首页 > 最新文献

Meteorology and Atmospheric Physics最新文献

英文 中文
Climate forecast skill and teleconnections on seasonal time scales over Central Africa based on the North American Multi-Model Ensemble (NMME) 基于北美多模式集合(NMME)的中部非洲季节性时间尺度上的气候预测技能和远程联系
IF 2 4区 地球科学 Q2 Earth and Planetary Sciences Pub Date : 2024-04-05 DOI: 10.1007/s00703-024-01018-y
Roméo S. Tanessong, Thierry C. Fotso-Nguemo, Samuel Kaissassou, G. M. Guenang, A. J. Komkoua Mbienda, Lucie A. Djiotang Tchotchou, Armand F. Tchinda, Derbetini A. Vondou, Wilfried M. Pokam, Pascal M. Igri, Zéphirin D. Yepdo

This study examines the skill of the North American Multi-Model Ensemble (NMME) seasonal precipitation forecast and the influence of tropical sea surface temperature (SST) anomalies and their teleconnections on precipitation prediction skill over Central Africa (CA). The skill is assessed for December–February (DJF), March–May (MAM), June–August (JJA), and September–November (SON) seasons, at 0-, 3-, and 6- month lead time. Results show that for all seasons and at all lead times, models used in this study have tendency to overestimate the observed SSTs over the tropical areas. The multi-model ensemble mean (MME) generally succeeds in capturing the spatial differences in the seasonal mean climatology of precipitation and clearly determines the bi-modal and uni-modal natures of observed precipitation over CA. The El Ninõ-Southern Oscillation 3.4 index (Ninõ3.4), Indian Ocean Dipole (IOD) western pole index (IODWP), and IOD eastern pole index (IODEP) teleconnections with tropical SST are well represented by the MME at all seasons and lead times with a pattern correlation coefficient (PCC) >0.6. The quality of these teleconnections decreases when the lead time increases. The Ninõ3.4-induced precipitation’s teleconnection is better represented in MAM at all lead times, and it is found that precipitation is reinforced over northern CA during the El Ninõ years and weakened during the La Niña years. IODWP and IODEP teleconnections with CA precipitation are well represented in MAM and SON, with PCC > 0.8. The IODWP and IODEP could be a very good indicators to predict the increase or decrease of precipitation in CA during MAM and SON seasons.

本研究考察了北美多模式集合(NMME)季节性降水预报的技能,以及热带海洋表面温度(SST)异常及其远缘联系对中非(CA)降水预报技能的影响。评估了 12 月至 2 月(DJF)、3 月至 5 月(MAM)、6 月至 8 月(JJA)和 9 月至 11 月(SON)等季节在 0、3 和 6 个月提前期的降水预测技能。结果表明,在所有季节和所有提前期,本研究使用的模式都有高估热带地区观测到的海温的趋势。多模式集合平均值(MME)总体上成功地捕捉到了降水季节平均气候学的空间差异,并清楚地确定了在加利福尼亚观测到的降水的双模式和单模式性质。厄尔尼诺-南方涛动 3.4 指数(Ninõ3.4)、印度洋偶极(IOD)西极指数(IODWP)和印度洋偶极东极指数(IODEP)与热带海温的远缘联系在所有季节和前缘时间都能很好地用模式相关系数(PCC)>0.6 表示。当前导时间增加时,这些远缘联系的质量下降。厄尔尼诺年期间,加利福尼亚州北部降水增强,而拉尼娜年期间降水减弱。IODWP 和 IODEP 与加利福尼亚降水的遥联系在 MAM 和 SON 中得到了很好的体现,PCC > 0.8。IODWP 和 IODEP 可以作为一个很好的指标来预测 MAM 和 SON 季节中亚降水的增减。
{"title":"Climate forecast skill and teleconnections on seasonal time scales over Central Africa based on the North American Multi-Model Ensemble (NMME)","authors":"Roméo S. Tanessong, Thierry C. Fotso-Nguemo, Samuel Kaissassou, G. M. Guenang, A. J. Komkoua Mbienda, Lucie A. Djiotang Tchotchou, Armand F. Tchinda, Derbetini A. Vondou, Wilfried M. Pokam, Pascal M. Igri, Zéphirin D. Yepdo","doi":"10.1007/s00703-024-01018-y","DOIUrl":"https://doi.org/10.1007/s00703-024-01018-y","url":null,"abstract":"<p>This study examines the skill of the North American Multi-Model Ensemble (NMME) seasonal precipitation forecast and the influence of tropical sea surface temperature (SST) anomalies and their teleconnections on precipitation prediction skill over Central Africa (CA). The skill is assessed for December–February (DJF), March–May (MAM), June–August (JJA), and September–November (SON) seasons, at 0-, 3-, and 6- month lead time. Results show that for all seasons and at all lead times, models used in this study have tendency to overestimate the observed SSTs over the tropical areas. The multi-model ensemble mean (MME) generally succeeds in capturing the spatial differences in the seasonal mean climatology of precipitation and clearly determines the bi-modal and uni-modal natures of observed precipitation over CA. The El Ninõ-Southern Oscillation 3.4 index (Ninõ3.4), Indian Ocean Dipole (IOD) western pole index (IODWP), and IOD eastern pole index (IODEP) teleconnections with tropical SST are well represented by the MME at all seasons and lead times with a pattern correlation coefficient (PCC) &gt;0.6. The quality of these teleconnections decreases when the lead time increases. The Ninõ3.4-induced precipitation’s teleconnection is better represented in MAM at all lead times, and it is found that precipitation is reinforced over northern CA during the El Ninõ years and weakened during the La Niña years. IODWP and IODEP teleconnections with CA precipitation are well represented in MAM and SON, with PCC &gt; 0.8. The IODWP and IODEP could be a very good indicators to predict the increase or decrease of precipitation in CA during MAM and SON seasons.</p>","PeriodicalId":51132,"journal":{"name":"Meteorology and Atmospheric Physics","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140570021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of climate teleconnections on hydrological drought in the Sahel Region of Nigeria (SRN) 气候远程联系对尼日利亚萨赫勒地区(SRN)水文干旱的影响
IF 2 4区 地球科学 Q2 Earth and Planetary Sciences Pub Date : 2024-04-05 DOI: 10.1007/s00703-024-01016-0
Akinwale T. Ogunrinde, Israel Emmanuel, David A. Olasehinde, Oluwaseun T. Faloye, Toju Babalola, Iyanda M. Animashaun

Understanding the spatial and temporal patterns of drought and their connection with major climate indices is crucial for creating early warning and drought mitigation strategies. This study analyzed hydrological drought variability and its association with global climate indices in the Sahel Region of Nigeria. Before conducting drought analysis, temperature and precipitation data were verified for consistency using three homogeneity tests. The study utilized six synoptic stations across the area to identify drought periods through the Standardized Precipitation Evapotranspiration Index (SPEI). Drought characteristics such as duration, severity, and amplitude were examined using SPEI data. Trend and variability in drought patterns were assessed with Mann–Kendall trend analysis and wavelet analysis, respectively. The relationship between large climate indices and drought was explored using Pearson correlation analysis. Trend analysis indicated an increase in drought occurrences, with significant findings in four stations. Wavelet analysis identified the 2–4 and 4–8 year bands as crucial for understanding SPEI drought patterns. Correlation analysis showed the influence of various climate trends on concurrent climate events, ranking the impact of climate indices on drought as MEI/SOI > NAO > AMO > DMI. Coherence analysis found significant correlations between ENSO and SPEI, and NAO and SPEI, in the 2–7 and > 8-year bands, respectively. Phase differences suggested that severe wet and dry periods align with La Nina and El Nino events, with strong El Nino events and AMO negative phases mainly causing severe droughts in the area.

了解干旱的时空模式及其与主要气候指数的联系对于制定早期预警和干旱缓解战略至关重要。本研究分析了尼日利亚萨赫勒地区的水文干旱变异性及其与全球气候指数的联系。在进行干旱分析之前,通过三次同质性测试验证了气温和降水数据的一致性。研究利用该地区的六个同步站,通过标准化降水蒸散指数(SPEI)确定干旱期。利用 SPEI 数据研究了干旱特征,如持续时间、严重程度和振幅。通过 Mann-Kendall 趋势分析和小波分析分别评估了干旱模式的趋势和变异性。利用皮尔逊相关分析探讨了大型气候指数与干旱之间的关系。趋势分析表明,干旱发生率在增加,其中四个站点的结果显著。小波分析表明,2-4 年和 4-8 年波段对了解 SPEI 干旱模式至关重要。相关性分析表明了各种气候趋势对同期气候事件的影响,将气候指数对干旱的影响排序为:MEI/SOI > NAO > AMO > DMI。相干性分析发现,厄尔尼诺/南方涛动与 SPEI 之间,以及 NAO 与 SPEI 之间,分别在 2-7 年和 8 年波段上存在明显的相关性。相位差表明,严重的干湿期与拉尼娜和厄尔尼诺事件相一致,强厄尔尼诺事件和 AMO 负相位主要造成该地区的严重干旱。
{"title":"Impact of climate teleconnections on hydrological drought in the Sahel Region of Nigeria (SRN)","authors":"Akinwale T. Ogunrinde, Israel Emmanuel, David A. Olasehinde, Oluwaseun T. Faloye, Toju Babalola, Iyanda M. Animashaun","doi":"10.1007/s00703-024-01016-0","DOIUrl":"https://doi.org/10.1007/s00703-024-01016-0","url":null,"abstract":"<p>Understanding the spatial and temporal patterns of drought and their connection with major climate indices is crucial for creating early warning and drought mitigation strategies. This study analyzed hydrological drought variability and its association with global climate indices in the Sahel Region of Nigeria. Before conducting drought analysis, temperature and precipitation data were verified for consistency using three homogeneity tests. The study utilized six synoptic stations across the area to identify drought periods through the Standardized Precipitation Evapotranspiration Index (SPEI). Drought characteristics such as duration, severity, and amplitude were examined using SPEI data. Trend and variability in drought patterns were assessed with Mann–Kendall trend analysis and wavelet analysis, respectively. The relationship between large climate indices and drought was explored using Pearson correlation analysis. Trend analysis indicated an increase in drought occurrences, with significant findings in four stations. Wavelet analysis identified the 2–4 and 4–8 year bands as crucial for understanding SPEI drought patterns. Correlation analysis showed the influence of various climate trends on concurrent climate events, ranking the impact of climate indices on drought as MEI/SOI &gt; NAO &gt; AMO &gt; DMI. Coherence analysis found significant correlations between ENSO and SPEI, and NAO and SPEI, in the 2–7 and &gt; 8-year bands, respectively. Phase differences suggested that severe wet and dry periods align with La Nina and El Nino events, with strong El Nino events and AMO negative phases mainly causing severe droughts in the area.</p>","PeriodicalId":51132,"journal":{"name":"Meteorology and Atmospheric Physics","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140570015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Climatological standard normals of IRAN, for the period 1981–2010 and 1991–2020: precipitation and temperature 伊朗 1981-2010 年和 1991-2020 年期间的气候标准模式:降水和气温
IF 2 4区 地球科学 Q2 Earth and Planetary Sciences Pub Date : 2024-04-03 DOI: 10.1007/s00703-024-01013-3
Zohreh Javanshiri, Mohsen Rahmdel

The main functions of climate normals are twofold. They offer a reference point for evaluating recent or ongoing observations and form the basis for various climate datasets that rely on anomalies. Additionally, they are frequently employed to predict the probable conditions that one might encounter in a specific area. The World Meteorological Organization (WMO) advises regularly reviewing climate normals every decade to keep up with the evolving climate. Atmospheric Science and Meteorological Research Center (ASMERC) is proud to release “Iran Climate Normals” for the periods of 1981–2010 and 1991–2020 including a suite of monthly and annual statistics that are based on temperature, precipitation, sea-level pressure, vapor pressure, station-level pressure, snow-depth, wind speed, visibility, soil temperature, relative humidity, dew point, and cloud amount measurements. This study documents the procedures used for quality control, homogenization of daily observations, and calculation of normal values. For each station and each parameter, the results of the outliers due to the error and the homogeneity assessment are reported. Out of all the parameters, the soil temperature has the highest error percentage. However, this does not necessarily imply that it has the most measurement errors; it could be due to the ease of detecting errors for this specific parameter. Of the 143 stations, 56 had a breakpoint recorded in two parameters or more at a specific point in time. According to the analysis of the temperature and precipitation parameters, (a) the new normal of mean, maximum, and minimum temperatures are 0.47, 0.5, and 0.6 °C above the 1981–2010 period; (b) the normal annual precipitation has increased by an average of 5.4 mm in 1991–2020 compared to 1981–2010; (c) comparing the two periods, the changes in precipitation normals vary in different parts of Iran and different months, while the temperature normals increase in all stations across Iran except for four stations (Gorgan, Kerman, Shiraz, Bandar-e Lengeh); (d) changes in the fourth quintile of monthly precipitation are more than average, and minimum temperature changes are higher than maximum and mean temperatures; and (e) generally, the latter period is characterized by a warmer climate almost across Iran, wetter conditions over the Zagros mountain range and the western part of the Caspian Sea coasts, and drier conditions over the east, center, and west of Iran.

气候常模的主要功能有两个方面。它们为评估最近或正在进行的观测提供了一个参考点,并构成了依赖于异常现象的各种气候数据集的基础。此外,它们还经常被用来预测人们在特定地区可能遇到的情况。世界气象组织(WMO)建议每十年定期审查气候常模,以跟上不断变化的气候。大气科学和气象研究中心(ASMERC)自豪地发布了 1981-2010 年和 1991-2020 年期间的 "伊朗气候正常值",其中包括一套基于温度、降水、海平面气压、蒸汽压、站平气压、积雪深度、风速、能见度、土壤温度、相对湿度、露点和云量测量的月度和年度统计数据。本研究记录了用于质量控制、日观测数据同质化和正常值计算的程序。对于每个站点和每个参数,都报告了因误差和均匀性评估而导致的异常值结果。在所有参数中,土壤温度的误差百分比最高。不过,这并不一定意味着土壤温度的测量误差最大;这可能是由于该参数的误差比较容易发现。在 143 个站点中,有 56 个站点在某一特定时间点记录了两个或两个以上参数的断点。根据对气温和降水参数的分析,(a) 新常态下的平均气温、最高气温和最低气温分别比 1981-2010 年期间高 0.47、0.5 和 0.6 °C;(b) 正常年降水量在 1991-2020 年期间比 1981-2010 年期间平均增加了 5.4 毫米。(b) 与 1981-2010 年相比,1991-2020 年的正常年降水量平均增加了 5.4 毫米;(c) 比较这两个时期,伊朗不同地区和不同月份的降水量正常值变化各不相同,而除四个站点(戈尔甘、克尔曼、设拉子、班达尔-伦盖)外,伊朗各地所有站点的气温正常值均有所上升;(d) 月降水量的第四个五分位数的变化大于平均值,最低气温的变化高于最高气温和平均气温;以及 (e) 总体而言,后期伊朗全国气候变暖,扎格罗斯山脉和里海沿岸西部较湿润,伊朗东部、中部和西部较干燥。
{"title":"Climatological standard normals of IRAN, for the period 1981–2010 and 1991–2020: precipitation and temperature","authors":"Zohreh Javanshiri, Mohsen Rahmdel","doi":"10.1007/s00703-024-01013-3","DOIUrl":"https://doi.org/10.1007/s00703-024-01013-3","url":null,"abstract":"<p>The main functions of climate normals are twofold. They offer a reference point for evaluating recent or ongoing observations and form the basis for various climate datasets that rely on anomalies. Additionally, they are frequently employed to predict the probable conditions that one might encounter in a specific area. The World Meteorological Organization (WMO) advises regularly reviewing climate normals every decade to keep up with the evolving climate. Atmospheric Science and Meteorological Research Center (ASMERC) is proud to release “Iran Climate Normals” for the periods of 1981–2010 and 1991–2020 including a suite of monthly and annual statistics that are based on temperature, precipitation, sea-level pressure, vapor pressure, station-level pressure, snow-depth, wind speed, visibility, soil temperature, relative humidity, dew point, and cloud amount measurements. This study documents the procedures used for quality control, homogenization of daily observations, and calculation of normal values. For each station and each parameter, the results of the outliers due to the error and the homogeneity assessment are reported. Out of all the parameters, the soil temperature has the highest error percentage. However, this does not necessarily imply that it has the most measurement errors; it could be due to the ease of detecting errors for this specific parameter. Of the 143 stations, 56 had a breakpoint recorded in two parameters or more at a specific point in time. According to the analysis of the temperature and precipitation parameters, (a) the new normal of mean, maximum, and minimum temperatures are 0.47, 0.5, and 0.6 °C above the 1981–2010 period; (b) the normal annual precipitation has increased by an average of 5.4 mm in 1991–2020 compared to 1981–2010; (c) comparing the two periods, the changes in precipitation normals vary in different parts of Iran and different months, while the temperature normals increase in all stations across Iran except for four stations (Gorgan, Kerman, Shiraz, Bandar-e Lengeh); (d) changes in the fourth quintile of monthly precipitation are more than average, and minimum temperature changes are higher than maximum and mean temperatures; and (e) generally, the latter period is characterized by a warmer climate almost across Iran, wetter conditions over the Zagros mountain range and the western part of the Caspian Sea coasts, and drier conditions over the east, center, and west of Iran.</p>","PeriodicalId":51132,"journal":{"name":"Meteorology and Atmospheric Physics","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140603438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of ERA5 and CHIRPS rainfall estimates against observations across Ethiopia 根据埃塞俄比亚各地的观测结果评估 ERA5 和 CHIRPS 的降雨量估计值
IF 2 4区 地球科学 Q2 Earth and Planetary Sciences Pub Date : 2024-04-03 DOI: 10.1007/s00703-024-01008-0

Abstract

Satellite-based precipitation estimates and global reanalysis products bear the promise of supporting the development of accurate and timely climate information for end users in sub-Sharan Africa. The accuracy of these global models, however, may be reduced in data-scarce regions and should be carefully evaluated. This study evaluates the performance of ERA5 reanalysis data and CHIRPS precipitation data against ground-based measurements from 167 rain gauges in Ethiopia, a region with complex topography and diverse climates. Focusing over a 38-year period (1981–2018), our study utilizes a point-to-pixel analysis to compare daily, monthly, seasonal, and annual precipitation data, conducting an evaluation based on continuous and categorical metrics. Our findings indicate that over Ethiopia CHIRPS generally outperforms ERA5, particularly in high-altitude areas, demonstrating a better capability in detecting high-intensity rainfall events. Both datasets, however, exhibit lower performance in Ethiopia's lowland regions, possibly the influence of sparse rain gauge networks informing gridded datasets. Notably, both CHIRPS and ERA5 were found to underestimate rainfall variability, with CHIRPS displaying a slight advantage in representing the erratic nature of Ethiopian rainfall. The study’s results highlight considerable performance differences between CHIRPS and ERA5 across varying Ethiopian landscapes and climatic conditions. CHIRPS’ effectiveness in high-altitude regions, especially for daily rainfall estimation, emphasizes its suitability in similar geographic contexts. Conversely, the lesser performance of ERA5 in these areas suggests a need for refined calibration and validation processes, particularly for complex terrains. These insights are essential for the application of satellite-based and reanalysis of rainfall data in meteorological, agricultural, and hydrological contexts, particularly in topographically and climatically diverse regions.

摘要 基于卫星的降水估算和全球再分析产品有望支持为撒哈拉以南非洲的终端用户开发准确、及时的气候信息。然而,在数据稀缺的地区,这些全球模式的准确性可能会降低,因此应仔细评估。埃塞俄比亚是一个地形复杂、气候多样的地区,本研究评估了ERA5再分析数据和CHIRPS降水数据与该地区167个雨量计的地面测量数据的对比情况。我们的研究以 38 年(1981-2018 年)为重点,利用点到像素分析比较日降水量、月降水量、季节降水量和年降水量数据,并根据连续和分类指标进行评估。我们的研究结果表明,在埃塞俄比亚,CHIRPS 总体上优于ERA5,尤其是在高海拔地区,这表明 CHIRPS 在探测高强度降雨事件方面具有更强的能力。然而,这两个数据集在埃塞俄比亚低地地区的表现都较差,这可能是稀疏的雨量计网络对网格数据集的影响。值得注意的是,CHIRPS 和 ERA5 都低估了降雨的变异性,而 CHIRPS 在表现埃塞俄比亚降雨的不稳定性方面略胜一筹。研究结果凸显了 CHIRPS 和 ERA5 在埃塞俄比亚不同地貌和气候条件下的性能差异。CHIRPS 在高海拔地区的有效性,特别是在日降雨量估算方面,强调了其在类似地理环境下的适用性。相反,ERA5 在这些地区的表现较差,这表明需要改进校准和验证过程,特别是在复杂地形上。这些见解对基于卫星和再分析的降雨数据在气象、农业和水文方面的应用至关重要,尤其是在地形和气候多样的地区。
{"title":"Evaluation of ERA5 and CHIRPS rainfall estimates against observations across Ethiopia","authors":"","doi":"10.1007/s00703-024-01008-0","DOIUrl":"https://doi.org/10.1007/s00703-024-01008-0","url":null,"abstract":"<h3>Abstract</h3> <p>Satellite-based precipitation estimates and global reanalysis products bear the promise of supporting the development of accurate and timely climate information for end users in sub-Sharan Africa. The accuracy of these global models, however, may be reduced in data-scarce regions and should be carefully evaluated. This study evaluates the performance of ERA5 reanalysis data and CHIRPS precipitation data against ground-based measurements from 167 rain gauges in Ethiopia, a region with complex topography and diverse climates. Focusing over a 38-year period (1981–2018), our study utilizes a point-to-pixel analysis to compare daily, monthly, seasonal, and annual precipitation data, conducting an evaluation based on continuous and categorical metrics. Our findings indicate that over Ethiopia CHIRPS generally outperforms ERA5, particularly in high-altitude areas, demonstrating a better capability in detecting high-intensity rainfall events. Both datasets, however, exhibit lower performance in Ethiopia's lowland regions, possibly the influence of sparse rain gauge networks informing gridded datasets. Notably, both CHIRPS and ERA5 were found to underestimate rainfall variability, with CHIRPS displaying a slight advantage in representing the erratic nature of Ethiopian rainfall. The study’s results highlight considerable performance differences between CHIRPS and ERA5 across varying Ethiopian landscapes and climatic conditions. CHIRPS’ effectiveness in high-altitude regions, especially for daily rainfall estimation, emphasizes its suitability in similar geographic contexts. Conversely, the lesser performance of ERA5 in these areas suggests a need for refined calibration and validation processes, particularly for complex terrains. These insights are essential for the application of satellite-based and reanalysis of rainfall data in meteorological, agricultural, and hydrological contexts, particularly in topographically and climatically diverse regions.</p>","PeriodicalId":51132,"journal":{"name":"Meteorology and Atmospheric Physics","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140570375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A case study on the impact of real-time land cover changes in the intertidal zone on coastal meteorological predictions using a coupled atmosphere–ocean model 利用大气-海洋耦合模式开展潮间带土地覆被实时变化对沿岸气象预测影响的案例研究
IF 2 4区 地球科学 Q2 Earth and Planetary Sciences Pub Date : 2024-03-31 DOI: 10.1007/s00703-024-01009-z
Eun-A Ko, Sang-Keun Song, S. Moon, Zang-Ho Shon, Taekyun Kim, Seoung Soo Lee
{"title":"A case study on the impact of real-time land cover changes in the intertidal zone on coastal meteorological predictions using a coupled atmosphere–ocean model","authors":"Eun-A Ko, Sang-Keun Song, S. Moon, Zang-Ho Shon, Taekyun Kim, Seoung Soo Lee","doi":"10.1007/s00703-024-01009-z","DOIUrl":"https://doi.org/10.1007/s00703-024-01009-z","url":null,"abstract":"","PeriodicalId":51132,"journal":{"name":"Meteorology and Atmospheric Physics","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140361129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Aerosol optical depth and water vapor variability assessed through autocorrelation analysis 通过自相关分析评估气溶胶光学深度和水蒸气的可变性
IF 2 4区 地球科学 Q2 Earth and Planetary Sciences Pub Date : 2024-03-31 DOI: 10.1007/s00703-024-01011-5
M. A. Franco, F. Morais, L. Rizzo, Rafael Palácios, Rafael Valiati, Márcio Teixeira, Luiz A. T. Machado, P. Artaxo
{"title":"Aerosol optical depth and water vapor variability assessed through autocorrelation analysis","authors":"M. A. Franco, F. Morais, L. Rizzo, Rafael Palácios, Rafael Valiati, Márcio Teixeira, Luiz A. T. Machado, P. Artaxo","doi":"10.1007/s00703-024-01011-5","DOIUrl":"https://doi.org/10.1007/s00703-024-01011-5","url":null,"abstract":"","PeriodicalId":51132,"journal":{"name":"Meteorology and Atmospheric Physics","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140360167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Observed heatwaves characteristics and variability over Saudi Arabia 沙特阿拉伯上空观测到的热浪特征和变异性
IF 2 4区 地球科学 Q2 Earth and Planetary Sciences Pub Date : 2024-03-28 DOI: 10.1007/s00703-024-01010-6
F. S. Syed, M. A. Al-Azemi, A. Zamreeq, M. Nazrul Islam, A. Ghulam

Heat waves are prolonged periods of excessively hot weather, which can have significant impacts on human health, agriculture, and the environment. Climate change has been linked to an increase in the frequency, intensity, and duration of heat waves. As the global average temperature rises, heat waves are becoming more common and more severe. The Arabian Peninsula is warming at a faster rate as compared to the globe in the recent decades. In this paper, the mild, moderate, severe, and extreme heat waves defined by 85th, 90th, 95th and 99th percentile, respectively, are analyzed over Saudi Arabia using historical daily maximum and minimum temperature observations for the period 1985–2021. The large number of mild heat waves are observed all over Saudi Arabia while extreme heat waves are dominant in the northwestern region. Moderate and severe heat waves are observed less in both the Red Sea and the Arabian Gulf coastal regions. The heat waves are intense in the northern and central areas as compared to other regions of the country. Heat wave frequency, intensity and length in Saudi Arabia are in increasing trends, along with the increase in the heat wave season length. Heat wave frequency and intensity are largely observed during the ENSO La Nina and neutral phases along with NAO negative phase as well as IOD negative and neutral phases. However, further investigation is required to see the occurrence of heat waves in different climate zones over Saudi Arabia at various seasons and their teleconnection to large-scale circulations.

热浪是指长时间的过热天气,会对人类健康、农业和环境产生重大影响。气候变化与热浪频率、强度和持续时间的增加有关。随着全球平均气温的升高,热浪越来越常见,也越来越严重。近几十年来,阿拉伯半岛的变暖速度快于全球。本文利用 1985-2021 年期间的历史日最高和最低气温观测数据,对沙特阿拉伯的轻度、中度、重度和极端热浪进行了分析,分别以第 85、90、95 和 99 百分位数定义。在沙特阿拉伯各地观测到大量轻度热浪,而极端热浪主要出现在西北部地区。在红海和阿拉伯湾沿海地区较少观测到中度和严重热浪。与沙特其他地区相比,北部和中部地区的热浪较强。随着热浪季节长度的增加,沙特阿拉伯的热浪频率、强度和长度也呈上升趋势。热浪频率和强度主要出现在厄尔尼诺/南方涛动的拉尼娜期和中性期,以及西北气旋的负值期和国际大地测量的负值期和中性期。不过,还需要进一步调查沙特阿拉伯不同气候带在不同季节出现的热浪及其与大尺度环流的远程联系。
{"title":"Observed heatwaves characteristics and variability over Saudi Arabia","authors":"F. S. Syed, M. A. Al-Azemi, A. Zamreeq, M. Nazrul Islam, A. Ghulam","doi":"10.1007/s00703-024-01010-6","DOIUrl":"https://doi.org/10.1007/s00703-024-01010-6","url":null,"abstract":"<p>Heat waves are prolonged periods of excessively hot weather, which can have significant impacts on human health, agriculture, and the environment. Climate change has been linked to an increase in the frequency, intensity, and duration of heat waves. As the global average temperature rises, heat waves are becoming more common and more severe. The Arabian Peninsula is warming at a faster rate as compared to the globe in the recent decades. In this paper, the mild, moderate, severe, and extreme heat waves defined by 85th, 90th, 95th and 99th percentile, respectively, are analyzed over Saudi Arabia using historical daily maximum and minimum temperature observations for the period 1985–2021. The large number of mild heat waves are observed all over Saudi Arabia while extreme heat waves are dominant in the northwestern region. Moderate and severe heat waves are observed less in both the Red Sea and the Arabian Gulf coastal regions. The heat waves are intense in the northern and central areas as compared to other regions of the country. Heat wave frequency, intensity and length in Saudi Arabia are in increasing trends, along with the increase in the heat wave season length. Heat wave frequency and intensity are largely observed during the ENSO La Nina and neutral phases along with NAO negative phase as well as IOD negative and neutral phases. However, further investigation is required to see the occurrence of heat waves in different climate zones over Saudi Arabia at various seasons and their teleconnection to large-scale circulations.</p>","PeriodicalId":51132,"journal":{"name":"Meteorology and Atmospheric Physics","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140314141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Seasonal dependence of characteristics of rain drop size distribution over two different climatic zones of India 印度两个不同气候带雨滴大小分布特征的季节性变化
IF 2 4区 地球科学 Q2 Earth and Planetary Sciences Pub Date : 2024-03-27 DOI: 10.1007/s00703-024-01012-4
Darga Saheb Shaik, M. Venkat Ratnam, K. V. Subrahmanyam, B. L. Madhavan, K. Kishore Kumar

Raindrop size distribution (DSD) plays a significant role in understanding the microphysical process of rainfall and the quantitative precipitation estimation (QPE) in hydrology, especially in urban environments which has spatial and temporal variability. In this study, the seasonal variation in DSD and its response to cloud regimes over two contrasting coastal sites (i.e. Kolkata (22.58° N, 88.45° E) and Trivandrum (8.43° N, 76.98° E) of India obtained using laser precipitation monitor (LPM) disdrometer for more than 2 years are investigated. The results show a significant difference in DSD spectra between Kolkata and Trivandrum. It is observed that the smaller-size (< 0.5 mm) particles are more dominant over Trivandrum than at Kolkata. During the monsoon, larger raindrops (D > 2 mm) dominate over Kolkata when compared with Trivandrum and clear separations in DSD were observed in the pre-monsoon season. The percentage contribution of the rain types to the total rainfall duration over Kolkata (Trivandrum) is found to be about 74.13% (80.50%), 18.97% (15.35%) and 6.98% (4.13%) for stratiform, transition and convective, respectively. In the convective rain, the smaller (mid-size, 1 < D < 3 mm and large, D > 3 mm) drops concentrations are higher (lower) over Trivandrum, while mid-size and larger (smaller, D < 0.5 mm) drops are higher (lower) over Kolkata. The convective rains are dominated by continental/maritime and maritime over Kolkata and Trivandrum, respectively. As the rain rate increases, the DSD spectra have larger widths with peaks around diameter D ~ 0.5 mm over both the locations. Further, the empirical relations between reflectivity (Z) and rain rate (R) were established, which are found to be different for different rain types. In each rain type, the Z-R relationship over Kolkata (Trivandrum) is Z = 56.4*R1.94 (Z = 21.3*R2.18), Z = 118.8*R1.89 (Z = 106.4*R1.83), and Z = 388.0*R1.54 (Z = 303.1*R1.38) for convective, transition and stratiform rains, respectively. These results clearly indicate that the two locations are dominated by different cloud systems and microphysical processes. Therefore, the present results are expected to provide a better understanding of regional DSD variability and Z-R relationship with seasons, rain types and cloud microphysical processes, which is the significance of the present study.

雨滴粒径分布(DSD)对于理解降雨的微物理过程和水文学中的定量降水估算(QPE)具有重要作用,尤其是在具有时空变异性的城市环境中。本研究利用激光降水监测仪 (LPM) 测距仪,对印度两个不同的沿海地点(即加尔各答(北纬 22.58°,东经 88.45°)和特里凡得琅(北纬 8.43°,东经 76.98°))进行了为期两年多的研究,调查了 DSD 的季节变化及其对云系的响应。结果表明,加尔各答和特里凡得琅的 DSD 光谱存在明显差异。据观察,在特里凡得琅,较小尺寸(0.5 毫米)的颗粒比在加尔各答更占优势。在季风季节,与特里凡得琅相比,较大的雨滴(D > 2 毫米)在加尔各答占主导地位,在季风前的季节,DSD 有明显的差异。在加尔各答(特里凡得琅)的总降雨持续时间中,平流雨、过渡雨和对流雨的降雨类型所占百分比分别为 74.13% (80.50%)、18.97% (15.35%) 和 6.98% (4.13%)。在对流雨中,特里凡得琅上空的较小(中等大小,1 < D < 3 毫米和较大,D > 3 毫米)雨滴浓度较高(较低),而加尔各答上空的中等大小和较大(较小,D < 0.5 毫米)雨滴浓度较高(较低)。加尔各答和特里凡得琅上空的对流雨分别以大陆性/海洋性和海洋性为主。随着降雨率的增加,两地的 DSD 频谱宽度增大,直径 D ~ 0.5 毫米附近出现峰值。此外,还建立了反射率(Z)与降雨率(R)之间的经验关系,发现不同类型的降雨会有不同的反射率。在每种雨型中,加尔各答(特里凡得琅)上空对流雨、过渡雨和层状雨的 Z-R 关系分别为 Z = 56.4*R1.94 (Z = 21.3*R2.18)、Z = 118.8*R1.89 (Z = 106.4*R1.83)和 Z = 388.0*R1.54 (Z = 303.1*R1.38)。这些结果清楚地表明,两地由不同的云系和微物理过程主导。因此,本研究结果有望使人们更好地理解区域 DSD 变异性以及 Z-R 与季节、雨类型和云微物理过程的关系,这也是本研究的意义所在。
{"title":"Seasonal dependence of characteristics of rain drop size distribution over two different climatic zones of India","authors":"Darga Saheb Shaik, M. Venkat Ratnam, K. V. Subrahmanyam, B. L. Madhavan, K. Kishore Kumar","doi":"10.1007/s00703-024-01012-4","DOIUrl":"https://doi.org/10.1007/s00703-024-01012-4","url":null,"abstract":"<p>Raindrop size distribution (DSD) plays a significant role in understanding the microphysical process of rainfall and the quantitative precipitation estimation (QPE) in hydrology, especially in urban environments which has spatial and temporal variability. In this study, the seasonal variation in DSD and its response to cloud regimes over two contrasting coastal sites (i.e. Kolkata (22.58° N, 88.45° E) and Trivandrum (8.43° N, 76.98° E) of India obtained using laser precipitation monitor (LPM) disdrometer for more than 2 years are investigated. The results show a significant difference in DSD spectra between Kolkata and Trivandrum. It is observed that the smaller-size (&lt; 0.5 mm) particles are more dominant over Trivandrum than at Kolkata. During the monsoon, larger raindrops (D &gt; 2 mm) dominate over Kolkata when compared with Trivandrum and clear separations in DSD were observed in the pre-monsoon season. The percentage contribution of the rain types to the total rainfall duration over Kolkata (Trivandrum) is found to be about 74.13% (80.50%), 18.97% (15.35%) and 6.98% (4.13%) for stratiform, transition and convective, respectively. In the convective rain, the smaller (mid-size, 1 &lt; D &lt; 3 mm and large, D &gt; 3 mm) drops concentrations are higher (lower) over Trivandrum, while mid-size and larger (smaller, D &lt; 0.5 mm) drops are higher (lower) over Kolkata. The convective rains are dominated by continental/maritime and maritime over Kolkata and Trivandrum, respectively. As the rain rate increases, the DSD spectra have larger widths with peaks around diameter D ~ 0.5 mm over both the locations. Further, the empirical relations between reflectivity (Z) and rain rate (R) were established, which are found to be different for different rain types. In each rain type, the Z-R relationship over Kolkata (Trivandrum) is Z = 56.4*R<sup>1.94</sup> (Z = 21.3*R<sup>2.18</sup>), Z = 118.8*R<sup>1.89</sup> (Z = 106.4*R<sup>1.83</sup>), and Z = 388.0*R<sup>1.54</sup> (Z = 303.1*R<sup>1.38</sup>) for convective, transition and stratiform rains, respectively. These results clearly indicate that the two locations are dominated by different cloud systems and microphysical processes. Therefore, the present results are expected to provide a better understanding of regional DSD variability and Z-R relationship with seasons, rain types and cloud microphysical processes, which is the significance of the present study.</p>","PeriodicalId":51132,"journal":{"name":"Meteorology and Atmospheric Physics","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140314409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Projected change in precipitation and temperature over undivided Sudan and its major cities 未划分的苏丹及其主要城市降水和气温的预测变化
IF 2 4区 地球科学 Q2 Earth and Planetary Sciences Pub Date : 2024-03-24 DOI: 10.1007/s00703-024-01017-z
A. A. A. Mohamed, P. Maharana, Shyam S. Phartyal, A. P. Dimri

This study investigates the trend in the projected rainfall and temperature over undivided Sudan and its major cities of political, trade, and agricultural significance under two different Representative Concentration Pathways (RCPs; RCP2.6 and RCP8.5). Available high-resolution datasets from the Coordinated Regional Climate Downscaling Experiment- Coordinated Output for Regional Evaluations (CORDEX-CORE) at a resolution of 25 km along with their ensemble are considered. The study analyzes projected climate conditions, with a specific emphasis on the near future (2036–2060) and far future (2071–2095). The rainfall distribution is projected to decline across South Sudan (undivided Sudan) under RCP2.6 (RCP8.5). The projected temperature is significantly increasing while rainfall is decreasing across all cities, with these trends being more pronounced under the RCP8.5 scenario. These changes could potentially result in various climate extremes such as severe heatwaves, droughts, and wildfires, which could have significant impacts on the ecosystems, agriculture, public health and ultimately, the livelihood and socio-economic condition of the people. The findings of the study will assist the governments, local administration and town planners in formulating short-term and long-term strategies for adaptation and mitigation, aimed at reducing the impacts of climate change. The study suggests specific measures to address the extreme heat and water deficit at the local scale, hence making it a valuable policy document for addressing the changing climate in undivided Sudan.

本研究调查了在两种不同的代表性气候路径(RCPs:RCP2.6 和 RCP8.5)下,未划分的苏丹及其主要政治、贸易和农业城市的降雨量和气温的预测趋势。研究考虑了协调区域气候降尺度试验--区域评估协调输出(CORDEX-CORE)中分辨率为 25 千米的现有高分辨率数据集及其集合。研究分析了预测的气候条件,重点是近期(2036-2060 年)和远期(2071-2095 年)。根据 RCP2.6(RCP8.5)预测,整个南苏丹(未分割的苏丹)的降雨量分布将下降。预计所有城市的气温都会明显升高,而降雨量则会减少,在 RCP8.5 情景下,这些趋势更加明显。这些变化有可能导致各种极端气候,如严重的热浪、干旱和野火,从而对生态系统、农业、公共卫生产生重大影响,并最终影响人们的生活和社会经济状况。研究结果将有助于政府、地方行政部门和城市规划者制定短期和长期的适应和减缓战略,以减少气候变化的影响。该研究提出了在地方范围内解决极端炎热和缺水问题的具体措施,因此成为应对苏丹未分割地区不断变化的气候的一份有价值的政策文件。
{"title":"Projected change in precipitation and temperature over undivided Sudan and its major cities","authors":"A. A. A. Mohamed, P. Maharana, Shyam S. Phartyal, A. P. Dimri","doi":"10.1007/s00703-024-01017-z","DOIUrl":"https://doi.org/10.1007/s00703-024-01017-z","url":null,"abstract":"<p>This study investigates the trend in the projected rainfall and temperature over undivided Sudan and its major cities of political, trade, and agricultural significance under two different Representative Concentration Pathways (RCPs; RCP2.6 and RCP8.5). Available high-resolution datasets from the Coordinated Regional Climate Downscaling Experiment- Coordinated Output for Regional Evaluations (CORDEX-CORE) at a resolution of 25 km along with their ensemble are considered. The study analyzes projected climate conditions, with a specific emphasis on the near future (2036–2060) and far future (2071–2095). The rainfall distribution is projected to decline across South Sudan (undivided Sudan) under RCP2.6 (RCP8.5). The projected temperature is significantly increasing while rainfall is decreasing across all cities, with these trends being more pronounced under the RCP8.5 scenario. These changes could potentially result in various climate extremes such as severe heatwaves, droughts, and wildfires, which could have significant impacts on the ecosystems, agriculture, public health and ultimately, the livelihood and socio-economic condition of the people. The findings of the study will assist the governments, local administration and town planners in formulating short-term and long-term strategies for adaptation and mitigation, aimed at reducing the impacts of climate change. The study suggests specific measures to address the extreme heat and water deficit at the local scale, hence making it a valuable policy document for addressing the changing climate in undivided Sudan.</p>","PeriodicalId":51132,"journal":{"name":"Meteorology and Atmospheric Physics","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140198998","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
El Niño Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) signatures in tropical ozone in the Upper Troposphere Lower Stratosphere (UTLS) 对流层上部平流层下部热带臭氧中的厄尔尼诺南方涛动(ENSO)和印度洋偶极子(IOD)特征
IF 2 4区 地球科学 Q2 Earth and Planetary Sciences Pub Date : 2024-03-06 DOI: 10.1007/s00703-024-01007-1
Oindrila Nath, Bhupendra Bahadur Singh, Ravi Kumar Kunchala

This study examines the combined influence of El Niño-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD) on Upper Troposphere Lower Stratosphere (UTLS) ozone variability. The investigation employs data from the Microwave Limb Sounder (MLS) aboard the Aura Satellite and the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA5 reanalysis, spanning the period 2005–2020 across tropical latitudes (20º N–20º S). Three specific events were chosen for analysis: a strong La Niña event in 2010, the co-occurrence of El Niño and moderate IOD in 2015, and a robust IOD event in 2019. During years marked by the simultaneous occurrence of ENSO and IOD events, the UTLS (100 hPa altitude is considered for the present study. 82 hPa is the altitude just above the tropopause, therefore also shown in the results) ozone mixing ratio demonstrates a decline in absolute values. The Quasi-biennial Oscillation (QBO) was also investigated, revealing a synchronized variation with the ozone anomaly in the UTLS region. Furthermore, the calculated eddy heat flux, utilized as a proxy for the Brewer–Dobson Circulation (BDC), aligns with the UTLS ozone anomalies, indicating a positive (negative) anomaly during periods of intense tropical downwelling (upwelling). To quantitatively elucidate the contributions of ENSO, IOD, and QBO to the observed ozone anomaly, a multivariate linear regression analysis was executed utilizing the least square method. The findings underscore that a notable fraction—about one-fourth of the observed UTLS ozone anomaly within the study timeframe (2005–2020) can be attributed collectively to ENSO, IOD, and QBO. This preliminary exploration underscores the substantial role played by large-scale climate drivers emanating from the Pacific and Indian oceans in shaping UTLS ozone distribution. These insights emphasize the significance of considering these climatic influences when examining the intricate dynamics and variability of UTLS ozone patterns.

本研究探讨了厄尔尼诺-南方涛动(ENSO)和印度洋偶极子(IOD)对对流层上部平流层下部臭氧变化的综合影响。调查采用了 Aura 卫星上的微波测边仪和欧洲中期天气预报中心 ERA5 再分析的数据,时间跨度为 2005-2020 年,横跨热带纬度(北纬 20 度-南纬 20 度)。我们选择了三个具体事件进行分析:2010 年的强拉尼娜事件、2015 年的厄尔尼诺和中度 IOD 同时发生事件以及 2019 年的强 IOD 事件。在厄尔尼诺/南方涛动和 IOD 事件同时发生的年份,本研究考虑了UTLS(100 hPa 高度)。82 hPa 是对流层顶正上方的高度,因此也显示在结果中)臭氧混合比的绝对值有所下降。还对准双年涛动(QBO)进行了研究,结果表明UTLS 区域的臭氧异常与准双年涛动同步变化。此外,作为布鲁尔-多布森环流(BDC)的代用指标,计算得出的涡旋热通量与UTLS臭氧异常值一致,表明在热带强烈下沉(上涌)期间出现正(负)异常。为了从数量上阐明厄尔尼诺/南方涛动、IOD 和 QBO 对观测到的臭氧异常的影响,利用最小二乘法进行了多元线性回归分析。研究结果表明,在研究时间范围(2005-2020 年)内观测到的 UTLS 臭氧异常中,有相当一部分(约四分之一)可归因于厄尔尼诺/南方涛动、国际大 气环流和 QBO。这一初步探索强调了来自太平洋和印度洋的大尺度气候驱动因素在影响 UTLS 臭氧分布方面所起的重要作用。这些见解强调了在研究UTLS 臭氧模式的复杂动态和变异性时考虑这些气候影响因素的重要性。
{"title":"El Niño Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) signatures in tropical ozone in the Upper Troposphere Lower Stratosphere (UTLS)","authors":"Oindrila Nath, Bhupendra Bahadur Singh, Ravi Kumar Kunchala","doi":"10.1007/s00703-024-01007-1","DOIUrl":"https://doi.org/10.1007/s00703-024-01007-1","url":null,"abstract":"<p>This study examines the combined influence of El Niño-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD) on Upper Troposphere Lower Stratosphere (UTLS) ozone variability. The investigation employs data from the Microwave Limb Sounder (MLS) aboard the Aura Satellite and the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA5 reanalysis, spanning the period 2005–2020 across tropical latitudes (20º N–20º S). Three specific events were chosen for analysis: a strong La Niña event in 2010, the co-occurrence of El Niño and moderate IOD in 2015, and a robust IOD event in 2019. During years marked by the simultaneous occurrence of ENSO and IOD events, the UTLS (100 hPa altitude is considered for the present study. 82 hPa is the altitude just above the tropopause, therefore also shown in the results) ozone mixing ratio demonstrates a decline in absolute values. The Quasi-biennial Oscillation (QBO) was also investigated, revealing a synchronized variation with the ozone anomaly in the UTLS region. Furthermore, the calculated eddy heat flux, utilized as a proxy for the Brewer–Dobson Circulation (BDC), aligns with the UTLS ozone anomalies, indicating a positive (negative) anomaly during periods of intense tropical downwelling (upwelling). To quantitatively elucidate the contributions of ENSO, IOD, and QBO to the observed ozone anomaly, a multivariate linear regression analysis was executed utilizing the least square method. The findings underscore that a notable fraction—about one-fourth of the observed UTLS ozone anomaly within the study timeframe (2005–2020) can be attributed collectively to ENSO, IOD, and QBO. This preliminary exploration underscores the substantial role played by large-scale climate drivers emanating from the Pacific and Indian oceans in shaping UTLS ozone distribution. These insights emphasize the significance of considering these climatic influences when examining the intricate dynamics and variability of UTLS ozone patterns.</p>","PeriodicalId":51132,"journal":{"name":"Meteorology and Atmospheric Physics","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140044931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Meteorology and Atmospheric Physics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1