conditions. The deregulation of proteostasis is implicated in a variety of illnesses, comprising cancer, metabolic diseases, cardiovascular diseases, and neurological disorders. Therapeutic strategies with a deeper insight into the mechanism of proteostasis are crucial for the treatment of illnesses linked with proteostasis and to support cellular health. Thus, proteostasis is required not only for the maintenance of cellular homeostasis and function but also for proper protein function and prevention of injurious protein aggregation. In this review, we have covered the concept of proteostasis, its mechanism, and how disruptions to it can result in a number of disorders.
{"title":"Proteostasis and Its Role in Disease Development.","authors":"Manisha Shukla, Mahesh Narayan","doi":"10.1007/s12013-024-01581-6","DOIUrl":"https://doi.org/10.1007/s12013-024-01581-6","url":null,"abstract":"<p><p>Proteostasis (protein homeostasis) refers to the general biological process that maintains the proper balance between the synthesis of proteins, their folding, trafficking, and degradation. It ensures proteins are functional, locally distributed, and appropriately folded inside cells. Genetic information enclosed in mRNA is translated into proteins. To ensure newly synthesized proteins take on the exact three-dimensional conformation, molecular chaperones assist in proper folding. Misfolded proteins can be refolded or targeted for elimination to stop aggregation. Cells utilize different degradation pathways, for instance, the ubiquitin-proteasome system, the autophagy-lysosome pathway, and the unfolded protein response, to degrade unwanted or damaged proteins. Quality control systems of the cell monitor the folding of proteins. These checkpoint mechanisms are aimed at degrading or refolding misfolded or damaged proteins. Under stress response pathways, such as heat shock response and unfolded protein response, which are triggered under conditions that perturb proteostasis, the capacity for folding is increased, and degradation pathways are activated to help cells handle stressful conditions. The deregulation of proteostasis is implicated in a variety of illnesses, comprising cancer, metabolic diseases, cardiovascular diseases, and neurological disorders. Therapeutic strategies with a deeper insight into the mechanism of proteostasis are crucial for the treatment of illnesses linked with proteostasis and to support cellular health. Thus, proteostasis is required not only for the maintenance of cellular homeostasis and function but also for proper protein function and prevention of injurious protein aggregation. In this review, we have covered the concept of proteostasis, its mechanism, and how disruptions to it can result in a number of disorders.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142455206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-17DOI: 10.1007/s12013-024-01568-3
Zhenzhen Zou, Honghui Tang, Erya Xiao, Yu Zhou, Xuebei Yin, Zhen Hu, Yang Cai, Qingzhen Han, Lin Wang
This study aimed to evaluate the performance and clinical laboratory adaptability of the Mindray SAL9000 biochemical immunoassay automation system, ensuring compliance with ISO 15189 standards and relevant national requirements. We conducted comprehensive performance verification tests on 21 biochemical analytes and 15 immunoassays, including precision, accuracy, linear bias, measurement range assessments, interference testing, reference range validation, inter-instrument comparison, and carryover verification. The Mindray SAL9000 demonstrated high performance across various parameters, with all analytes showing good linearity and minimal bias. While specific interfering substances affected some analytes, the system showed excellent resistance to common interferences such as hemolysis, ascorbic acid, and jaundice. The inter-instrument comparison with the BS2000M and Roche 702 indicated a good correlation, with most parameters showing biases of less than 10%, although exceptions were noted for ALT and AST. In conclusion, the Mindray SAL9000 meets clinical requirements through its high precision, excellent accuracy, and broad measurement range, making it a reliable and adaptable choice for clinical outpatient and emergency laboratories.
{"title":"Ensuring Clinical Excellence: The Mindray SAL9000 Biochemical Immunoassay System.","authors":"Zhenzhen Zou, Honghui Tang, Erya Xiao, Yu Zhou, Xuebei Yin, Zhen Hu, Yang Cai, Qingzhen Han, Lin Wang","doi":"10.1007/s12013-024-01568-3","DOIUrl":"https://doi.org/10.1007/s12013-024-01568-3","url":null,"abstract":"<p><p>This study aimed to evaluate the performance and clinical laboratory adaptability of the Mindray SAL9000 biochemical immunoassay automation system, ensuring compliance with ISO 15189 standards and relevant national requirements. We conducted comprehensive performance verification tests on 21 biochemical analytes and 15 immunoassays, including precision, accuracy, linear bias, measurement range assessments, interference testing, reference range validation, inter-instrument comparison, and carryover verification. The Mindray SAL9000 demonstrated high performance across various parameters, with all analytes showing good linearity and minimal bias. While specific interfering substances affected some analytes, the system showed excellent resistance to common interferences such as hemolysis, ascorbic acid, and jaundice. The inter-instrument comparison with the BS2000M and Roche 702 indicated a good correlation, with most parameters showing biases of less than 10%, although exceptions were noted for ALT and AST. In conclusion, the Mindray SAL9000 meets clinical requirements through its high precision, excellent accuracy, and broad measurement range, making it a reliable and adaptable choice for clinical outpatient and emergency laboratories.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142455185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-17DOI: 10.1007/s12013-024-01589-y
Xiaojing Hua, Qing Lu, Li Zeng
Sestrin 2 (SESN2) has been reported to participate in the regulation of granulosa cell function in ovarian tissues. However, the role of SESN2 in polycystic ovarian syndrome (PCOS) is still incompletely understood. Here, we investigated the functional role and mechanism of SESN2 in dihydrotestosterone (DHT)-induced granulosa cells. In this study, DHT was utilized to induce PCOS cell model and the AMP-activated protein kinase (AMPK) inhibitor Compound C (CC) was utilized to inhibit the AMPK pathway. qRT-PCR was performed to detect the expression of SESN2 in HGLS cells. Cell apoptosis was evaluated by flow cytometry. Oxidative stress was detected by DCFH-DA staining, superoxide dismutase (SOD), malondialdehyde (MDA), and glutathione peroxidase (GSH-Px) kits. The expression of SESN2, cell apoptosis, oxidative stress, mitophagy and AMPK/ULK1 signaling-related proteins were measured by western blot. The results showed that SESN2 was downregulated in DHT-induced granulosa cells. Overexpression of SESN2 inhibited the DHT-induced apoptosis and oxidative stress of HGLS cells. DHT induction aggravated HGLS cell apoptosis and oxidative stress. SESN2 overexpression inhibited the DHT-induced apoptosis and oxidative stress of HGLS cells. In addition, overexpression of SESN2 activated the AMPK/ULK1 signaling pathway and promoted mitophagy. Treatment of CC reversed the regulatory effect of SESN2 on mitophagy. CC also reversed the influences of SESN2 overexpression on apoptosis and oxidative stress in DHT-induced HGLS cells. Overall, SESN2 suppressed DHT-induced apoptosis and oxidative stress in PCOS through AMPK/ULK1-mediated mitophagy.
{"title":"SESN2 Ameliorates Dihydrotestosterone-induced Human Ovarian Granulosa Cell Damage by Activating AMPK/ULK1-mediated Mitophagy.","authors":"Xiaojing Hua, Qing Lu, Li Zeng","doi":"10.1007/s12013-024-01589-y","DOIUrl":"https://doi.org/10.1007/s12013-024-01589-y","url":null,"abstract":"<p><p>Sestrin 2 (SESN2) has been reported to participate in the regulation of granulosa cell function in ovarian tissues. However, the role of SESN2 in polycystic ovarian syndrome (PCOS) is still incompletely understood. Here, we investigated the functional role and mechanism of SESN2 in dihydrotestosterone (DHT)-induced granulosa cells. In this study, DHT was utilized to induce PCOS cell model and the AMP-activated protein kinase (AMPK) inhibitor Compound C (CC) was utilized to inhibit the AMPK pathway. qRT-PCR was performed to detect the expression of SESN2 in HGLS cells. Cell apoptosis was evaluated by flow cytometry. Oxidative stress was detected by DCFH-DA staining, superoxide dismutase (SOD), malondialdehyde (MDA), and glutathione peroxidase (GSH-Px) kits. The expression of SESN2, cell apoptosis, oxidative stress, mitophagy and AMPK/ULK1 signaling-related proteins were measured by western blot. The results showed that SESN2 was downregulated in DHT-induced granulosa cells. Overexpression of SESN2 inhibited the DHT-induced apoptosis and oxidative stress of HGLS cells. DHT induction aggravated HGLS cell apoptosis and oxidative stress. SESN2 overexpression inhibited the DHT-induced apoptosis and oxidative stress of HGLS cells. In addition, overexpression of SESN2 activated the AMPK/ULK1 signaling pathway and promoted mitophagy. Treatment of CC reversed the regulatory effect of SESN2 on mitophagy. CC also reversed the influences of SESN2 overexpression on apoptosis and oxidative stress in DHT-induced HGLS cells. Overall, SESN2 suppressed DHT-induced apoptosis and oxidative stress in PCOS through AMPK/ULK1-mediated mitophagy.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142455208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-16DOI: 10.1007/s12013-024-01491-7
Mahdi Samadi, Farhad Daryanoosh, Zahra Mojtahedi, Afrooz Samsamy Pour, Hadi Nobari, Amir Hossein Zarifkar, Kayvan Khoramipour
Losing muscle functions due to reducing muscle mass and quality is one of the main features of cancer cachexia that impairs patients' quality of life and decrease their survival. This study aimed to investigate the synergistic effects of resistance training and resveratrol supplementation on cachexia induced by CT26 tumors in male mice. Forty-eight mice were divided into eight groups randomly: healthy sedentary vehicle (HSV), healthy exercise vehicle (HEV), healthy sedentary resveratrol (HSR), healthy exercise resveratrol (HER), CT-26 tumor-bearing sedentary vehicle (TSV), CT-26 tumor-bearing exercise vehicle (TEV), CT-26 tumor-bearing sedentary resveratrol (TSR) and CT-26 tumor-bearing exercise resveratrol (TER). Training groups performed ladder climbing with weights tied to their tails, for six weeks. Resveratrol-treated groups received 50 mg/kg daily by gavage. The results showed muscle weight, and mTORC1 phosphorylation decreased in TSV compared to the HSV group. mTORC1 phosphorylation was increased in TER compared to TSV, TEV, and TSR. In addition, AMPK phosphorylation was more elevated in HER compared to HSV, HEV, and HSR. LC3BII/I ratio was higher in TSV than HSV group. Tumor volume was increased in all groups, with the lowest increase in TER group. In tumor tissue, mTORC1 phosphorylation was decreased in TER than in TSV, TEV, and TSR groups; AMPK phosphorylation and LC3BII/I ratio were increased in TSV than in TEV, TSR, and TER groups. In conclusion, the synergistic effect of resistance training and resveratrol supplementation is the most effective in reducing tumor volume. These advantages were mostly in line with molecular findings.
{"title":"Resistance Training and Resveratrol Supplementation Improve Cancer Cachexia and Tumor Volume in Muscle Tissue of Male Mice Bearing Colon Cancer CT26 Cell Tumors.","authors":"Mahdi Samadi, Farhad Daryanoosh, Zahra Mojtahedi, Afrooz Samsamy Pour, Hadi Nobari, Amir Hossein Zarifkar, Kayvan Khoramipour","doi":"10.1007/s12013-024-01491-7","DOIUrl":"https://doi.org/10.1007/s12013-024-01491-7","url":null,"abstract":"<p><p>Losing muscle functions due to reducing muscle mass and quality is one of the main features of cancer cachexia that impairs patients' quality of life and decrease their survival. This study aimed to investigate the synergistic effects of resistance training and resveratrol supplementation on cachexia induced by CT26 tumors in male mice. Forty-eight mice were divided into eight groups randomly: healthy sedentary vehicle (HSV), healthy exercise vehicle (HEV), healthy sedentary resveratrol (HSR), healthy exercise resveratrol (HER), CT-26 tumor-bearing sedentary vehicle (TSV), CT-26 tumor-bearing exercise vehicle (TEV), CT-26 tumor-bearing sedentary resveratrol (TSR) and CT-26 tumor-bearing exercise resveratrol (TER). Training groups performed ladder climbing with weights tied to their tails, for six weeks. Resveratrol-treated groups received 50 mg/kg daily by gavage. The results showed muscle weight, and mTORC1 phosphorylation decreased in TSV compared to the HSV group. mTORC1 phosphorylation was increased in TER compared to TSV, TEV, and TSR. In addition, AMPK phosphorylation was more elevated in HER compared to HSV, HEV, and HSR. LC3BII/I ratio was higher in TSV than HSV group. Tumor volume was increased in all groups, with the lowest increase in TER group. In tumor tissue, mTORC1 phosphorylation was decreased in TER than in TSV, TEV, and TSR groups; AMPK phosphorylation and LC3BII/I ratio were increased in TSV than in TEV, TSR, and TER groups. In conclusion, the synergistic effect of resistance training and resveratrol supplementation is the most effective in reducing tumor volume. These advantages were mostly in line with molecular findings.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142455207","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-15DOI: 10.1007/s12013-024-01525-0
Xuandi Wu, Jia Hong, Liang Hong
Previous studies have suggested that impaired spiral artery remodeling, placental dysfunction, and insufficient trophoblast infiltration are the etiology and pathogenesis of Preeclampsia (PE). Ring 1 and YY1 binding protein (RYBP) has been reported to be associated with trophoblast dysfunction. However, the molecular mechanism of RYBP involved in trophoblasts in the pathogenesis of PE is poorly defined. RYBP and Ubiquitin-specific peptidase 4 (USP4) mRNA levels were determined using real-time quantitative polymerase chain reaction (RT-qPCR). RYBP, USP4, p-PI3K, PI3K, p-AKT, and AKT protein levels were measured using western blot assay. Cell viability, proliferation, apoptosis, invasion, and migration were assessed using 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide (MTT), 5-ethynyl-2'-deoxyuridine (EdU), flow cytometry, transwell, and wound healing assays. After ubibrowser database analysis, the interaction between USP4 and RYBP was verified using Co-immunoprecipitation (CoIP) assay. RYBP and USP4 expression were upregulated in placental tissues from PE patients. By using JEG-3 and HTR-8/SVneo trophoblast cells, RYBP overexpression or USP4 upregulation could hinder cell viability, proliferation, invasion, migration, and promote apoptosis. Mechanistically, USP4 could trigger the deubiquitination of RYBP and prevent its degradation. In addition, USP4 repressed the PI3K/AKT signaling pathway by regulating RYBP. In total, Decreased USP4-mediated ubiquitination results in an adverse impact on trophoblast function by enhancing RYBP expression, providing a novel therapeutic target for PE.
{"title":"The Deubiquitinating Enzyme USP4 Promotes Trophoblast Dysfunction by Stabilizing RYBP.","authors":"Xuandi Wu, Jia Hong, Liang Hong","doi":"10.1007/s12013-024-01525-0","DOIUrl":"https://doi.org/10.1007/s12013-024-01525-0","url":null,"abstract":"<p><p>Previous studies have suggested that impaired spiral artery remodeling, placental dysfunction, and insufficient trophoblast infiltration are the etiology and pathogenesis of Preeclampsia (PE). Ring 1 and YY1 binding protein (RYBP) has been reported to be associated with trophoblast dysfunction. However, the molecular mechanism of RYBP involved in trophoblasts in the pathogenesis of PE is poorly defined. RYBP and Ubiquitin-specific peptidase 4 (USP4) mRNA levels were determined using real-time quantitative polymerase chain reaction (RT-qPCR). RYBP, USP4, p-PI3K, PI3K, p-AKT, and AKT protein levels were measured using western blot assay. Cell viability, proliferation, apoptosis, invasion, and migration were assessed using 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide (MTT), 5-ethynyl-2'-deoxyuridine (EdU), flow cytometry, transwell, and wound healing assays. After ubibrowser database analysis, the interaction between USP4 and RYBP was verified using Co-immunoprecipitation (CoIP) assay. RYBP and USP4 expression were upregulated in placental tissues from PE patients. By using JEG-3 and HTR-8/SVneo trophoblast cells, RYBP overexpression or USP4 upregulation could hinder cell viability, proliferation, invasion, migration, and promote apoptosis. Mechanistically, USP4 could trigger the deubiquitination of RYBP and prevent its degradation. In addition, USP4 repressed the PI3K/AKT signaling pathway by regulating RYBP. In total, Decreased USP4-mediated ubiquitination results in an adverse impact on trophoblast function by enhancing RYBP expression, providing a novel therapeutic target for PE.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142455233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}