首页 > 最新文献

Cell Biochemistry and Biophysics最新文献

英文 中文
Flavonoids of Euphorbia hirta inhibit inflammatory mechanisms via Nrf2 and NF-κB pathways. 大戟的黄酮类化合物通过 Nrf2 和 NF-κB 途径抑制炎症机制
IF 1.8 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-03-01 Epub Date: 2024-11-06 DOI: 10.1007/s12013-024-01551-y
Xiaolin Bai, Lijun Li, Yuning Wu, Bai Jie

Euphorbia hirta has anti-inflammatory effects in traditional medicine, but its anti-inflammatory mechanism has not been explored at the cellular and molecular levels. To unravel these mechanisms, the main active components in the 65 and 95% ethanol extracts of Euphorbia hirta were first identified by UPLC-Q-TOF/MS. Subsequently, potential anti-inflammatory targets and signaling pathways were predicted using network pharmacology and experimentally validated using RT-PCR and flow cytometry in a lipopolysaccharide (LPS)-induced inflammation model of RAW264.7 cells. The results revealed flavonoids as the key active components. Network pharmacology uncovered 71 potential anti-inflammation targets, with a protein-protein interaction (PPI) network highlighting 8 cores targets, including IL-6, TNF, NFκB and Nrf2 et al. Furthermore, Euphorbia hirta exerts anti-inflammation effects through modulation of Nrf2 and NF-κB signaling pathways. Specifically, the 65% ethanol extract of Euphorbia hirta (EE65) and quercitrin (HPG) exerted anti-inflammatory activity by inhibiting the expression of inflammatory genes associated with the NF-κB signaling pathway, whereas baicalein (HCS) suppressed cellular inflammation by promoting Nrf2-mediated antioxidant gene expression and enhancing apoptosis of inflammatory cells. The results of the study suggest that Euphorbia hirta has potential for the development of anti-inflammatory drugs.

在传统医学中,大戟具有抗炎作用,但其抗炎机制尚未在细胞和分子水平上得到探索。为了揭示这些机制,首先利用 UPLC-Q-TOF/MS 方法鉴定了大戟科植物 65% 和 95% 乙醇提取物中的主要活性成分。随后,利用网络药理学预测了潜在的抗炎靶点和信号通路,并在脂多糖(LPS)诱导的 RAW264.7 细胞炎症模型中利用 RT-PCR 和流式细胞仪进行了实验验证。结果显示黄酮类化合物是关键的活性成分。网络药理学发现了 71 个潜在的抗炎靶点,其中蛋白相互作用(PPI)网络突出了 8 个核心靶点,包括 IL-6、TNF、NFκB 和 Nrf2 等。具体来说,Euphorbia hirta 的 65% 乙醇提取物(EE65)和槲皮素(HPG)通过抑制与 NF-κB 信号通路相关的炎症基因的表达来发挥抗炎活性,而黄芩苷(HCS)则通过促进 Nrf2 介导的抗氧化基因表达和增强炎症细胞的凋亡来抑制细胞炎症。研究结果表明,大戟具有开发抗炎药物的潜力。
{"title":"Flavonoids of Euphorbia hirta inhibit inflammatory mechanisms via Nrf2 and NF-κB pathways.","authors":"Xiaolin Bai, Lijun Li, Yuning Wu, Bai Jie","doi":"10.1007/s12013-024-01551-y","DOIUrl":"10.1007/s12013-024-01551-y","url":null,"abstract":"<p><p>Euphorbia hirta has anti-inflammatory effects in traditional medicine, but its anti-inflammatory mechanism has not been explored at the cellular and molecular levels. To unravel these mechanisms, the main active components in the 65 and 95% ethanol extracts of Euphorbia hirta were first identified by UPLC-Q-TOF/MS. Subsequently, potential anti-inflammatory targets and signaling pathways were predicted using network pharmacology and experimentally validated using RT-PCR and flow cytometry in a lipopolysaccharide (LPS)-induced inflammation model of RAW264.7 cells. The results revealed flavonoids as the key active components. Network pharmacology uncovered 71 potential anti-inflammation targets, with a protein-protein interaction (PPI) network highlighting 8 cores targets, including IL-6, TNF, NFκB and Nrf2 et al. Furthermore, Euphorbia hirta exerts anti-inflammation effects through modulation of Nrf2 and NF-κB signaling pathways. Specifically, the 65% ethanol extract of Euphorbia hirta (EE65) and quercitrin (HPG) exerted anti-inflammatory activity by inhibiting the expression of inflammatory genes associated with the NF-κB signaling pathway, whereas baicalein (HCS) suppressed cellular inflammation by promoting Nrf2-mediated antioxidant gene expression and enhancing apoptosis of inflammatory cells. The results of the study suggest that Euphorbia hirta has potential for the development of anti-inflammatory drugs.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":"1167-1183"},"PeriodicalIF":1.8,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142589338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computational Fuzzy Modelling Approach to Analyze Neuronal Calcium Dynamics With Intracellular Fluxes. 利用细胞内通量分析神经元钙动力学的计算模糊建模方法
IF 1.8 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-03-01 Epub Date: 2024-10-07 DOI: 10.1007/s12013-024-01541-0
Rituparna Bhattacharyya, Brajesh Kumar Jha

Mathematical neuroscience investigates how calcium distribution in nerve cells affects the neurological system. The interaction of numerous systems is necessary for the operation of several cellular processes in neuron cells, such as calcium, buffer, ER etc. The dynamics of interacting parameters give useful information on neural cell function. This work uses a mathematical model to analyze the dynamic interactions of buffer and ER inside neurons, considering their spatial properties. While buffers bind to calcium ions and lower their concentration, the endoplasmic reticulum (ER) serves as a reservoir, holding a significant number of free calcium ions. The uncertainty of initial values of calcium concentration poses challenges for researchers to develop calcium signaling models. In this article, we examined the exact solution and approximate solution of the mathematical model that was analyzed using the fuzzy undetermined coefficient approach. MATLAB is being used to perform the simulation. Endoplasmic reticulum and buffer have been found to have a substantial impact on calcium signaling. Fuzzy differential equation Provides a useful tool for evaluating complicated processes with imprecise values when ordinary differential equations perform not precisely. They allow for the examination of dynamic processes under fuzzy settings, which contributes to advances research.

数学神经科学研究神经细胞中的钙分布如何影响神经系统。神经细胞中的多个细胞过程(如钙、缓冲、ER 等)的运行需要众多系统的相互作用。相互作用参数的动态变化提供了神经细胞功能的有用信息。本研究利用数学模型分析神经元内缓冲剂和 ER 的动态相互作用,同时考虑到它们的空间特性。缓冲液与钙离子结合并降低钙离子浓度,而内质网(ER)则充当储库,储存大量游离钙离子。钙离子浓度初始值的不确定性给研究人员开发钙信号模型带来了挑战。在本文中,我们研究了数学模型的精确解和近似解,并使用模糊未定系数法进行了分析。仿真使用的是 MATLAB。研究发现,内质网和缓冲液对钙信号转导有重大影响。模糊微分方程 在常微分方程无法精确执行时,模糊微分方程为评估具有不精确值的复杂过程提供了有用的工具。它们允许在模糊设置下检查动态过程,有助于推动研究。
{"title":"Computational Fuzzy Modelling Approach to Analyze Neuronal Calcium Dynamics With Intracellular Fluxes.","authors":"Rituparna Bhattacharyya, Brajesh Kumar Jha","doi":"10.1007/s12013-024-01541-0","DOIUrl":"10.1007/s12013-024-01541-0","url":null,"abstract":"<p><p>Mathematical neuroscience investigates how calcium distribution in nerve cells affects the neurological system. The interaction of numerous systems is necessary for the operation of several cellular processes in neuron cells, such as calcium, buffer, ER etc. The dynamics of interacting parameters give useful information on neural cell function. This work uses a mathematical model to analyze the dynamic interactions of buffer and ER inside neurons, considering their spatial properties. While buffers bind to calcium ions and lower their concentration, the endoplasmic reticulum (ER) serves as a reservoir, holding a significant number of free calcium ions. The uncertainty of initial values of calcium concentration poses challenges for researchers to develop calcium signaling models. In this article, we examined the exact solution and approximate solution of the mathematical model that was analyzed using the fuzzy undetermined coefficient approach. MATLAB is being used to perform the simulation. Endoplasmic reticulum and buffer have been found to have a substantial impact on calcium signaling. Fuzzy differential equation Provides a useful tool for evaluating complicated processes with imprecise values when ordinary differential equations perform not precisely. They allow for the examination of dynamic processes under fuzzy settings, which contributes to advances research.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":"1071-1086"},"PeriodicalIF":1.8,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142379814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Triethylammonium Salts of Dicoumarol: Synthesis, Characterization, Human Antiglioblastoma, Antimicrobial and Antioxidant Studies. 双香豆素的三乙基铵盐:合成、表征、人类抗胶质母细胞瘤、抗菌和抗氧化研究。
IF 1.8 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-03-01 Epub Date: 2024-09-22 DOI: 10.1007/s12013-024-01532-1
Sadia Rehman, Muhammad Ikram, Afzal Khan, Adnan Khan, Farzia, Rizwan Khan, Mutasem Omar Sinnokrot, Vinay K Puduvalli, Ayub Jadoon

The most typical primary brain tumor, glioblastoma multiforme (GBM), has a dismal prognosis. They are removed through arduous, potentially fatal operations. The primary cause of tumor recurrence following surgery is glioblastoma stem cells (GSCs). In order to combat the recurrent glioblastoma malignant cells, medications have been developed. Chemotherapies now in use are expensive and encounter resistance. To combat inherent and developed resistance, new and powerful chemotherapeutics are being synthesized. In this regard, dicoumarols were deprotonated by triethylamine to produce corresponding salts which are reported and used for the first time for human antiglioblastoma activity. Spectroscopic characterizations like 1H and 13C-NMR were carried out. The cytotoxicity of normal human astrocytes (NHA) and human glioblastoma cells (A172 and LN229) were both examined in terms of dose and time dependence. The range of the IC50 value for all the deprotonated derivatives against A172 was found to be 2.81-0.24 µM, whereas the range against LN229 was found to be 2.50-0.85 µM. According to cytotoxicity results, malignant cell death was seen in GBM cells treated with triethylamine salts of dicoumarols compared to the control group, which suggested that salts may cause apoptosis in GBM cells. Antimicrobial and antifungal activities were also investigated for all the triethylamine salts of dicoumarols suggesting that salt formation enhances antimicrobial potentials manyfolds compared to the standard drug used. Free radical activities were also investigated using DPPH free radicals.

最典型的原发性脑肿瘤--多形性胶质母细胞瘤(GBM)的预后很差。它们需要通过艰苦的、可能致命的手术切除。手术后肿瘤复发的主要原因是胶质母细胞瘤干细胞(GSCs)。为了对付复发的胶质母细胞瘤恶性细胞,人们开发了药物。目前使用的化疗药物价格昂贵,而且会产生抗药性。为了对抗固有的和已产生的抗药性,人们正在合成新的强效化疗药物。在这方面,双香豆素被三乙胺去质子化,生成相应的盐,首次报道并用于人体抗胶质母细胞瘤活性。研究人员还进行了 1H 和 13C-NMR 等光谱表征。对正常人星形胶质细胞(NHA)和人胶质母细胞瘤细胞(A172 和 LN229)的细胞毒性进行了剂量和时间依赖性研究。结果发现,所有去质子化衍生物对 A172 的 IC50 值范围为 2.81-0.24 µM,而对 LN229 的 IC50 值范围为 2.50-0.85 µM。根据细胞毒性结果,与对照组相比,用双香豆素的三乙胺盐处理的 GBM 细胞出现了恶性细胞死亡,这表明盐类可能会导致 GBM 细胞凋亡。还对所有双香豆素三乙胺盐的抗菌和抗真菌活性进行了研究,结果表明,与使用的标准药物相比,盐的形成可将抗菌潜力提高数倍。还使用 DPPH 自由基对自由基活性进行了研究。
{"title":"Triethylammonium Salts of Dicoumarol: Synthesis, Characterization, Human Antiglioblastoma, Antimicrobial and Antioxidant Studies.","authors":"Sadia Rehman, Muhammad Ikram, Afzal Khan, Adnan Khan, Farzia, Rizwan Khan, Mutasem Omar Sinnokrot, Vinay K Puduvalli, Ayub Jadoon","doi":"10.1007/s12013-024-01532-1","DOIUrl":"10.1007/s12013-024-01532-1","url":null,"abstract":"<p><p>The most typical primary brain tumor, glioblastoma multiforme (GBM), has a dismal prognosis. They are removed through arduous, potentially fatal operations. The primary cause of tumor recurrence following surgery is glioblastoma stem cells (GSCs). In order to combat the recurrent glioblastoma malignant cells, medications have been developed. Chemotherapies now in use are expensive and encounter resistance. To combat inherent and developed resistance, new and powerful chemotherapeutics are being synthesized. In this regard, dicoumarols were deprotonated by triethylamine to produce corresponding salts which are reported and used for the first time for human antiglioblastoma activity. Spectroscopic characterizations like <sup>1</sup>H and <sup>13</sup>C-NMR were carried out. The cytotoxicity of normal human astrocytes (NHA) and human glioblastoma cells (A172 and LN229) were both examined in terms of dose and time dependence. The range of the IC<sub>50</sub> value for all the deprotonated derivatives against A172 was found to be 2.81-0.24 µM, whereas the range against LN229 was found to be 2.50-0.85 µM. According to cytotoxicity results, malignant cell death was seen in GBM cells treated with triethylamine salts of dicoumarols compared to the control group, which suggested that salts may cause apoptosis in GBM cells. Antimicrobial and antifungal activities were also investigated for all the triethylamine salts of dicoumarols suggesting that salt formation enhances antimicrobial potentials manyfolds compared to the standard drug used. Free radical activities were also investigated using DPPH free radicals.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":"999-1008"},"PeriodicalIF":1.8,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142278448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cimifugin Alleviates Chronic Constriction Injury of the Sciatic Nerve by Suppressing Inflammatory Response and Schwann Cell Apoptosis. Cimifugin通过抑制炎症反应和许旺细胞凋亡缓解坐骨神经的慢性收缩损伤
IF 1.8 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-03-01 Epub Date: 2024-10-11 DOI: 10.1007/s12013-024-01513-4
Qijuan Zhang, Xiaoli Zhang, Qing He, Yu Tian, Zhengmao Liu

Inflammation and Schwann cell apoptosis play critical roles in neuropathic pain after sciatic nerve injury. This study aimed to explore the function and mechanism of cimifugin in lipopolysaccharide (LPS)-stimulated rat Schwann cells and sciatic nerves of rats treated with chronic constriction injury (CCI). Thermal, mechanical and cold hyperalgesia of rats in response to cimifugin or mecobalamin (the positive drug control) treatment were evaluated through behavioral tests. H&E staining of sciatic nerves was performed for pathological observation. ELISA was conducted to assess concentrations of inflammatory cytokines in rat serum and sciatic nerves. The intensity of S100β in sciatic nerves was determined using immunohistochemistry. Flow cytometry analysis was conducted for detection of Schwann cell apoptosis. RT-qPCR was performed to measure mRNA levels of inflammatory factors in Schwann cells. Immunofluorescence staining was performed to detect cellular p65/NF-κB activity. Western blotting was performed to quantify protein levels of apoptotic markers and factors associated with the NF-κB and MAPK pathways in rat nerves and Schwann cells. As shown by experimental data, cimifugin mitigated thermal, mechanical and cold hyperalgesia of CCI rats. Cimifugin repressed inflammatory cell infiltration, reduced proinflammatory cytokine levels while increasing anti-inflammatory factor (IL-10) level in serum or sciatic nerves of CCI rats. Cimifugin enhanced S100β expression and downregulated apoptotic markers in vivo. The anti-inflammatory and anti-apoptotic properties of cimifugin were verified in the LPS-stimulated Schwann cells. Moreover, cimifugin suppressed nuclear translocation of p65 NF-κB in vitro and repressed the phosphorylation of IκB, p65 NF-κB, p38 MAPK, ERK1/2, as well as JNK in CCI rats. In conclusion, cimifugin alleviates neuropathic pain after sciatica by suppressing inflammatory response and Schwann cell apoptosis via inactivation of NF-κB and MAPK pathways.

炎症和许旺细胞凋亡在坐骨神经损伤后的神经病理性疼痛中起着关键作用。本研究旨在探讨cimifugin在脂多糖(LPS)刺激的大鼠许旺细胞和慢性收缩性损伤(CCI)大鼠坐骨神经中的功能和机制。通过行为测试评估了大鼠对西米芬净或甲钴胺(阳性药物对照)的热痛、机械痛和冷痛反应。对坐骨神经进行 H&E 染色,以进行病理观察。采用 ELISA 方法评估大鼠血清和坐骨神经中炎性细胞因子的浓度。用免疫组化法测定坐骨神经中 S100β 的强度。流式细胞术分析用于检测许旺细胞凋亡。用 RT-qPCR 检测许旺细胞中炎性因子的 mRNA 水平。免疫荧光染色检测细胞中 p65/NF-κB 的活性。用 Western 印迹法定量检测大鼠神经和许旺细胞中凋亡标志物以及与 NF-κB 和 MAPK 通路相关的因子的蛋白水平。实验数据显示,cimifugin 可减轻 CCI 大鼠的热痛、机械痛和冷痛。Cimifugin 可抑制炎症细胞浸润,降低促炎细胞因子水平,同时提高 CCI 大鼠血清或坐骨神经中的抗炎因子(IL-10)水平。Cimifugin 可增强体内 S100β 的表达,并下调细胞凋亡标志物。cimifugin 的抗炎和抗凋亡特性在 LPS 刺激的许旺细胞中得到了验证。此外,cimifugin 还抑制了体外 p65 NF-κB 的核转位,并抑制了 CCI 大鼠体内 IκB、p65 NF-κB、p38 MAPK、ERK1/2 和 JNK 的磷酸化。总之,cimifugin可通过抑制NF-κB和MAPK通路,抑制炎症反应和许旺细胞凋亡,从而缓解坐骨神经痛后的神经病理性疼痛。
{"title":"Cimifugin Alleviates Chronic Constriction Injury of the Sciatic Nerve by Suppressing Inflammatory Response and Schwann Cell Apoptosis.","authors":"Qijuan Zhang, Xiaoli Zhang, Qing He, Yu Tian, Zhengmao Liu","doi":"10.1007/s12013-024-01513-4","DOIUrl":"10.1007/s12013-024-01513-4","url":null,"abstract":"<p><p>Inflammation and Schwann cell apoptosis play critical roles in neuropathic pain after sciatic nerve injury. This study aimed to explore the function and mechanism of cimifugin in lipopolysaccharide (LPS)-stimulated rat Schwann cells and sciatic nerves of rats treated with chronic constriction injury (CCI). Thermal, mechanical and cold hyperalgesia of rats in response to cimifugin or mecobalamin (the positive drug control) treatment were evaluated through behavioral tests. H&E staining of sciatic nerves was performed for pathological observation. ELISA was conducted to assess concentrations of inflammatory cytokines in rat serum and sciatic nerves. The intensity of S100β in sciatic nerves was determined using immunohistochemistry. Flow cytometry analysis was conducted for detection of Schwann cell apoptosis. RT-qPCR was performed to measure mRNA levels of inflammatory factors in Schwann cells. Immunofluorescence staining was performed to detect cellular p65/NF-κB activity. Western blotting was performed to quantify protein levels of apoptotic markers and factors associated with the NF-κB and MAPK pathways in rat nerves and Schwann cells. As shown by experimental data, cimifugin mitigated thermal, mechanical and cold hyperalgesia of CCI rats. Cimifugin repressed inflammatory cell infiltration, reduced proinflammatory cytokine levels while increasing anti-inflammatory factor (IL-10) level in serum or sciatic nerves of CCI rats. Cimifugin enhanced S100β expression and downregulated apoptotic markers in vivo. The anti-inflammatory and anti-apoptotic properties of cimifugin were verified in the LPS-stimulated Schwann cells. Moreover, cimifugin suppressed nuclear translocation of p65 NF-κB in vitro and repressed the phosphorylation of IκB, p65 NF-κB, p38 MAPK, ERK1/2, as well as JNK in CCI rats. In conclusion, cimifugin alleviates neuropathic pain after sciatica by suppressing inflammatory response and Schwann cell apoptosis via inactivation of NF-κB and MAPK pathways.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":"823-836"},"PeriodicalIF":1.8,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142399018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysis of Differentially Expressed Murine miRNAs in Acute Myocardial Infarction and Target Genes Related to Heart Rate. 分析急性心肌梗死中不同表达的小鼠 miRNA 及与心率相关的靶基因
IF 1.8 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-03-01 Epub Date: 2024-09-26 DOI: 10.1007/s12013-024-01528-x
Zulikaier Tuerxun, Yuxin He, Yunxia Niu, Zhen Bao, Xuemei Liu, Yuchun Yang, Pengyi He

Objective: This study aims to investigate the expression profile of miRNAs significantly dysregulated after acute myocardial infarction (AMI) and their potential targets.

Methods: After the establishment of a mouse model of AMI, RNA was extracted from mouse infarcted myocardium. Paired-end sequencing was then performed using the Illumina NovaSeq 6000 system to explore the expression profile of miRNAs. Target genes of downregulated differentially expressed miRNAs (DEmiRNAs) were predicted with miRanda (version 3.3a) and TargetScan (version 6.0). Cytoscape was used to construct a DEmiRNA-mRNA regulatory network to show the regulatory relationship. RT-qPCR was performed to measure miR-142a-3p expression in H2O2-treated rat cardiomyocyte H9c2 cells and heart tissues of MI rats. Cell counting kit-8 and TUNEL assays were conducted to detect H9c2 cell viability and apoptosis.

Results: There were 33 differentially expressed miRNAs, of which 3 were significantly upregulated and the rest 30 were significantly downregulated. Target genes of these miRNAs were identified, and their functional enrichment was analyzed using gene ontology (GO) analysis. Importantly, target genes that can regulate heart rate and their paired upstream miRNAs attracted attention. Significant expression correlation between heart rate-related targets (Epas1, Bves, Hcn4, Cacna1e, Ank2, Slc8a1, Pde4d) and paired miRNAs (miR-142a-5p, miR-7b-5p, miR-144-3p, miR-34c-5p, miR-223-3p, miR-18a-5p) in mouse myocardial tissues was identified. MiR-142a-3p was downregulated in H9c2 cells and rat infarct tissues, and overexpressing miR-142a-3p restrains H2O2-induced H9c2 cell apoptosis.

Conclusion: Cardioprotective miRNAs, such as miR-142a-3p, were identified in mouse myocardial tissues, and some specific miRNA-target pairs are associated with heart rate regulation.

研究目的本研究旨在探讨急性心肌梗死(AMI)后明显失调的 miRNAs 的表达谱及其潜在靶点:方法:建立急性心肌梗死小鼠模型后,从小鼠梗死心肌中提取 RNA。然后使用 Illumina NovaSeq 6000 系统进行配对端测序,以探索 miRNAs 的表达谱。利用 miRanda(3.3a 版)和 TargetScan(6.0 版)预测了下调差异表达 miRNA(DEmiRNA)的靶基因。使用 Cytoscape 构建 DEmiRNA-mRNA 调控网络,以显示调控关系。采用 RT-qPCR 技术检测 miR-142a-3p 在 H2O2 处理的大鼠心肌细胞 H9c2 细胞和 MI 大鼠心脏组织中的表达。通过细胞计数试剂盒-8和TUNEL检测H9c2细胞的活力和凋亡:结果:差异表达的 miRNA 有 33 个,其中 3 个显著上调,其余 30 个显著下调。通过基因本体(GO)分析,确定了这些 miRNA 的靶基因,并分析了它们的功能富集。重要的是,能调控心率的靶基因及其配对的上游 miRNA 引起了关注。研究发现,在小鼠心肌组织中,心率相关靶基因(Epas1、Bves、Hcn4、Cacna1e、Ank2、Slc8a1、Pde4d)与配对的 miRNA(miR-142a-5p、miR-7b-5p、miR-144-3p、miR-34c-5p、miR-223-3p、miR-18a-5p)之间存在显著的表达相关性。MiR-142a-3p在H9c2细胞和大鼠心梗组织中下调,过表达miR-142a-3p可抑制H2O2诱导的H9c2细胞凋亡:结论:在小鼠心肌组织中发现了miR-142a-3p等保护心脏的miRNA,一些特定的miRNA-靶标对与心率调节有关。
{"title":"Analysis of Differentially Expressed Murine miRNAs in Acute Myocardial Infarction and Target Genes Related to Heart Rate.","authors":"Zulikaier Tuerxun, Yuxin He, Yunxia Niu, Zhen Bao, Xuemei Liu, Yuchun Yang, Pengyi He","doi":"10.1007/s12013-024-01528-x","DOIUrl":"10.1007/s12013-024-01528-x","url":null,"abstract":"<p><strong>Objective: </strong>This study aims to investigate the expression profile of miRNAs significantly dysregulated after acute myocardial infarction (AMI) and their potential targets.</p><p><strong>Methods: </strong>After the establishment of a mouse model of AMI, RNA was extracted from mouse infarcted myocardium. Paired-end sequencing was then performed using the Illumina NovaSeq 6000 system to explore the expression profile of miRNAs. Target genes of downregulated differentially expressed miRNAs (DEmiRNAs) were predicted with miRanda (version 3.3a) and TargetScan (version 6.0). Cytoscape was used to construct a DEmiRNA-mRNA regulatory network to show the regulatory relationship. RT-qPCR was performed to measure miR-142a-3p expression in H<sub>2</sub>O<sub>2</sub>-treated rat cardiomyocyte H9c2 cells and heart tissues of MI rats. Cell counting kit-8 and TUNEL assays were conducted to detect H9c2 cell viability and apoptosis.</p><p><strong>Results: </strong>There were 33 differentially expressed miRNAs, of which 3 were significantly upregulated and the rest 30 were significantly downregulated. Target genes of these miRNAs were identified, and their functional enrichment was analyzed using gene ontology (GO) analysis. Importantly, target genes that can regulate heart rate and their paired upstream miRNAs attracted attention. Significant expression correlation between heart rate-related targets (Epas1, Bves, Hcn4, Cacna1e, Ank2, Slc8a1, Pde4d) and paired miRNAs (miR-142a-5p, miR-7b-5p, miR-144-3p, miR-34c-5p, miR-223-3p, miR-18a-5p) in mouse myocardial tissues was identified. MiR-142a-3p was downregulated in H9c2 cells and rat infarct tissues, and overexpressing miR-142a-3p restrains H<sub>2</sub>O<sub>2</sub>-induced H9c2 cell apoptosis.</p><p><strong>Conclusion: </strong>Cardioprotective miRNAs, such as miR-142a-3p, were identified in mouse myocardial tissues, and some specific miRNA-target pairs are associated with heart rate regulation.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":"963-975"},"PeriodicalIF":1.8,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142338782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Salvia Miltiorrhiza Injection Inhibited the Proliferation of AML Cells by Inducing Apoptosis through the p38MAPK Pathway. 丹参注射液通过 p38MAPK 通路诱导细胞凋亡,从而抑制 AML 细胞增殖
IF 1.8 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-03-01 Epub Date: 2024-09-29 DOI: 10.1007/s12013-024-01560-x
Fangfang Zhong, Yan Zeng, Jing Liu, Qulian Guo, Chunyan Liu, Wenjun Liu

The purpose of this study was to explore the antitumor effect and mechanism of Salvia miltiorrhiza injection (SMI) on acute myeloid leukemia (AML) cells in vitro and in vivo. Bioinformatics was used to detect c-Myc mRNA expression in AML patients in the Oncomine database. qRT‒PCR and western blotting were used to detect the mRNA and protein expression of c-Myc and HOXA5 in clinical samples. Different concentrations (6.25, 12.5, 25, 50 and 100 μg/mL) of SMI were added to KG1a and HL60 cells for 24, 48 and 72 h to determine the IC50 value of SMI. A CCK-8 assay was used to detect the effects of different concentrations of SMI and different treatment times on the proliferation of KG1a and HL60 cells. The indicated concentrations of SMI and SB203580 were used to treat KG1a and HL60 cells. The cell cycle distribution was determined by flow cytometry. The percentage of apoptotic cells was detected by Hoechst 33258 staining and flow cytometry. qRT‒PCR was performed to detect the mRNA expression of p38, c-Myc and HOXA5 in KG1a and HL60 cells. Western blotting was used to detect the protein expression of p38, p-p38, c-Myc, HOXA5, cCaspase 3 and cPARP in KG1a and HL60 cells. AutoDock software was used to analyze the molecular docking of the three main active components of SMI with c-Myc. AutoDock analysis revealed that the binding effect of molecular leisure was evaluated by binding energy, and a binding energy <-5 kcal/mol was considered good. SMI decreased the mRNA and protein expression of c-Myc and HOXA5. SMI significantly inhibited the proliferative activity of KG1a and HL60 cells and induced their apoptosis. However, SMI had no significant effect on the cell cycle distribution of KG1a and HL60 cells. With increasing SMI concentrations, the p-p38/p38 ratio increased, while the protein expression of c-Myc and HOXA5 decreased, and the protein expression of cCaspase and cPARP increased. However, SB203580 intervention in addition to SMI reversed these changes. Tanshinone IIA, cryptanshinone and salvianolic acid B can bind to multiple sites of c-Myc. In summary, SMI could be used for the treatment of acute leukemia, and its mechanism may be related to activation of the p38MAPK signaling pathway.

本研究旨在探讨丹参注射液(SMI)在体外和体内对急性髓性白血病(AML)细胞的抗肿瘤作用和机制。采用生物信息学方法检测Oncomine数据库中AML患者的c-Myc mRNA表达,并采用qRT-PCR和Western印迹法检测临床样本中c-Myc和HOXA5的mRNA和蛋白表达。将不同浓度(6.25、12.5、25、50和100 μg/mL)的SMI分别加入KG1a和HL60细胞24、48和72小时,以确定SMI的IC50值。采用 CCK-8 试验检测不同浓度的 SMI 和不同处理时间对 KG1a 和 HL60 细胞增殖的影响。用指定浓度的 SMI 和 SB203580 处理 KG1a 和 HL60 细胞。流式细胞仪测定细胞周期分布。通过 Hoechst 33258 染色和流式细胞仪检测凋亡细胞的百分比。qRT-PCR 检测 p38、c-Myc 和 HOXA5 在 KG1a 和 HL60 细胞中的 mRNA 表达。用 Western 印迹法检测 KG1a 和 HL60 细胞中 p38、p-p38、c-Myc、HOXA5、cCaspase 3 和 cPARP 的蛋白表达。使用 AutoDock 软件分析了 SMI 的三种主要活性成分与 c-Myc 的分子对接。AutoDock 分析表明,分子闲暇的结合效果是通过结合能来评估的,而结合能
{"title":"Salvia Miltiorrhiza Injection Inhibited the Proliferation of AML Cells by Inducing Apoptosis through the p38MAPK Pathway.","authors":"Fangfang Zhong, Yan Zeng, Jing Liu, Qulian Guo, Chunyan Liu, Wenjun Liu","doi":"10.1007/s12013-024-01560-x","DOIUrl":"10.1007/s12013-024-01560-x","url":null,"abstract":"<p><p>The purpose of this study was to explore the antitumor effect and mechanism of Salvia miltiorrhiza injection (SMI) on acute myeloid leukemia (AML) cells in vitro and in vivo. Bioinformatics was used to detect c-Myc mRNA expression in AML patients in the Oncomine database. qRT‒PCR and western blotting were used to detect the mRNA and protein expression of c-Myc and HOXA5 in clinical samples. Different concentrations (6.25, 12.5, 25, 50 and 100 μg/mL) of SMI were added to KG1a and HL60 cells for 24, 48 and 72 h to determine the IC<sub>50</sub> value of SMI. A CCK-8 assay was used to detect the effects of different concentrations of SMI and different treatment times on the proliferation of KG1a and HL60 cells. The indicated concentrations of SMI and SB203580 were used to treat KG1a and HL60 cells. The cell cycle distribution was determined by flow cytometry. The percentage of apoptotic cells was detected by Hoechst 33258 staining and flow cytometry. qRT‒PCR was performed to detect the mRNA expression of p38, c-Myc and HOXA5 in KG1a and HL60 cells. Western blotting was used to detect the protein expression of p38, p-p38, c-Myc, HOXA5, cCaspase 3 and cPARP in KG1a and HL60 cells. AutoDock software was used to analyze the molecular docking of the three main active components of SMI with c-Myc. AutoDock analysis revealed that the binding effect of molecular leisure was evaluated by binding energy, and a binding energy <-5 kcal/mol was considered good. SMI decreased the mRNA and protein expression of c-Myc and HOXA5. SMI significantly inhibited the proliferative activity of KG1a and HL60 cells and induced their apoptosis. However, SMI had no significant effect on the cell cycle distribution of KG1a and HL60 cells. With increasing SMI concentrations, the p-p38/p38 ratio increased, while the protein expression of c-Myc and HOXA5 decreased, and the protein expression of cCaspase and cPARP increased. However, SB203580 intervention in addition to SMI reversed these changes. Tanshinone IIA, cryptanshinone and salvianolic acid B can bind to multiple sites of c-Myc. In summary, SMI could be used for the treatment of acute leukemia, and its mechanism may be related to activation of the p38MAPK signaling pathway.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":"1263-1275"},"PeriodicalIF":1.8,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142338791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Blockade of ITGA2/3/5 Promotes Adipogenic Differentiation of Human Adipose-derived Mesenchymal Stem Cells. 阻断 ITGA2/3/5 促进人脂肪间充质干细胞的成脂分化
IF 1.8 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-03-01 Epub Date: 2024-09-24 DOI: 10.1007/s12013-024-01545-w
Ying Li, Wendi Wang, Zijian Liu, Guangjing Liu, Xiaobing Li

The integrin α (ITGA) subfamily genes play a fundamental role in various cancers. However, the potential mechanism and application values of ITGA genes in adipogenic differentiation of human adipose-derived stem cells (hADSCs) remain elusive. This study confirmed that ITGA2/3/5 mRNA expressions were repressed during adipogenesis. Blockade of ITGA2/3/5 enhanced adipogenic differentiation of hADSCs. Oil red O staining found that more lipid droplets were apparent in the ITGA2/3/5 inhibition group following 14 d adipogenic induction than in the control group. In addition, inhibition of ITGA2/3/5 promoted the expression of adipogenesis-related genes (PPAR-γ, C/EBPα, FABP4). Mechanistically, ITGA2/3/5 functioned by regulating the Rac1 signaling pathway, which reasonably explains ITGA2/3/5's role in adipogenic differentiation of hADSCs. Our studies suggest that blockades of ITGA2/3/5 promote the adipogenic differentiation of hADSCs.

整合素α(ITGA)亚家族基因在多种癌症中发挥着重要作用。然而,ITGA基因在人脂肪源性干细胞(hADSCs)成脂分化中的潜在机制和应用价值仍不明确。本研究证实,ITGA2/3/5 mRNA表达在脂肪生成过程中受到抑制。阻断ITGA2/3/5可促进hADSCs的成脂分化。油红 O 染色发现,在诱导成脂 14 d 后,ITGA2/3/5 抑制组比对照组有更多的脂滴。此外,抑制 ITGA2/3/5 可促进脂肪生成相关基因(PPAR-γ、C/EBPα、FABP4)的表达。从机理上讲,ITGA2/3/5是通过调节Rac1信号通路发挥作用的,这合理地解释了ITGA2/3/5在hADSCs成脂分化中的作用。我们的研究表明,阻断ITGA2/3/5可促进hADSCs的成脂分化。
{"title":"Blockade of ITGA2/3/5 Promotes Adipogenic Differentiation of Human Adipose-derived Mesenchymal Stem Cells.","authors":"Ying Li, Wendi Wang, Zijian Liu, Guangjing Liu, Xiaobing Li","doi":"10.1007/s12013-024-01545-w","DOIUrl":"10.1007/s12013-024-01545-w","url":null,"abstract":"<p><p>The integrin α (ITGA) subfamily genes play a fundamental role in various cancers. However, the potential mechanism and application values of ITGA genes in adipogenic differentiation of human adipose-derived stem cells (hADSCs) remain elusive. This study confirmed that ITGA2/3/5 mRNA expressions were repressed during adipogenesis. Blockade of ITGA2/3/5 enhanced adipogenic differentiation of hADSCs. Oil red O staining found that more lipid droplets were apparent in the ITGA2/3/5 inhibition group following 14 d adipogenic induction than in the control group. In addition, inhibition of ITGA2/3/5 promoted the expression of adipogenesis-related genes (PPAR-γ, C/EBPα, FABP4). Mechanistically, ITGA2/3/5 functioned by regulating the Rac1 signaling pathway, which reasonably explains ITGA2/3/5's role in adipogenic differentiation of hADSCs. Our studies suggest that blockades of ITGA2/3/5 promote the adipogenic differentiation of hADSCs.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":"1105-1111"},"PeriodicalIF":1.8,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142306877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RBM15B Promotes Prostate Cancer Cell Proliferation via PCNA m6A Modification. RBM15B 通过 PCNA m6A 修饰促进前列腺癌细胞增殖
IF 1.8 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-03-01 Epub Date: 2024-10-03 DOI: 10.1007/s12013-024-01558-5
Huan Cheng, Zeyu Chen, Yong Wang, Chengjian Ji, Junqi Wang, Ninghong Song

Prostate cancer (PC) is the most frequently occurring cancer in men, characterized by the abnormal proliferation of cells within the prostate gland. This study explores the role of RNA binding motif protein 15B (RBM15B) in PC. RBM15B expression levels in PC patients were predicted using the Starbase database. The expression of RBM15B and proliferating cell nuclear antigen (PCNA) expression in PC cells was detected. Following RBM15B knockdown, cell proliferation assays were conducted. N6-methyladenosine (m6A) levels in PC cells were quantified, and RNA immunoprecipitation was performed to analyze the binding of m6A and YTH N-methyladenosine RNA binding protein 1 (YTHDF1) on PCNA mRNA. The stability of PCNA mRNA was assessed after treatment with actinomycin D. An in vivo nude mouse xenograft model was created to validate the role of RBM15B. The findings revealed the upregulation of RBM15B in PC. RBM15B knockdown resulted in decreased proliferation, colony formation, and EdU-positive cells. Mechanical analysis showed that RBM15B facilitated m6A modification of PCNA mRNA, leading to increasing m6A methylation. YTHDF1 bound to these m6A sites on PCNA mRNA, thus stabilizing it. Furthermore, PCNA overexpression mitigated the effects of RBM15B knockdown on PC cell proliferation. In conclusion, RBM15B promotes PC cell proliferation by enhancing the stability of PCNA mRNA through YTHDF1-mediated m6A modification.

前列腺癌(PC)是男性最常见的癌症,其特征是前列腺内细胞的异常增殖。本研究探讨了 RNA 结合基序蛋白 15B (RBM15B) 在 PC 中的作用。利用Starbase数据库预测了PC患者中RBM15B的表达水平。检测了PC细胞中RBM15B的表达和增殖细胞核抗原(PCNA)的表达。在敲除 RBM15B 后,进行了细胞增殖试验。对 PC 细胞中的 N6-甲基腺苷(m6A)水平进行了定量,并进行了 RNA 免疫沉淀,以分析 m6A 与 PCNA mRNA 上的 YTH N-methyladenosine RNA 结合蛋白 1(YTHDF1)的结合情况。为了验证 RBM15B 的作用,建立了裸鼠异种移植模型。研究结果显示 RBM15B 在 PC 中上调。敲除 RBM15B 会导致增殖、集落形成和 EdU 阳性细胞减少。力学分析表明,RBM15B 促进了 PCNA mRNA 的 m6A 修饰,导致 m6A 甲基化增加。YTHDF1 与 PCNA mRNA 上的这些 m6A 位点结合,从而使其稳定。此外,过表达 PCNA 可减轻 RBM15B 敲除对 PC 细胞增殖的影响。总之,RBM15B通过YTHDF1介导的m6A修饰增强了PCNA mRNA的稳定性,从而促进了PC细胞的增殖。
{"title":"RBM15B Promotes Prostate Cancer Cell Proliferation via PCNA m6A Modification.","authors":"Huan Cheng, Zeyu Chen, Yong Wang, Chengjian Ji, Junqi Wang, Ninghong Song","doi":"10.1007/s12013-024-01558-5","DOIUrl":"10.1007/s12013-024-01558-5","url":null,"abstract":"<p><p>Prostate cancer (PC) is the most frequently occurring cancer in men, characterized by the abnormal proliferation of cells within the prostate gland. This study explores the role of RNA binding motif protein 15B (RBM15B) in PC. RBM15B expression levels in PC patients were predicted using the Starbase database. The expression of RBM15B and proliferating cell nuclear antigen (PCNA) expression in PC cells was detected. Following RBM15B knockdown, cell proliferation assays were conducted. N6-methyladenosine (m6A) levels in PC cells were quantified, and RNA immunoprecipitation was performed to analyze the binding of m6A and YTH N-methyladenosine RNA binding protein 1 (YTHDF1) on PCNA mRNA. The stability of PCNA mRNA was assessed after treatment with actinomycin D. An in vivo nude mouse xenograft model was created to validate the role of RBM15B. The findings revealed the upregulation of RBM15B in PC. RBM15B knockdown resulted in decreased proliferation, colony formation, and EdU-positive cells. Mechanical analysis showed that RBM15B facilitated m6A modification of PCNA mRNA, leading to increasing m6A methylation. YTHDF1 bound to these m6A sites on PCNA mRNA, thus stabilizing it. Furthermore, PCNA overexpression mitigated the effects of RBM15B knockdown on PC cell proliferation. In conclusion, RBM15B promotes PC cell proliferation by enhancing the stability of PCNA mRNA through YTHDF1-mediated m6A modification.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":"1237-1248"},"PeriodicalIF":1.8,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142363902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Deubiquitinating Enzyme USP4 Promotes Trophoblast Dysfunction by Stabilizing RYBP. 去泛素化酶 USP4 通过稳定 RYBP 促进滋养层功能障碍
IF 1.8 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-03-01 Epub Date: 2024-10-15 DOI: 10.1007/s12013-024-01525-0
Xuandi Wu, Jia Hong, Liang Hong

Previous studies have suggested that impaired spiral artery remodeling, placental dysfunction, and insufficient trophoblast infiltration are the etiology and pathogenesis of Preeclampsia (PE). Ring 1 and YY1 binding protein (RYBP) has been reported to be associated with trophoblast dysfunction. However, the molecular mechanism of RYBP involved in trophoblasts in the pathogenesis of PE is poorly defined. RYBP and Ubiquitin-specific peptidase 4 (USP4) mRNA levels were determined using real-time quantitative polymerase chain reaction (RT-qPCR). RYBP, USP4, p-PI3K, PI3K, p-AKT, and AKT protein levels were measured using western blot assay. Cell viability, proliferation, apoptosis, invasion, and migration were assessed using 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide (MTT), 5-ethynyl-2'-deoxyuridine (EdU), flow cytometry, transwell, and wound healing assays. After ubibrowser database analysis, the interaction between USP4 and RYBP was verified using Co-immunoprecipitation (CoIP) assay. RYBP and USP4 expression were upregulated in placental tissues from PE patients. By using JEG-3 and HTR-8/SVneo trophoblast cells, RYBP overexpression or USP4 upregulation could hinder cell viability, proliferation, invasion, migration, and promote apoptosis. Mechanistically, USP4 could trigger the deubiquitination of RYBP and prevent its degradation. In addition, USP4 repressed the PI3K/AKT signaling pathway by regulating RYBP. In total, Decreased USP4-mediated ubiquitination results in an adverse impact on trophoblast function by enhancing RYBP expression, providing a novel therapeutic target for PE.

以往的研究表明,螺旋动脉重塑受损、胎盘功能障碍和滋养细胞浸润不足是子痫前期(PE)的病因和发病机制。据报道,环 1 和 YY1 结合蛋白(RYBP)与滋养细胞功能障碍有关。然而,RYBP参与滋养层细胞在PE发病机制中的分子机制尚不明确。采用实时定量聚合酶链反应(RT-qPCR)测定了RYBP和泛素特异性肽酶4(USP4)的mRNA水平。采用 Western 印迹法测定 RYBP、USP4、p-PI3K、PI3K、p-AKT 和 AKT 蛋白水平。使用 3-(4,5-二甲基-2-噻唑基)-2,5-二苯基-2-H-溴化四氮唑(MTT)、5-乙炔基-2'-脱氧尿苷(EdU)、流式细胞术、透孔法和伤口愈合法评估细胞活力、增殖、凋亡、侵袭和迁移。经过 ubibrowser 数据库分析,USP4 和 RYBP 之间的相互作用通过共免疫沉淀(CoIP)试验得到了验证。在 PE 患者的胎盘组织中,RYBP 和 USP4 表达上调。通过使用 JEG-3 和 HTR-8/SVneo 滋养层细胞,RYBP 过表达或 USP4 上调可阻碍细胞活力、增殖、侵袭、迁移并促进细胞凋亡。从机制上讲,USP4 可触发 RYBP 的去泛素化并阻止其降解。此外,USP4 还能通过调节 RYBP 来抑制 PI3K/AKT 信号通路。总之,USP4 介导的泛素化减少会通过增强 RYBP 的表达而对滋养细胞的功能产生不利影响,从而为 PE 提供了一个新的治疗靶点。
{"title":"The Deubiquitinating Enzyme USP4 Promotes Trophoblast Dysfunction by Stabilizing RYBP.","authors":"Xuandi Wu, Jia Hong, Liang Hong","doi":"10.1007/s12013-024-01525-0","DOIUrl":"10.1007/s12013-024-01525-0","url":null,"abstract":"<p><p>Previous studies have suggested that impaired spiral artery remodeling, placental dysfunction, and insufficient trophoblast infiltration are the etiology and pathogenesis of Preeclampsia (PE). Ring 1 and YY1 binding protein (RYBP) has been reported to be associated with trophoblast dysfunction. However, the molecular mechanism of RYBP involved in trophoblasts in the pathogenesis of PE is poorly defined. RYBP and Ubiquitin-specific peptidase 4 (USP4) mRNA levels were determined using real-time quantitative polymerase chain reaction (RT-qPCR). RYBP, USP4, p-PI3K, PI3K, p-AKT, and AKT protein levels were measured using western blot assay. Cell viability, proliferation, apoptosis, invasion, and migration were assessed using 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide (MTT), 5-ethynyl-2'-deoxyuridine (EdU), flow cytometry, transwell, and wound healing assays. After ubibrowser database analysis, the interaction between USP4 and RYBP was verified using Co-immunoprecipitation (CoIP) assay. RYBP and USP4 expression were upregulated in placental tissues from PE patients. By using JEG-3 and HTR-8/SVneo trophoblast cells, RYBP overexpression or USP4 upregulation could hinder cell viability, proliferation, invasion, migration, and promote apoptosis. Mechanistically, USP4 could trigger the deubiquitination of RYBP and prevent its degradation. In addition, USP4 repressed the PI3K/AKT signaling pathway by regulating RYBP. In total, Decreased USP4-mediated ubiquitination results in an adverse impact on trophoblast function by enhancing RYBP expression, providing a novel therapeutic target for PE.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":"929-939"},"PeriodicalIF":1.8,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142455233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
β-Sitosterol Mitigates Apoptosis, Oxidative Stress and Inflammatory Response by Inactivating TLR4/NF-кB Pathway in Cell Models of Diabetic Nephropathy. β-谷甾醇通过抑制 TLR4/NF-кB 通路减轻糖尿病肾病细胞模型中的细胞凋亡、氧化应激和炎症反应
IF 1.8 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-03-01 Epub Date: 2024-10-19 DOI: 10.1007/s12013-024-01559-4
Shengnan Yang, Yun Zhang, Chenghong Zheng

Podocyte injury plays a pivotal role in the pathogenesis of diabetic nephropathy (DN), leading to proteinuria formation. β-Sitosterol is a natural compound with anti-inflammatory, anti-diabetic, nephroprotective and antioxidant properties. The studyaimed to explore whether and how β-Sitosterol protected podocytes against high glucose (HG)-induced inflammatory andoxidative injury. DN cell models were established by stimulating podocytes or renal tubular epithelial cells (HK-2) cells with 25 mM glucose. Cell viability and apoptosis were evaluated using cell counting kit-8 assays and flow cytometry analyses. Westernblotting was used to quantify protein levels of genes related to podocyte injury, HK-2 cell damage, inflammation, and TLR4/NF-кB pathway. Contents of oxidative stress biomarkers were evaluated by corresponding commercial kits while proinflammatorycytokine levels were determined by enzyme-linked immunosorbent assay. Immunofluorescence staining was performed todetect intracellular levels of reactive oxygen species (ROS) and Nrf2 nuclear translocation. Experimental results revealed that HG treatment induced podocyte dysfunction by impairing cell viability while accelerating theapoptosis, and the changes were reversed by β-sitosterol treatment. Moreover, β-sitosterol repressed HG-evoked oxidative stressby reducing ROS and malondialdehyde (MDA) levels while increasing activities of antioxidant enzymes. The reduction ofproinflammatory cytokines mediated by β-sitosterol in HG-stimulated podocytes suggested the anti-inflammatory role of β-sitosterol. Additionally, the activation of the TLR4/NF-кB signaling induced by HG was inhibited by β-sitosterol in podocytes.Inactivation of the TLR4 using TAK-242 enhanced the protective effects of β-sitosterol against HG-mediated oxidative stressand inflammation. Similarly, β-sitosterol also protected HK-2 cells from HG-induced oxidative stress, inflammation, andapoptosis. In summary, β-sitosterol exerts anti-inflammatory, anti-oxidative, and anti-apoptotic activities in HG-induced podocytes or HK-2 cells by inhibiting TLR4/NF-кB signaling.

在糖尿病肾病(DN)的发病机制中,荚膜细胞损伤是导致蛋白尿形成的关键因素。β-谷甾醇是一种天然化合物,具有抗炎、抗糖尿病、保护肾脏和抗氧化的作用。该研究旨在探讨β-谷甾醇是否以及如何保护荚膜细胞免受高葡萄糖(HG)诱导的炎症和氧化损伤。通过用 25 mM 葡萄糖刺激荚膜细胞或肾小管上皮细胞(HK-2)建立了 DN 细胞模型。使用细胞计数试剂盒-8测定法和流式细胞术分析评估细胞活力和凋亡。使用 Westernblotting 定量与荚膜损伤、HK-2 细胞损伤、炎症和 TLR4/NF-кB 通路相关的基因的蛋白水平。氧化应激生物标志物的含量通过相应的商业试剂盒进行评估,而促炎细胞因子的水平则通过酶联免疫吸附试验进行测定。免疫荧光染色检测细胞内活性氧(ROS)水平和 Nrf2 核转位。实验结果表明,HG 处理会损害细胞活力并加速其凋亡,从而诱导荚膜细胞功能障碍,β-谷甾醇处理可逆转这些变化。此外,β-谷甾醇还能降低 ROS 和丙二醛(MDA)水平,同时提高抗氧化酶的活性,从而抑制 HG 诱导的氧化应激。在 HG 刺激的荚膜细胞中,β-谷甾醇介导的促炎细胞因子的减少表明了β-谷甾醇的抗炎作用。此外,β-谷甾醇还能抑制 HG 诱导的 TLR4/NF-кB 信号传导。使用 TAK-242 使 TLR4 失活,可增强β-谷甾醇对 HG 介导的氧化应激和炎症的保护作用。同样,β-谷甾醇也能保护 HK-2 细胞免受 HG 诱导的氧化应激、炎症和细胞凋亡的影响。总之,β-谷甾醇通过抑制 TLR4/NF-кB 信号传导,在 HG 诱导的荚膜或 HK-2 细胞中发挥抗炎、抗氧化和抗凋亡活性。
{"title":"β-Sitosterol Mitigates Apoptosis, Oxidative Stress and Inflammatory Response by Inactivating TLR4/NF-кB Pathway in Cell Models of Diabetic Nephropathy.","authors":"Shengnan Yang, Yun Zhang, Chenghong Zheng","doi":"10.1007/s12013-024-01559-4","DOIUrl":"10.1007/s12013-024-01559-4","url":null,"abstract":"<p><p>Podocyte injury plays a pivotal role in the pathogenesis of diabetic nephropathy (DN), leading to proteinuria formation. β-Sitosterol is a natural compound with anti-inflammatory, anti-diabetic, nephroprotective and antioxidant properties. The studyaimed to explore whether and how β-Sitosterol protected podocytes against high glucose (HG)-induced inflammatory andoxidative injury. DN cell models were established by stimulating podocytes or renal tubular epithelial cells (HK-2) cells with 25 mM glucose. Cell viability and apoptosis were evaluated using cell counting kit-8 assays and flow cytometry analyses. Westernblotting was used to quantify protein levels of genes related to podocyte injury, HK-2 cell damage, inflammation, and TLR4/NF-кB pathway. Contents of oxidative stress biomarkers were evaluated by corresponding commercial kits while proinflammatorycytokine levels were determined by enzyme-linked immunosorbent assay. Immunofluorescence staining was performed todetect intracellular levels of reactive oxygen species (ROS) and Nrf2 nuclear translocation. Experimental results revealed that HG treatment induced podocyte dysfunction by impairing cell viability while accelerating theapoptosis, and the changes were reversed by β-sitosterol treatment. Moreover, β-sitosterol repressed HG-evoked oxidative stressby reducing ROS and malondialdehyde (MDA) levels while increasing activities of antioxidant enzymes. The reduction ofproinflammatory cytokines mediated by β-sitosterol in HG-stimulated podocytes suggested the anti-inflammatory role of β-sitosterol. Additionally, the activation of the TLR4/NF-кB signaling induced by HG was inhibited by β-sitosterol in podocytes.Inactivation of the TLR4 using TAK-242 enhanced the protective effects of β-sitosterol against HG-mediated oxidative stressand inflammation. Similarly, β-sitosterol also protected HK-2 cells from HG-induced oxidative stress, inflammation, andapoptosis. In summary, β-sitosterol exerts anti-inflammatory, anti-oxidative, and anti-apoptotic activities in HG-induced podocytes or HK-2 cells by inhibiting TLR4/NF-кB signaling.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":"1249-1262"},"PeriodicalIF":1.8,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142455235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cell Biochemistry and Biophysics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1