首页 > 最新文献

Cell Biochemistry and Biophysics最新文献

英文 中文
miR-378a-3p Regulates the BMP2-Smad Pathway to Promote Chondrogenic Differentiation of Synovium-Derived Mesenchymal Stem Cells. miR-378a-3p 调控 BMP2-Smad 通路,促进滑膜衍生间充质干细胞的软骨分化
IF 1.8 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-03-01 Epub Date: 2024-10-07 DOI: 10.1007/s12013-024-01561-w
Xiangyi Sun, Ruchao Long, Qiang Chen, Jian Feng, Yang Gao, Guangqi Zhu, Zhihua Yang

This study aims to elucidate the role of miR-378a-3p in facilitating the proliferation and differentiation of synovium-derived mesenchymal stem cells (SMSCs) into chondrocytes. The effects of overexpressing miR-378a-3p on SMSCs were investigated through histological analysis, quantitative PCR, and western blotting. Then we identified binding sites of miR-378a-3p with BMP2 through Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses and predictions from the RegRNA 2.0 database. Subsequently, BMP2 was confirmed as the target by which miR-378a-3p promotes the chondrogenic differentiation of SMSCs using a luciferase reporter gene assay and an miR-378a-3p RNA interference plasmid. Finally, by constructing a rat model with articular cartilage damage, we detected the reparative effects of miR-378a-3p overexpression on cartilage damage. Additionally, we verified the mechanism by which miR-378a-3p promotes chondrogenic differentiation in SMSCs. MiR-378a-3p enhances the proliferation and differentiation of SMSCs into chondrocytes by modulating the BMP2-Smad signaling pathway, thereby facilitating repair processes for articular cartilage injuries in rats. Notably, knockdown of BMP2 diminished the reparative efficacy of miR-378a-3p on articular cartilage damage. Upregulation of miR-378a-3p promotes chondrogenic differentiation in SMSCs through activation of the BMP2-Smad pathway, positioning it as a potential therapeutic target for osteoarthritis.

本研究旨在阐明miR-378a-3p在促进滑膜间充质干细胞(SMSCs)增殖和分化为软骨细胞中的作用。我们通过组织学分析、定量 PCR 和 Western 印迹法研究了过表达 miR-378a-3p 对 SMSCs 的影响。然后,我们通过基因本体论和京都基因和基因组百科全书的分析以及 RegRNA 2.0 数据库的预测,确定了 miR-378a-3p 与 BMP2 的结合位点。随后,利用荧光素酶报告基因实验和miR-378a-3p RNA干扰质粒证实了BMP2是miR-378a-3p促进SMSCs软骨分化的靶点。最后,我们通过构建大鼠关节软骨损伤模型,检测了miR-378a-3p过表达对软骨损伤的修复作用。此外,我们还验证了 miR-378a-3p 促进 SMSCs 软骨分化的机制。MiR-378a-3p通过调节BMP2-Smad信号通路,促进SMSCs增殖和分化为软骨细胞,从而促进大鼠关节软骨损伤的修复过程。值得注意的是,敲除 BMP2 会降低 miR-378a-3p 对关节软骨损伤的修复功效。miR-378a-3p的上调通过激活BMP2-Smad通路促进SMSCs的软骨分化,使其成为骨关节炎的潜在治疗靶点。
{"title":"miR-378a-3p Regulates the BMP2-Smad Pathway to Promote Chondrogenic Differentiation of Synovium-Derived Mesenchymal Stem Cells.","authors":"Xiangyi Sun, Ruchao Long, Qiang Chen, Jian Feng, Yang Gao, Guangqi Zhu, Zhihua Yang","doi":"10.1007/s12013-024-01561-w","DOIUrl":"10.1007/s12013-024-01561-w","url":null,"abstract":"<p><p>This study aims to elucidate the role of miR-378a-3p in facilitating the proliferation and differentiation of synovium-derived mesenchymal stem cells (SMSCs) into chondrocytes. The effects of overexpressing miR-378a-3p on SMSCs were investigated through histological analysis, quantitative PCR, and western blotting. Then we identified binding sites of miR-378a-3p with BMP2 through Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses and predictions from the RegRNA 2.0 database. Subsequently, BMP2 was confirmed as the target by which miR-378a-3p promotes the chondrogenic differentiation of SMSCs using a luciferase reporter gene assay and an miR-378a-3p RNA interference plasmid. Finally, by constructing a rat model with articular cartilage damage, we detected the reparative effects of miR-378a-3p overexpression on cartilage damage. Additionally, we verified the mechanism by which miR-378a-3p promotes chondrogenic differentiation in SMSCs. MiR-378a-3p enhances the proliferation and differentiation of SMSCs into chondrocytes by modulating the BMP2-Smad signaling pathway, thereby facilitating repair processes for articular cartilage injuries in rats. Notably, knockdown of BMP2 diminished the reparative efficacy of miR-378a-3p on articular cartilage damage. Upregulation of miR-378a-3p promotes chondrogenic differentiation in SMSCs through activation of the BMP2-Smad pathway, positioning it as a potential therapeutic target for osteoarthritis.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":"1277-1288"},"PeriodicalIF":1.8,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142379815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Role and Mechanism of Lamellar Derived Growth Factor /AKT Pathway in Ventricular Remodeling Induced by Pressure Overload. 压力超负荷诱导的心室重塑过程中薄层衍生生长因子/AKT通路的作用和机制
IF 1.8 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-03-01 Epub Date: 2024-09-21 DOI: 10.1007/s12013-024-01531-2
Xiqian Wang, Dejin Wang, Bin Hao

This study aimed to investigate the role and underlying mechanisms of the platelet-derived growth factor (PDGF)/protein kinase B (AKT) signaling pathway in pressure overload-induced ventricular remodeling. Ventricular remodeling, a critical pathological process in heart failure, is commonly triggered by pressure overload. While PDGF is known to promote cell proliferation and growth, the AKT pathway is crucial for cell growth, survival, and metabolism. However, the specific role of the PDGF/AKT pathway in pressure overload-induced ventricular remodeling remains unclear. Thus, this study aimed to elucidate the precise mechanisms of PDGF/AKT involvement in this process using animal models and cell experiments. 45 female C57BL/6 mice were utilized, randomly divided into three groups: model group (M group, n = 15), control group (C group, n = 15), and experimental group (E group, n = 15). M group mice underwent thoracotomy without aortic constriction (AC). C group mice received phosphate-buffered saline (PBS) and dimethyl sulfoxide (DMSO) treatment following AC surgery. E group mice were treated with the PDGF receptor inhibitor AG1296 and PBS solution after AC surgery. Additionally, 293 T cells were categorized into three groups: PDGF shRNA transfected group (downregulating PDGF expression, D group), PDGF overexpression group (B group), and control group (NV group). Left ventricular end-systolic volume (LVESV) and ejection fraction (FS) of the mice were measured via echocardiography. Western blot analysis was conducted to assess the expression levels of p-AKT and t-AKT in myocardial tissues. Furthermore, myocardial cell area was measured using hematoxylin and eosin (HE) staining and image analysis software. The LVESV in the C group was significantly higher than in the M and E groups (48.32 ± 3.08 mL vs. 18.24 ± 3.19 mL and 25.44 ± 3.12 mL, P < 0.05). The FS in the C group was significantly lower compared to the M and E groups (21.18 ± 2.99% vs. 42.45 ± 3.02% and 26.89 ± 2.54%, P < 0.05). Western blot analysis revealed that p-AKT and t-AKT levels were significantly elevated in the C group and PDGF overexpression group (B group) compared to the M and PDGF shRNA groups (D group) (P < 0.05). HE staining showed a significant increase in myocardial cell cross-sectional area in the C and D groups, with the most pronounced enlargement in the D group (P < 0.05). PDGF facilitates pressure overload-induced ventricular remodeling and myocardial fibrosis. Inhibition of the PDGF/AKT signaling pathway effectively mitigates myocardial cell hypertrophy and ventricular remodeling. These findings offer novel potential targets and therapeutic strategies for the treatment of pressure overload-related heart failure.

本研究旨在探讨血小板衍生生长因子(PDGF)/蛋白激酶B(AKT)信号通路在压力过载诱导的心室重构中的作用及其内在机制。心室重塑是心力衰竭的一个关键病理过程,通常由压力过载引发。众所周知,PDGF 可促进细胞增殖和生长,而 AKT 通路对细胞生长、存活和新陈代谢至关重要。然而,PDGF/AKT 通路在压力过载诱导的心室重塑中的具体作用仍不清楚。因此,本研究旨在利用动物模型和细胞实验阐明 PDGF/AKT 参与这一过程的确切机制。45只雌性C57BL/6小鼠被随机分为三组:模型组(M组,n = 15)、对照组(C组,n = 15)和实验组(E组,n = 15)。M 组小鼠接受开胸手术,不进行主动脉收缩(AC)。C 组小鼠在主动脉缩窄术后接受磷酸盐缓冲液(PBS)和二甲基亚砜(DMSO)治疗。E 组小鼠在 AC 手术后接受 PDGF 受体抑制剂 AG1296 和 PBS 溶液治疗。此外,293 个 T 细胞被分为三组:PDGF shRNA 转染组(下调 PDGF 表达,D 组)、PDGF 过表达组(B 组)和对照组(NV 组)。通过超声心动图测量小鼠的左室收缩末期容积(LVESV)和射血分数(FS)。通过 Western 印迹分析评估 p-AKT 和 t-AKT 在心肌组织中的表达水平。此外,还使用苏木精和伊红(HE)染色及图像分析软件测量了心肌细胞面积。C 组的 LVESV 明显高于 M 组和 E 组(48.32 ± 3.08 mL vs. 18.24 ± 3.19 mL 和 25.44 ± 3.12 mL,P<0.05)。
{"title":"Role and Mechanism of Lamellar Derived Growth Factor /AKT Pathway in Ventricular Remodeling Induced by Pressure Overload.","authors":"Xiqian Wang, Dejin Wang, Bin Hao","doi":"10.1007/s12013-024-01531-2","DOIUrl":"10.1007/s12013-024-01531-2","url":null,"abstract":"<p><p>This study aimed to investigate the role and underlying mechanisms of the platelet-derived growth factor (PDGF)/protein kinase B (AKT) signaling pathway in pressure overload-induced ventricular remodeling. Ventricular remodeling, a critical pathological process in heart failure, is commonly triggered by pressure overload. While PDGF is known to promote cell proliferation and growth, the AKT pathway is crucial for cell growth, survival, and metabolism. However, the specific role of the PDGF/AKT pathway in pressure overload-induced ventricular remodeling remains unclear. Thus, this study aimed to elucidate the precise mechanisms of PDGF/AKT involvement in this process using animal models and cell experiments. 45 female C57BL/6 mice were utilized, randomly divided into three groups: model group (M group, n = 15), control group (C group, n = 15), and experimental group (E group, n = 15). M group mice underwent thoracotomy without aortic constriction (AC). C group mice received phosphate-buffered saline (PBS) and dimethyl sulfoxide (DMSO) treatment following AC surgery. E group mice were treated with the PDGF receptor inhibitor AG1296 and PBS solution after AC surgery. Additionally, 293 T cells were categorized into three groups: PDGF shRNA transfected group (downregulating PDGF expression, D group), PDGF overexpression group (B group), and control group (NV group). Left ventricular end-systolic volume (LVESV) and ejection fraction (FS) of the mice were measured via echocardiography. Western blot analysis was conducted to assess the expression levels of p-AKT and t-AKT in myocardial tissues. Furthermore, myocardial cell area was measured using hematoxylin and eosin (HE) staining and image analysis software. The LVESV in the C group was significantly higher than in the M and E groups (48.32 ± 3.08 mL vs. 18.24 ± 3.19 mL and 25.44 ± 3.12 mL, P < 0.05). The FS in the C group was significantly lower compared to the M and E groups (21.18 ± 2.99% vs. 42.45 ± 3.02% and 26.89 ± 2.54%, P < 0.05). Western blot analysis revealed that p-AKT and t-AKT levels were significantly elevated in the C group and PDGF overexpression group (B group) compared to the M and PDGF shRNA groups (D group) (P < 0.05). HE staining showed a significant increase in myocardial cell cross-sectional area in the C and D groups, with the most pronounced enlargement in the D group (P < 0.05). PDGF facilitates pressure overload-induced ventricular remodeling and myocardial fibrosis. Inhibition of the PDGF/AKT signaling pathway effectively mitigates myocardial cell hypertrophy and ventricular remodeling. These findings offer novel potential targets and therapeutic strategies for the treatment of pressure overload-related heart failure.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":"989-997"},"PeriodicalIF":1.8,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142278445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computational Drug Design Approaches for the Identification of Novel Antidiabetic Compounds from Natural Resources through Molecular Docking, ADMET, and Toxicological Studies. 通过分子对接、ADMET 和毒理学研究从自然资源中鉴定新型抗糖尿病化合物的计算药物设计方法。
IF 1.8 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-03-01 Epub Date: 2024-10-08 DOI: 10.1007/s12013-024-01540-1
Bakul Akter, Md Sohorab Uddin, Mohammad Rashedul Islam, Kutub Uddin Ahamed, Most Nazmin Aktar, Mohammed Kamrul Hossain, Ahmad Mohammad Salamatullah, Mouhammed Bourhia

Type 2 diabetes mellitus (T2DM) is usually depicted by relative insulin deficiency, raised blood glucose levels, and the predominant risk factor, insulin resistance. Hence, the development of insulin sensitizer drugs targeting PPAR-γ receptors has expanded enormous interest as an attractive choice for T2DM treatment. Thiazolidinediones (TZD) enhance insulin sensitivity either by directly functioning on gene transcription of the PPARγ receptor related to glucose homeostasis or by systemic sensitization of insulin and, therefore, improved hyperglycemia in a wide range of patients. However, severe complications and adverse effects of TZDs necessitate the development of an efficacious and reliable insulin sensitizer from alternative resources. On the contrary, Nature is a rich source of anticipated effective and safer medicine; more than fifty percent of drugs on the market are developed from natural products. Hence, searching for a new PPAR-γ agonist from bioactive secondary compounds of medicinal plants along with greater efficacy and safety is a recognized and consistent tactic for developing novel antidiabetic agents. Pulicaria jaubertii is a fragrant perennial aromatic plant with anti-inflammatory, antidiabetic, antimicrobial, antimalarial, and insecticidal properties. The current study was designed to use a computer-aided drug design to explore the best antidiabetic compounds from P. jaubertii. Herein, the molecular docking study of 80 investigated ligands against the PPAR-γ receptor identifies the highest docking score for five ligands ranging from -8.9 kcal/mol to 8.0 kcal/mol, which is also more significant than the standard drug pioglitazone (-7.7 kcal/mol) determined by the PyRx 8.0 virtual screening software. GLN286, CYS285, SER289, TYR473, MET364, ARG288, ILE341, and LEU333 residues are found to be significant contributors to the non-bonded interaction between ligands and receptors. Molecular electrostatic potential (MEP), DFT, molecular orbital (MO), ADMET, and toxicological analyses were performed on the selected five high-scored ligands of P. jaubertii. Results documented that all investigated ligands, especially L4, show considerably excellent profiles in molecular docking, MEP, DFT, MO, ADMET, and toxicological predictions, suggesting our drug-designing approaches may contribute to the development of a novel antidiabetic drug for the treatment of T2DM from natural resources.

2 型糖尿病(T2DM)通常表现为胰岛素相对不足、血糖水平升高以及最主要的风险因素--胰岛素抵抗。因此,开发以 PPAR-γ 受体为靶点的胰岛素增敏剂药物作为治疗 T2DM 的一种有吸引力的选择,引起了人们的极大兴趣。噻唑烷二酮类药物(TZD)通过直接作用于与葡萄糖稳态相关的 PPARγ 受体基因转录,或通过胰岛素的全身增敏作用来提高胰岛素敏感性,从而改善了众多患者的高血糖状况。然而,由于 TZDs 的严重并发症和不良反应,有必要从其他资源中开发一种有效、可靠的胰岛素增敏剂。恰恰相反,大自然蕴藏着丰富的预期有效且更安全的药物;市场上超过 50% 的药物都是由天然产品开发而成的。因此,从药用植物中具有生物活性的次生化合物中寻找新的 PPAR-γ 激动剂,同时提高其疗效和安全性,是开发新型抗糖尿病药物的公认的一贯策略。白头翁(Pulicaria jaubertii)是一种多年生芳香植物,具有抗炎、抗糖尿病、抗菌、抗疟和杀虫特性。目前的研究旨在使用计算机辅助药物设计来探索从毛果芸香科植物中提取的最佳抗糖尿病化合物。通过对80种配体与PPAR-γ受体的分子对接研究,发现有5种配体的对接得分最高,从-8.9 kcal/mol到8.0 kcal/mol不等,比PyRx 8.0虚拟筛选软件测定的标准药物吡格列酮的对接得分(-7.7 kcal/mol)还要高。研究发现,GLN286、CYS285、SER289、TYR473、MET364、ARG288、ILE341 和 LEU333 残基对配体与受体之间的非键相互作用有显著的促进作用。对所选的五种高分配体进行了分子静电势(MEP)、DFT、分子轨道(MO)、ADMET 和毒理学分析。结果表明,所有被研究的配体,尤其是 L4,在分子对接、MEP、DFT、MO、ADMET 和毒理学预测方面都表现出相当优异的特性,这表明我们的药物设计方法可能有助于从天然资源中开发出治疗 T2DM 的新型抗糖尿病药物。
{"title":"Computational Drug Design Approaches for the Identification of Novel Antidiabetic Compounds from Natural Resources through Molecular Docking, ADMET, and Toxicological Studies.","authors":"Bakul Akter, Md Sohorab Uddin, Mohammad Rashedul Islam, Kutub Uddin Ahamed, Most Nazmin Aktar, Mohammed Kamrul Hossain, Ahmad Mohammad Salamatullah, Mouhammed Bourhia","doi":"10.1007/s12013-024-01540-1","DOIUrl":"10.1007/s12013-024-01540-1","url":null,"abstract":"<p><p>Type 2 diabetes mellitus (T2DM) is usually depicted by relative insulin deficiency, raised blood glucose levels, and the predominant risk factor, insulin resistance. Hence, the development of insulin sensitizer drugs targeting PPAR-γ receptors has expanded enormous interest as an attractive choice for T2DM treatment. Thiazolidinediones (TZD) enhance insulin sensitivity either by directly functioning on gene transcription of the PPARγ receptor related to glucose homeostasis or by systemic sensitization of insulin and, therefore, improved hyperglycemia in a wide range of patients. However, severe complications and adverse effects of TZDs necessitate the development of an efficacious and reliable insulin sensitizer from alternative resources. On the contrary, Nature is a rich source of anticipated effective and safer medicine; more than fifty percent of drugs on the market are developed from natural products. Hence, searching for a new PPAR-γ agonist from bioactive secondary compounds of medicinal plants along with greater efficacy and safety is a recognized and consistent tactic for developing novel antidiabetic agents. Pulicaria jaubertii is a fragrant perennial aromatic plant with anti-inflammatory, antidiabetic, antimicrobial, antimalarial, and insecticidal properties. The current study was designed to use a computer-aided drug design to explore the best antidiabetic compounds from P. jaubertii. Herein, the molecular docking study of 80 investigated ligands against the PPAR-γ receptor identifies the highest docking score for five ligands ranging from -8.9 kcal/mol to 8.0 kcal/mol, which is also more significant than the standard drug pioglitazone (-7.7 kcal/mol) determined by the PyRx 8.0 virtual screening software. GLN286, CYS285, SER289, TYR473, MET364, ARG288, ILE341, and LEU333 residues are found to be significant contributors to the non-bonded interaction between ligands and receptors. Molecular electrostatic potential (MEP), DFT, molecular orbital (MO), ADMET, and toxicological analyses were performed on the selected five high-scored ligands of P. jaubertii. Results documented that all investigated ligands, especially L4, show considerably excellent profiles in molecular docking, MEP, DFT, MO, ADMET, and toxicological predictions, suggesting our drug-designing approaches may contribute to the development of a novel antidiabetic drug for the treatment of T2DM from natural resources.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":"1057-1070"},"PeriodicalIF":1.8,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142387051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chlorogenic Acid Enhances the Chaperone Potential of BSA at Physiological Concentrations on Model Protein Cytochrome c. 绿原酸可增强生理浓度下 BSA 对模型蛋白细胞色素 c 的伴侣潜能
IF 1.8 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-03-01 Epub Date: 2024-09-22 DOI: 10.1007/s12013-024-01516-1
Sadaf Khan, Neha Kausar Ansari, Aabgeena Naeem

Neurodegenerative disorders are associated with the accumulation of disease-related proteins intracellularly and extracellularly. Extracellular chaperones play a crucial role in clearing the extracellularly accumulated proteins. In this study, we observed the extracellular chaperone-like potential of BSA at physiological concentrations on model protein cytochrome c (cyt c). Kinetics of heat-induced aggregation of cyt c suggest the nucleation independent first order aggregation kinetics. Aggregation of cyt c was studied in the presence of varying concentrations of BSA to assess its chaperone nature. At lower concentrations of BSA when the sub molar ratio of cyt c:BSA are 1:0.6 and 1:1.2, heat-induced unfolded cyt c promotes the aggregation of BSA. However, as the ratio of cyt c:BSA increases to 1:1.8, the aggregation of cyt c is reduced. When the concentration of BSA reaches physiological levels, yielding a cyt c:BSA ratio of 1:2.4, the rate of aggregation drastically decreases reflecting its chaperone potential. These observations indicate that under physiological conditions, macromolecular crowding stabilizes the native structure of both proteins and enhances their interaction that results in the reduced aggregation of cyt c. Additionally, the presence of the phytochemical chlorogenic acid at a sub-molar ratio of 1:1 stabilizes cyt c and prevents its unfolding and facilitates the binding of cyt c to BSA at physiological concentrations. This interaction further decreases the overall aggregation of cyt c and stabilizes its native fold.

神经退行性疾病与疾病相关蛋白质在细胞内和细胞外的积累有关。细胞外伴侣在清除细胞外积累的蛋白质方面起着至关重要的作用。在这项研究中,我们观察了 BSA 在生理浓度下对模型蛋白质细胞色素 c(cyt c)的细胞外伴侣样潜力。热诱导细胞色素 c 聚集的动力学表明,成核与一阶聚集动力学无关。研究了细胞色素 c 在不同浓度的 BSA 存在下的聚集情况,以评估其伴侣性质。当细胞 c 与 BSA 的亚摩尔比为 1:0.6 和 1:1.2 时,BSA 浓度较低,热诱导的未折叠细胞 c 会促进 BSA 的聚集。然而,当细胞 c 与 BSA 的比例增加到 1:1.8 时,细胞 c 的聚集就会减少。当 BSA 的浓度达到生理水平,即 cyt c:BSA 的比例为 1:2.4 时,聚集率急剧下降,这反映了其伴侣潜能。这些观察结果表明,在生理条件下,大分子拥挤稳定了两种蛋白质的原生结构,并增强了它们之间的相互作用,从而降低了细胞 c 的聚集。此外,亚摩尔比为 1:1 的植物化学物质绿原酸的存在稳定了细胞 c,防止了它的解折,并在生理浓度下促进了细胞 c 与 BSA 的结合。这种相互作用进一步减少了 cyt c 的整体聚集,并稳定了其原生折叠。
{"title":"Chlorogenic Acid Enhances the Chaperone Potential of BSA at Physiological Concentrations on Model Protein Cytochrome c.","authors":"Sadaf Khan, Neha Kausar Ansari, Aabgeena Naeem","doi":"10.1007/s12013-024-01516-1","DOIUrl":"10.1007/s12013-024-01516-1","url":null,"abstract":"<p><p>Neurodegenerative disorders are associated with the accumulation of disease-related proteins intracellularly and extracellularly. Extracellular chaperones play a crucial role in clearing the extracellularly accumulated proteins. In this study, we observed the extracellular chaperone-like potential of BSA at physiological concentrations on model protein cytochrome c (cyt c). Kinetics of heat-induced aggregation of cyt c suggest the nucleation independent first order aggregation kinetics. Aggregation of cyt c was studied in the presence of varying concentrations of BSA to assess its chaperone nature. At lower concentrations of BSA when the sub molar ratio of cyt c:BSA are 1:0.6 and 1:1.2, heat-induced unfolded cyt c promotes the aggregation of BSA. However, as the ratio of cyt c:BSA increases to 1:1.8, the aggregation of cyt c is reduced. When the concentration of BSA reaches physiological levels, yielding a cyt c:BSA ratio of 1:2.4, the rate of aggregation drastically decreases reflecting its chaperone potential. These observations indicate that under physiological conditions, macromolecular crowding stabilizes the native structure of both proteins and enhances their interaction that results in the reduced aggregation of cyt c. Additionally, the presence of the phytochemical chlorogenic acid at a sub-molar ratio of 1:1 stabilizes cyt c and prevents its unfolding and facilitates the binding of cyt c to BSA at physiological concentrations. This interaction further decreases the overall aggregation of cyt c and stabilizes its native fold.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":"845-856"},"PeriodicalIF":1.8,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142278441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In silico genome-wide analysis of the growth-regulating factor gene family and their expression profiling in Vitis vinifera under biotic stress. 生物胁迫下葡萄藤生长调节因子基因家族的全基因组分析及其表达谱分析。
IF 1.8 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-03-01 Epub Date: 2024-11-01 DOI: 10.1007/s12013-024-01554-9
Nimra Nazir, Azhar Iqbal, Hadia Hussain, Faisal Ali, Khalid S Almaary, Most Nazmin Aktar, Muhammad Sajid, Mohammed Bourhia, Ahmad Mohammad Salamatullah

Growth regulatory factors (GRFs) are transcription factors that encode the proteins involved in plant growth and development. However, no comprehensive analysis of Vitis vinifera GRF genes has yet been conducted. In the current study, we performed a genome-wide analysis of the GRF gene family to explore the VvGRF gene's role in Vitis vinifera. We identified 30 VvGRF genes in the Vitis vinifera genome, localized over 20 chromosomes. Based on evolutionary analysis, 49 GRF genes (nine AtGRF, ten FvGRF, and 30 VvGRF) were clustered into six groups. Many cis-elements involved in light control, defense, and plant growth have been identified in the promoter region of VvGRF genes, and multiple miRNAs have been predicted to be involved in regulating VvGRF gene expression. Protein-protein interaction analysis showed that nine VvGRF proteins formed a complex protein interaction network. Furthermore, the gene expression analysis of VvGRF revealed that VvGRF-5 and VvGRF-6 were highly upregulated suggesting that these genes are involved in biotic responses. This study provides comprehensive insights into the functional characteristics and occurrence of the VvGRF gene family in Vitis vinifera, which may be applied in breeding programs to enhance the growth of Vitis vinifera varieties under stress and growth changes.

生长调节因子(GRFs)是一种转录因子,它编码参与植物生长和发育的蛋白质。然而,目前尚未对葡萄 GRF 基因进行全面分析。在本研究中,我们对 GRF 基因家族进行了全基因组分析,以探索 VvGRF 基因在葡萄中的作用。我们在葡萄基因组中发现了 30 个 VvGRF 基因,分布在 20 条染色体上。根据进化分析,49个GRF基因(9个AtGRF、10个FvGRF和30个VvGRF)被分为六组。在 VvGRF 基因的启动子区域发现了许多涉及光控、防御和植物生长的顺式元件,并预测多种 miRNA 参与调控 VvGRF 基因的表达。蛋白质相互作用分析表明,VvGRF 的九种蛋白质形成了一个复杂的蛋白质相互作用网络。此外,VvGRF的基因表达分析表明,VvGRF-5和VvGRF-6高度上调,表明这些基因参与了生物反应。本研究全面揭示了 VvGRF 基因家族在葡萄中的功能特点和发生规律,可应用于育种计划,以提高葡萄品种在胁迫和生长变化条件下的生长能力。
{"title":"In silico genome-wide analysis of the growth-regulating factor gene family and their expression profiling in Vitis vinifera under biotic stress.","authors":"Nimra Nazir, Azhar Iqbal, Hadia Hussain, Faisal Ali, Khalid S Almaary, Most Nazmin Aktar, Muhammad Sajid, Mohammed Bourhia, Ahmad Mohammad Salamatullah","doi":"10.1007/s12013-024-01554-9","DOIUrl":"10.1007/s12013-024-01554-9","url":null,"abstract":"<p><p>Growth regulatory factors (GRFs) are transcription factors that encode the proteins involved in plant growth and development. However, no comprehensive analysis of Vitis vinifera GRF genes has yet been conducted. In the current study, we performed a genome-wide analysis of the GRF gene family to explore the VvGRF gene's role in Vitis vinifera. We identified 30 VvGRF genes in the Vitis vinifera genome, localized over 20 chromosomes. Based on evolutionary analysis, 49 GRF genes (nine AtGRF, ten FvGRF, and 30 VvGRF) were clustered into six groups. Many cis-elements involved in light control, defense, and plant growth have been identified in the promoter region of VvGRF genes, and multiple miRNAs have been predicted to be involved in regulating VvGRF gene expression. Protein-protein interaction analysis showed that nine VvGRF proteins formed a complex protein interaction network. Furthermore, the gene expression analysis of VvGRF revealed that VvGRF-5 and VvGRF-6 were highly upregulated suggesting that these genes are involved in biotic responses. This study provides comprehensive insights into the functional characteristics and occurrence of the VvGRF gene family in Vitis vinifera, which may be applied in breeding programs to enhance the growth of Vitis vinifera varieties under stress and growth changes.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":"1207-1221"},"PeriodicalIF":1.8,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142562637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Car1 Knockout Mice Exhibit Antidepressant-like Behaviors Accompanied with Gut Microbiota Disturbance. Car1基因敲除小鼠表现出抗抑郁样行为,同时伴有肠道微生物群紊乱。
IF 1.8 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-03-01 Epub Date: 2024-09-28 DOI: 10.1007/s12013-024-01509-0
Chong Chen, Jianjun Chen, Ke Cheng, Peng Xie

Major depressive disorder (MDD) is a severe mental disorder with largely unknown mechanisms. Carbonic anhydrases convert CO2 to carbonates and protons, playing roles in various brain functions. Carbonic anhydrase 1 (Car1) is particularly abundant and may be linked to microbiota at interstitial sites. We developed Car1-deficient mice to explore the relationship between depression-like behaviors and gut microbiota. Behavioral tests confirmed depression-like behavior in Car1-/- mice. Fecal samples from Car1-/- and WT mice were collected, and 16S rRNA gene sequencing identified distinct microbiota components between the groups. Car1-/- mice exhibited significantly increased immobility in the tail suspension test (TST) compared to WT mice. The gut microbiota composition differed at the phylum level in p_Bacteroidetes, p_Verrucomicrobia, p_Firmicutes, and p_Tenericutes. At the family level, Car1-/- mice had significantly different abundances in eight microbiota groups compared to WT mice. Car1 deficiency is associated with depressive-like behavior and gut microbiota dysbiosis, potentially linked to depressive-like phenotypes.

重度抑郁症(MDD)是一种严重的精神疾病,其发病机制尚不清楚。碳酸酐酶将二氧化碳转化为碳酸盐和质子,在各种大脑功能中发挥作用。碳酸酐酶1(Car1)的含量特别高,可能与间质部位的微生物群有关。我们培育了碳酸酐酶1缺陷小鼠,以探索抑郁样行为与肠道微生物群之间的关系。行为测试证实了 Car1-/- 小鼠的抑郁样行为。收集了 Car1-/- 和 WT 小鼠的粪便样本,并通过 16S rRNA 基因测序确定了两组之间不同的微生物群成分。与 WT 小鼠相比,Car1-/- 小鼠在尾悬试验(TST)中表现出明显增加的不运动性。肠道微生物群的组成在门级上存在差异,包括p_类杆菌科、p_毛细管菌科、p_固着菌科和p_泛酸菌科。在科一级,Car1-/-小鼠与WT小鼠相比,在八个微生物群组中的丰度有显著差异。Car1缺乏与抑郁样行为和肠道微生物群失调有关,可能与抑郁样表型有关。
{"title":"The Car1 Knockout Mice Exhibit Antidepressant-like Behaviors Accompanied with Gut Microbiota Disturbance.","authors":"Chong Chen, Jianjun Chen, Ke Cheng, Peng Xie","doi":"10.1007/s12013-024-01509-0","DOIUrl":"10.1007/s12013-024-01509-0","url":null,"abstract":"<p><p>Major depressive disorder (MDD) is a severe mental disorder with largely unknown mechanisms. Carbonic anhydrases convert CO<sub>2</sub> to carbonates and protons, playing roles in various brain functions. Carbonic anhydrase 1 (Car1) is particularly abundant and may be linked to microbiota at interstitial sites. We developed Car1-deficient mice to explore the relationship between depression-like behaviors and gut microbiota. Behavioral tests confirmed depression-like behavior in Car1<sup>-/-</sup> mice. Fecal samples from Car1<sup>-/-</sup> and WT mice were collected, and 16S rRNA gene sequencing identified distinct microbiota components between the groups. Car1<sup>-/-</sup> mice exhibited significantly increased immobility in the tail suspension test (TST) compared to WT mice. The gut microbiota composition differed at the phylum level in p_Bacteroidetes, p_Verrucomicrobia, p_Firmicutes, and p_Tenericutes. At the family level, Car1<sup>-/-</sup> mice had significantly different abundances in eight microbiota groups compared to WT mice. Car1 deficiency is associated with depressive-like behavior and gut microbiota dysbiosis, potentially linked to depressive-like phenotypes.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":"777-782"},"PeriodicalIF":1.8,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142338794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hypoxia-inducible Factor 1α Contributes to Matrix Metalloproteinases 2/9 and Inflammatory Responses in Periodontitis. 缺氧诱导因子 1α 促进基质金属蛋白酶 2/9 和牙周炎的炎症反应
IF 1.8 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-03-01 Epub Date: 2024-09-28 DOI: 10.1007/s12013-024-01550-z
Yanyang Ning, Weilan Li, Li Zou, Hongren Shen, Zhijian Su

Periodontitis is a prevalent condition characterized by inflammation and tissue destruction within the periodontium, with hypoxia emerging as a contributing factor to its pathogenesis. Hypoxia-inducible factor 1α (HIF-1α) has a crucial role in orchestrating adaptive responses to hypoxic microenvironments and has been implicated in various inflammatory-related diseases. Understanding the interplay between HIF-1α, matrix metalloproteinases (MMPs), and inflammatory responses in periodontitis could provide insights into its molecular mechanisms. We investigated the relationship between HIF-1α, MMP2, and MMP9 in gingival crevicular fluid (GCF) and periodontal ligament stem cells (PDLSCs) from periodontitis patients. The expression levels of HIF-1α, MMP2, MMP9, and inflammatory factors (IL-6, IL-1β, TNF-α) were assessed using enzyme-linked immunosorbent assay (ELISA) and real-time PCR (RT-PCR). Additionally, osteogenic differentiation of PDLSCs was identified by alkaline phosphatase activity. Significantly elevated levels of HIF-1α, MMP2, and MMP9 were observed in GCF of periodontitis patients compared to controls. Positive correlations were found between HIF-1α and MMP2/MMP9, as well as with IL-6, IL-1β, and TNF-α. Modulation of HIF-1α expression in PDLSCs revealed its involvement in MMP2/9 secretion and inflammatory responses, with inhibition of HIF-1α mitigating these effects. Furthermore, HIF-1α inhibition alleviated the reduction in osteogenic differentiation induced by inflammatory stimuli. Our findings elucidate the regulatory role of HIF-1α in MMP expression, inflammatory responses, and osteogenic differentiation in periodontitis. In conclusion, targeting HIF-1α signaling pathways may offer therapeutic opportunities for managing periodontitis and promoting periodontal tissue regeneration.

牙周炎是一种以牙周炎症和组织破坏为特征的流行病,缺氧是其发病机制的一个促成因素。缺氧诱导因子 1α(HIF-1α)在协调对缺氧微环境的适应性反应中起着至关重要的作用,并与各种炎症相关疾病有牵连。了解牙周炎中 HIF-1α、基质金属蛋白酶(MMPs)和炎症反应之间的相互作用有助于深入了解其分子机制。我们研究了牙周炎患者牙龈缝隙液(GCF)和牙周韧带干细胞(PDLSCs)中HIF-1α、MMP2和MMP9之间的关系。使用酶联免疫吸附试验(ELISA)和实时 PCR(RT-PCR)评估了 HIF-1α、MMP2、MMP9 和炎症因子(IL-6、IL-1β、TNF-α)的表达水平。此外,还通过碱性磷酸酶活性鉴定了 PDLSCs 的成骨分化。与对照组相比,牙周炎患者 GCF 中的 HIF-1α、MMP2 和 MMP9 水平显著升高。研究发现,HIF-1α和MMP2/MMP9之间以及与IL-6、IL-1β和TNF-α之间存在正相关。对PDLSCs中HIF-1α表达的调节表明,它参与了MMP2/9的分泌和炎症反应,抑制HIF-1α可减轻这些影响。此外,抑制 HIF-1α 还能缓解炎症刺激引起的成骨分化减少。我们的研究结果阐明了 HIF-1α 在牙周炎的 MMP 表达、炎症反应和成骨分化中的调控作用。总之,以 HIF-1α 信号通路为靶点可为控制牙周炎和促进牙周组织再生提供治疗机会。
{"title":"Hypoxia-inducible Factor 1α Contributes to Matrix Metalloproteinases 2/9 and Inflammatory Responses in Periodontitis.","authors":"Yanyang Ning, Weilan Li, Li Zou, Hongren Shen, Zhijian Su","doi":"10.1007/s12013-024-01550-z","DOIUrl":"10.1007/s12013-024-01550-z","url":null,"abstract":"<p><p>Periodontitis is a prevalent condition characterized by inflammation and tissue destruction within the periodontium, with hypoxia emerging as a contributing factor to its pathogenesis. Hypoxia-inducible factor 1α (HIF-1α) has a crucial role in orchestrating adaptive responses to hypoxic microenvironments and has been implicated in various inflammatory-related diseases. Understanding the interplay between HIF-1α, matrix metalloproteinases (MMPs), and inflammatory responses in periodontitis could provide insights into its molecular mechanisms. We investigated the relationship between HIF-1α, MMP2, and MMP9 in gingival crevicular fluid (GCF) and periodontal ligament stem cells (PDLSCs) from periodontitis patients. The expression levels of HIF-1α, MMP2, MMP9, and inflammatory factors (IL-6, IL-1β, TNF-α) were assessed using enzyme-linked immunosorbent assay (ELISA) and real-time PCR (RT-PCR). Additionally, osteogenic differentiation of PDLSCs was identified by alkaline phosphatase activity. Significantly elevated levels of HIF-1α, MMP2, and MMP9 were observed in GCF of periodontitis patients compared to controls. Positive correlations were found between HIF-1α and MMP2/MMP9, as well as with IL-6, IL-1β, and TNF-α. Modulation of HIF-1α expression in PDLSCs revealed its involvement in MMP2/9 secretion and inflammatory responses, with inhibition of HIF-1α mitigating these effects. Furthermore, HIF-1α inhibition alleviated the reduction in osteogenic differentiation induced by inflammatory stimuli. Our findings elucidate the regulatory role of HIF-1α in MMP expression, inflammatory responses, and osteogenic differentiation in periodontitis. In conclusion, targeting HIF-1α signaling pathways may offer therapeutic opportunities for managing periodontitis and promoting periodontal tissue regeneration.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":"1159-1166"},"PeriodicalIF":1.8,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142338788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Novel Nephroprotective Activity of Flaxseed Oil on Diazinon-induced Kidney Damage in Male Rats. 亚麻籽油对地亚西农诱导的雄性大鼠肾损伤的新型肾保护活性
IF 1.8 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-03-01 Epub Date: 2024-09-26 DOI: 10.1007/s12013-024-01514-3
Narges Farokhi, Akram Ranjbar, Fereshteh Mehri, Mahdi Ramezani

In male rats, the flaxseed oil (FS-oil) modulatory properties were investigated on diazinon (DZN)-induced nephrotoxicity. Adult male Wistar rats were divided randomly into five groups. To induce nephrotoxicity, animals received DZN (70 mg/kg/day, p.o.). Also, treatment groups received FS-oil (100 and 200 mg/kg/day, p.o.). The animal treatment was 28 consecutive days. On the 29th day, serum and kidney tissue samples were removed and serum levels of the creatinine, blood urea nitrogen (BUN), malondialdehyde (MDA), glutathione peroxidase (GPx), and catalase (CAT), were measured. Also, hematoxylin and eosin (H&E) staining was applied for histological studies. DZN significantly increased the BUN, creatinine, and MDA levels compared to the control group. Besides, DZN significantly decreased the GPx and CAT activity in the kidney tissue. However, the modulatory effects of FS-oil were observed by improving renal enzyme factors, inhibiting oxidative stress, and histological change. This study demonstrated that FS-oil ameliorated DZN-induced nephrotoxicity and can be used as a preventive agent against DZN toxicity because of the FS-oil antioxidant characteristics.

以雄性大鼠为研究对象,研究亚麻籽油(FS-oil)对二嗪农(DZN)诱导的肾毒性的调节作用。成年雄性 Wistar 大鼠被随机分为五组。为了诱导肾毒性,动物接受 DZN(70 毫克/千克/天,口服)。此外,治疗组还服用了 FS-油(100 和 200 毫克/千克/天,口服)。动物治疗连续 28 天。第 29 天,取血清和肾组织样本,测定血清中肌酐、血尿素氮 (BUN)、丙二醛 (MDA)、谷胱甘肽过氧化物酶 (GPx) 和过氧化氢酶 (CAT) 的水平。此外,还采用苏木精和伊红(H&E)染色进行组织学研究。与对照组相比,DZN 能明显提高 BUN、肌酐和 MDA 水平。此外,DZN 还明显降低了肾组织中 GPx 和 CAT 的活性。然而,FS-油的调节作用表现在改善肾酶因子、抑制氧化应激和组织学变化。这项研究表明,FS-油能改善 DZN 诱导的肾毒性,由于 FS- 油具有抗氧化特性,因此可用作 DZN 毒性的预防剂。
{"title":"The Novel Nephroprotective Activity of Flaxseed Oil on Diazinon-induced Kidney Damage in Male Rats.","authors":"Narges Farokhi, Akram Ranjbar, Fereshteh Mehri, Mahdi Ramezani","doi":"10.1007/s12013-024-01514-3","DOIUrl":"10.1007/s12013-024-01514-3","url":null,"abstract":"<p><p>In male rats, the flaxseed oil (FS-oil) modulatory properties were investigated on diazinon (DZN)-induced nephrotoxicity. Adult male Wistar rats were divided randomly into five groups. To induce nephrotoxicity, animals received DZN (70 mg/kg/day, p.o.). Also, treatment groups received FS-oil (100 and 200 mg/kg/day, p.o.). The animal treatment was 28 consecutive days. On the 29th day, serum and kidney tissue samples were removed and serum levels of the creatinine, blood urea nitrogen (BUN), malondialdehyde (MDA), glutathione peroxidase (GPx), and catalase (CAT), were measured. Also, hematoxylin and eosin (H&E) staining was applied for histological studies. DZN significantly increased the BUN, creatinine, and MDA levels compared to the control group. Besides, DZN significantly decreased the GPx and CAT activity in the kidney tissue. However, the modulatory effects of FS-oil were observed by improving renal enzyme factors, inhibiting oxidative stress, and histological change. This study demonstrated that FS-oil ameliorated DZN-induced nephrotoxicity and can be used as a preventive agent against DZN toxicity because of the FS-oil antioxidant characteristics.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":"837-843"},"PeriodicalIF":1.8,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142338795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
HMGA1 Regulates IRS2 to Promote Inflammatory Responses and Oxidative Stress Injury in MPP+-Induced cells. HMGA1调节IRS2,促进MPP+诱导细胞的炎症反应和氧化应激损伤
IF 1.8 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-03-01 Epub Date: 2024-09-08 DOI: 10.1007/s12013-024-01510-7
Dongxun Xu, Wenhui Fan, Bing Fu, Hongxia Nie

Parkinson's disease (PD) is a prevalent neurodegenerative disorder for which novel treatment approaches are continuously sought. This study investigates the role of high-mobility group A1 (HMGA1) in modulating inflammatory responses and oxidative stress injury in PD. We utilized the murine dopaminergic neuronal cell line MN9D, treating cells with 1-methyl-4-phenylpyridinium ion (MPP+) to mimic PD conditions. The expression levels of HMGA1 and insulin receptor substrate 2 (IRS2) were measured using quantitative polymerase chain reaction and Western blot assay. Cell damage was assessed with cell counting kit-8 and lactate dehydrogenase assays. Inflammatory response and oxidative stress were evaluated by quantifying interleukin (IL)-1β, IL-6, tumor necrosis factor-α, reactive oxygen species, superoxide dismutase, and malondialdehyde (MDA) levels using enzyme-linked immunosorbent assay and commercial kits. The binding interaction between HMGA1 and IRS2 was analyzed using chromatin immunoprecipitation (ChIP) and dual-luciferase reporter assays. Our findings revealed that MPP+ treatment increased the expression of HMGA1 and IRS2. Downregulation of HMGA1 enhanced cell viability, reduced inflammation, and mitigated oxidative stress in MPP+-induced cells. Further investigation demonstrated that HMGA1 bounded to the IRS2 promoter, enhancing IRS2 expression. Overexpression of IRS2 counteracted the protective effects of HMGA1 downregulation. In conclusion, HMGA1 exacerbates MPP+-induced cell damage by activating IRS2 transcription, which in turn heightens inflammation and oxidative stress. These findings suggest that targeting HMGA1 could be a potential therapeutic strategy for PD.

帕金森病(PD)是一种常见的神经退行性疾病,人们一直在寻找新的治疗方法。本研究探讨了高迁移率基团 A1(HMGA1)在帕金森病中调节炎症反应和氧化应激损伤的作用。我们利用小鼠多巴胺能神经元细胞系MN9D,用1-甲基-4-苯基吡啶鎓离子(MPP+)处理细胞以模拟帕金森病的情况。采用定量聚合酶链反应和 Western 印迹法测定了 HMGA1 和胰岛素受体底物 2(IRS2)的表达水平。细胞损伤通过细胞计数试剂盒-8和乳酸脱氢酶检测进行评估。炎症反应和氧化应激通过使用酶联免疫吸附测定法和商业试剂盒对白细胞介素(IL)-1β、IL-6、肿瘤坏死因子-α、活性氧、超氧化物歧化酶和丙二醛(MDA)水平进行定量评估。使用染色质免疫沉淀(ChIP)和双荧光素酶报告实验分析了 HMGA1 和 IRS2 之间的结合相互作用。我们的研究结果表明,MPP+处理增加了HMGA1和IRS2的表达。在 MPP+ 诱导的细胞中,下调 HMGA1 可增强细胞活力、减少炎症反应并减轻氧化应激。进一步的研究表明,HMGA1 与 IRS2 启动子结合,增强了 IRS2 的表达。IRS2 的过度表达抵消了 HMGA1 下调的保护作用。总之,HMGA1 通过激活 IRS2 转录加剧了 MPP+ 诱导的细胞损伤,进而加剧了炎症和氧化应激。这些研究结果表明,靶向 HMGA1 可能是一种潜在的帕金森病治疗策略。
{"title":"HMGA1 Regulates IRS2 to Promote Inflammatory Responses and Oxidative Stress Injury in MPP<sup>+</sup>-Induced cells.","authors":"Dongxun Xu, Wenhui Fan, Bing Fu, Hongxia Nie","doi":"10.1007/s12013-024-01510-7","DOIUrl":"10.1007/s12013-024-01510-7","url":null,"abstract":"<p><p>Parkinson's disease (PD) is a prevalent neurodegenerative disorder for which novel treatment approaches are continuously sought. This study investigates the role of high-mobility group A1 (HMGA1) in modulating inflammatory responses and oxidative stress injury in PD. We utilized the murine dopaminergic neuronal cell line MN9D, treating cells with 1-methyl-4-phenylpyridinium ion (MPP<sup>+</sup>) to mimic PD conditions. The expression levels of HMGA1 and insulin receptor substrate 2 (IRS2) were measured using quantitative polymerase chain reaction and Western blot assay. Cell damage was assessed with cell counting kit-8 and lactate dehydrogenase assays. Inflammatory response and oxidative stress were evaluated by quantifying interleukin (IL)-1β, IL-6, tumor necrosis factor-α, reactive oxygen species, superoxide dismutase, and malondialdehyde (MDA) levels using enzyme-linked immunosorbent assay and commercial kits. The binding interaction between HMGA1 and IRS2 was analyzed using chromatin immunoprecipitation (ChIP) and dual-luciferase reporter assays. Our findings revealed that MPP<sup>+</sup> treatment increased the expression of HMGA1 and IRS2. Downregulation of HMGA1 enhanced cell viability, reduced inflammation, and mitigated oxidative stress in MPP<sup>+</sup>-induced cells. Further investigation demonstrated that HMGA1 bounded to the IRS2 promoter, enhancing IRS2 expression. Overexpression of IRS2 counteracted the protective effects of HMGA1 downregulation. In conclusion, HMGA1 exacerbates MPP<sup>+</sup>-induced cell damage by activating IRS2 transcription, which in turn heightens inflammation and oxidative stress. These findings suggest that targeting HMGA1 could be a potential therapeutic strategy for PD.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":"783-792"},"PeriodicalIF":1.8,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142152917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In Vitro COX Inhibitory Activity, LC-MS Analysis and Molecular Docking Study of Silene vulgaris and Stellaria media. Silene vulgaris 和 Stellaria media 的体外 COX 抑制活性、LC-MS 分析和分子对接研究。
IF 1.8 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-03-01 Epub Date: 2024-09-24 DOI: 10.1007/s12013-024-01533-0
Pooja Chak, Akansha Bisht, Deepti Choudhary, Smita Jain, Priyanka Joshi, Sonika Jain, Pankaj Jain, Jaya Dwivedi, Swapnil Sharma

Silene vulgaris (Moench) Garcke and Stellaria media (L.) Vill is a perennial wild weed species belonging to the Caryophyllaceae family and is widely available and abundant in the environment. The present study has aimed to evaluate the anti-inflammatory potential of two underutilized wild edible plants, Silene vulgaris (Moench) Garcke and Stellaria media (L.) Vill. fractions employing in-vitro COX inhibitory assay. Invitro COX-2 inhibitory potential of MESV and MESM fractions was carried out using BioVisionR "COX Activity Assay Kit (Fluorometric)". LC-MS analysis of selected fractions was conducted to identify bioactive compounds that were further validated for their affinity determination toward target enzymes employing molecular docking studies using the LibDock program. In-vitro COX inhibitory assay revealed that hexane fraction of S. vulgaris (HFSV) and hexane fraction of S. media (HFSM) caused impressive inhibition of COX-2 enzyme with IC50 values 1.38 µg/mL and 1.51 µg/mL respectively. Further, LC-MS analysis revealed the presence of 46 compounds in HFSV and 44 compounds in HFSM respectively. Amongst identified bioactive compounds in HFSV and HFSM, sinapinic acid and syringic acid showed good docking scores with COX-2 i.e., 89.256, and 82.168 respectively. Also, the availability of chrysin in HFSM and rhamnetin in HFSV exhibited good docking scores i.e., 115.092, and 112.341 with a selective affinity towards COX-2. The findings of in-vitro COX Inhibitory Activity and molecular docking studies highlighted the impressive anti-inflammatory properties of S. vulgaris and S. media, and require further investigations to establish them as therapeutic candidates in the management of inflammation and related issues.

Silene vulgaris (Moench) Garcke 和 Stellaria media (L.) Vill 是属于石竹科的多年生野生杂草物种,在环境中广泛存在且数量丰富。本研究旨在通过体外 COX 抑制试验,评估两种未充分利用的野生食用植物 Silene vulgaris (Moench) Garcke 和 Stellaria media (L.) Vill.使用 BioVisionR "COX 活性检测试剂盒(荧光法)"对 MESV 和 MESM 萃取物进行体外 COX-2 抑制潜力检测。对所选馏分进行了 LC-MS 分析,以确定生物活性化合物,并通过使用 LibDock 程序进行分子对接研究,进一步验证了这些化合物对目标酶的亲和力。体外 COX 抑制试验显示,粗壮褐藻的正己烷馏分(HFSV)和褐藻培养基的正己烷馏分(HFSM)对 COX-2 酶具有显著的抑制作用,IC50 值分别为 1.38 µg/mL 和 1.51 µg/mL。此外,LC-MS 分析显示,HFSV 和 HFSM 中分别含有 46 种和 44 种化合物。在 HFSV 和 HFSM 中发现的生物活性化合物中,山奈酸和丁香酸与 COX-2 的对接得分较高,分别为 89.256 分和 82.168 分。此外,HFSM 中的菊黄素和 HFSV 中的鼠李素也显示出良好的对接得分,即 115.092 分和 112.341 分,对 COX-2 具有选择性亲和力。体外 COX 抑制活性和分子对接研究的结果突显了 S. vulgaris 和 S. media 令人印象深刻的抗炎特性,需要进一步研究,将其确立为治疗炎症和相关问题的候选疗法。
{"title":"In Vitro COX Inhibitory Activity, LC-MS Analysis and Molecular Docking Study of Silene vulgaris and Stellaria media.","authors":"Pooja Chak, Akansha Bisht, Deepti Choudhary, Smita Jain, Priyanka Joshi, Sonika Jain, Pankaj Jain, Jaya Dwivedi, Swapnil Sharma","doi":"10.1007/s12013-024-01533-0","DOIUrl":"10.1007/s12013-024-01533-0","url":null,"abstract":"<p><p>Silene vulgaris (Moench) Garcke and Stellaria media (L.) Vill is a perennial wild weed species belonging to the Caryophyllaceae family and is widely available and abundant in the environment. The present study has aimed to evaluate the anti-inflammatory potential of two underutilized wild edible plants, Silene vulgaris (Moench) Garcke and Stellaria media (L.) Vill. fractions employing in-vitro COX inhibitory assay. Invitro COX-2 inhibitory potential of MESV and MESM fractions was carried out using BioVision<sup>R</sup> \"COX Activity Assay Kit (Fluorometric)\". LC-MS analysis of selected fractions was conducted to identify bioactive compounds that were further validated for their affinity determination toward target enzymes employing molecular docking studies using the LibDock program. In-vitro COX inhibitory assay revealed that hexane fraction of S. vulgaris (HFSV) and hexane fraction of S. media (HFSM) caused impressive inhibition of COX-2 enzyme with IC<sub>50</sub> values 1.38 µg/mL and 1.51 µg/mL respectively. Further, LC-MS analysis revealed the presence of 46 compounds in HFSV and 44 compounds in HFSM respectively. Amongst identified bioactive compounds in HFSV and HFSM, sinapinic acid and syringic acid showed good docking scores with COX-2 i.e., 89.256, and 82.168 respectively. Also, the availability of chrysin in HFSM and rhamnetin in HFSV exhibited good docking scores i.e., 115.092, and 112.341 with a selective affinity towards COX-2. The findings of in-vitro COX Inhibitory Activity and molecular docking studies highlighted the impressive anti-inflammatory properties of S. vulgaris and S. media, and require further investigations to establish them as therapeutic candidates in the management of inflammation and related issues.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":"1009-1020"},"PeriodicalIF":1.8,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142306879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cell Biochemistry and Biophysics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1