首页 > 最新文献

Meteorology and Atmospheric Physics最新文献

英文 中文
Climatological standard normals of IRAN, for the period 1981–2010 and 1991–2020: precipitation and temperature 伊朗 1981-2010 年和 1991-2020 年期间的气候标准模式:降水和气温
IF 2 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2024-04-03 DOI: 10.1007/s00703-024-01013-3
Zohreh Javanshiri, Mohsen Rahmdel

The main functions of climate normals are twofold. They offer a reference point for evaluating recent or ongoing observations and form the basis for various climate datasets that rely on anomalies. Additionally, they are frequently employed to predict the probable conditions that one might encounter in a specific area. The World Meteorological Organization (WMO) advises regularly reviewing climate normals every decade to keep up with the evolving climate. Atmospheric Science and Meteorological Research Center (ASMERC) is proud to release “Iran Climate Normals” for the periods of 1981–2010 and 1991–2020 including a suite of monthly and annual statistics that are based on temperature, precipitation, sea-level pressure, vapor pressure, station-level pressure, snow-depth, wind speed, visibility, soil temperature, relative humidity, dew point, and cloud amount measurements. This study documents the procedures used for quality control, homogenization of daily observations, and calculation of normal values. For each station and each parameter, the results of the outliers due to the error and the homogeneity assessment are reported. Out of all the parameters, the soil temperature has the highest error percentage. However, this does not necessarily imply that it has the most measurement errors; it could be due to the ease of detecting errors for this specific parameter. Of the 143 stations, 56 had a breakpoint recorded in two parameters or more at a specific point in time. According to the analysis of the temperature and precipitation parameters, (a) the new normal of mean, maximum, and minimum temperatures are 0.47, 0.5, and 0.6 °C above the 1981–2010 period; (b) the normal annual precipitation has increased by an average of 5.4 mm in 1991–2020 compared to 1981–2010; (c) comparing the two periods, the changes in precipitation normals vary in different parts of Iran and different months, while the temperature normals increase in all stations across Iran except for four stations (Gorgan, Kerman, Shiraz, Bandar-e Lengeh); (d) changes in the fourth quintile of monthly precipitation are more than average, and minimum temperature changes are higher than maximum and mean temperatures; and (e) generally, the latter period is characterized by a warmer climate almost across Iran, wetter conditions over the Zagros mountain range and the western part of the Caspian Sea coasts, and drier conditions over the east, center, and west of Iran.

气候常模的主要功能有两个方面。它们为评估最近或正在进行的观测提供了一个参考点,并构成了依赖于异常现象的各种气候数据集的基础。此外,它们还经常被用来预测人们在特定地区可能遇到的情况。世界气象组织(WMO)建议每十年定期审查气候常模,以跟上不断变化的气候。大气科学和气象研究中心(ASMERC)自豪地发布了 1981-2010 年和 1991-2020 年期间的 "伊朗气候正常值",其中包括一套基于温度、降水、海平面气压、蒸汽压、站平气压、积雪深度、风速、能见度、土壤温度、相对湿度、露点和云量测量的月度和年度统计数据。本研究记录了用于质量控制、日观测数据同质化和正常值计算的程序。对于每个站点和每个参数,都报告了因误差和均匀性评估而导致的异常值结果。在所有参数中,土壤温度的误差百分比最高。不过,这并不一定意味着土壤温度的测量误差最大;这可能是由于该参数的误差比较容易发现。在 143 个站点中,有 56 个站点在某一特定时间点记录了两个或两个以上参数的断点。根据对气温和降水参数的分析,(a) 新常态下的平均气温、最高气温和最低气温分别比 1981-2010 年期间高 0.47、0.5 和 0.6 °C;(b) 正常年降水量在 1991-2020 年期间比 1981-2010 年期间平均增加了 5.4 毫米。(b) 与 1981-2010 年相比,1991-2020 年的正常年降水量平均增加了 5.4 毫米;(c) 比较这两个时期,伊朗不同地区和不同月份的降水量正常值变化各不相同,而除四个站点(戈尔甘、克尔曼、设拉子、班达尔-伦盖)外,伊朗各地所有站点的气温正常值均有所上升;(d) 月降水量的第四个五分位数的变化大于平均值,最低气温的变化高于最高气温和平均气温;以及 (e) 总体而言,后期伊朗全国气候变暖,扎格罗斯山脉和里海沿岸西部较湿润,伊朗东部、中部和西部较干燥。
{"title":"Climatological standard normals of IRAN, for the period 1981–2010 and 1991–2020: precipitation and temperature","authors":"Zohreh Javanshiri, Mohsen Rahmdel","doi":"10.1007/s00703-024-01013-3","DOIUrl":"https://doi.org/10.1007/s00703-024-01013-3","url":null,"abstract":"<p>The main functions of climate normals are twofold. They offer a reference point for evaluating recent or ongoing observations and form the basis for various climate datasets that rely on anomalies. Additionally, they are frequently employed to predict the probable conditions that one might encounter in a specific area. The World Meteorological Organization (WMO) advises regularly reviewing climate normals every decade to keep up with the evolving climate. Atmospheric Science and Meteorological Research Center (ASMERC) is proud to release “Iran Climate Normals” for the periods of 1981–2010 and 1991–2020 including a suite of monthly and annual statistics that are based on temperature, precipitation, sea-level pressure, vapor pressure, station-level pressure, snow-depth, wind speed, visibility, soil temperature, relative humidity, dew point, and cloud amount measurements. This study documents the procedures used for quality control, homogenization of daily observations, and calculation of normal values. For each station and each parameter, the results of the outliers due to the error and the homogeneity assessment are reported. Out of all the parameters, the soil temperature has the highest error percentage. However, this does not necessarily imply that it has the most measurement errors; it could be due to the ease of detecting errors for this specific parameter. Of the 143 stations, 56 had a breakpoint recorded in two parameters or more at a specific point in time. According to the analysis of the temperature and precipitation parameters, (a) the new normal of mean, maximum, and minimum temperatures are 0.47, 0.5, and 0.6 °C above the 1981–2010 period; (b) the normal annual precipitation has increased by an average of 5.4 mm in 1991–2020 compared to 1981–2010; (c) comparing the two periods, the changes in precipitation normals vary in different parts of Iran and different months, while the temperature normals increase in all stations across Iran except for four stations (Gorgan, Kerman, Shiraz, Bandar-e Lengeh); (d) changes in the fourth quintile of monthly precipitation are more than average, and minimum temperature changes are higher than maximum and mean temperatures; and (e) generally, the latter period is characterized by a warmer climate almost across Iran, wetter conditions over the Zagros mountain range and the western part of the Caspian Sea coasts, and drier conditions over the east, center, and west of Iran.</p>","PeriodicalId":51132,"journal":{"name":"Meteorology and Atmospheric Physics","volume":"121 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140603438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Observed heatwaves characteristics and variability over Saudi Arabia 沙特阿拉伯上空观测到的热浪特征和变异性
IF 2 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2024-03-28 DOI: 10.1007/s00703-024-01010-6
F. S. Syed, M. A. Al-Azemi, A. Zamreeq, M. Nazrul Islam, A. Ghulam

Heat waves are prolonged periods of excessively hot weather, which can have significant impacts on human health, agriculture, and the environment. Climate change has been linked to an increase in the frequency, intensity, and duration of heat waves. As the global average temperature rises, heat waves are becoming more common and more severe. The Arabian Peninsula is warming at a faster rate as compared to the globe in the recent decades. In this paper, the mild, moderate, severe, and extreme heat waves defined by 85th, 90th, 95th and 99th percentile, respectively, are analyzed over Saudi Arabia using historical daily maximum and minimum temperature observations for the period 1985–2021. The large number of mild heat waves are observed all over Saudi Arabia while extreme heat waves are dominant in the northwestern region. Moderate and severe heat waves are observed less in both the Red Sea and the Arabian Gulf coastal regions. The heat waves are intense in the northern and central areas as compared to other regions of the country. Heat wave frequency, intensity and length in Saudi Arabia are in increasing trends, along with the increase in the heat wave season length. Heat wave frequency and intensity are largely observed during the ENSO La Nina and neutral phases along with NAO negative phase as well as IOD negative and neutral phases. However, further investigation is required to see the occurrence of heat waves in different climate zones over Saudi Arabia at various seasons and their teleconnection to large-scale circulations.

热浪是指长时间的过热天气,会对人类健康、农业和环境产生重大影响。气候变化与热浪频率、强度和持续时间的增加有关。随着全球平均气温的升高,热浪越来越常见,也越来越严重。近几十年来,阿拉伯半岛的变暖速度快于全球。本文利用 1985-2021 年期间的历史日最高和最低气温观测数据,对沙特阿拉伯的轻度、中度、重度和极端热浪进行了分析,分别以第 85、90、95 和 99 百分位数定义。在沙特阿拉伯各地观测到大量轻度热浪,而极端热浪主要出现在西北部地区。在红海和阿拉伯湾沿海地区较少观测到中度和严重热浪。与沙特其他地区相比,北部和中部地区的热浪较强。随着热浪季节长度的增加,沙特阿拉伯的热浪频率、强度和长度也呈上升趋势。热浪频率和强度主要出现在厄尔尼诺/南方涛动的拉尼娜期和中性期,以及西北气旋的负值期和国际大地测量的负值期和中性期。不过,还需要进一步调查沙特阿拉伯不同气候带在不同季节出现的热浪及其与大尺度环流的远程联系。
{"title":"Observed heatwaves characteristics and variability over Saudi Arabia","authors":"F. S. Syed, M. A. Al-Azemi, A. Zamreeq, M. Nazrul Islam, A. Ghulam","doi":"10.1007/s00703-024-01010-6","DOIUrl":"https://doi.org/10.1007/s00703-024-01010-6","url":null,"abstract":"<p>Heat waves are prolonged periods of excessively hot weather, which can have significant impacts on human health, agriculture, and the environment. Climate change has been linked to an increase in the frequency, intensity, and duration of heat waves. As the global average temperature rises, heat waves are becoming more common and more severe. The Arabian Peninsula is warming at a faster rate as compared to the globe in the recent decades. In this paper, the mild, moderate, severe, and extreme heat waves defined by 85th, 90th, 95th and 99th percentile, respectively, are analyzed over Saudi Arabia using historical daily maximum and minimum temperature observations for the period 1985–2021. The large number of mild heat waves are observed all over Saudi Arabia while extreme heat waves are dominant in the northwestern region. Moderate and severe heat waves are observed less in both the Red Sea and the Arabian Gulf coastal regions. The heat waves are intense in the northern and central areas as compared to other regions of the country. Heat wave frequency, intensity and length in Saudi Arabia are in increasing trends, along with the increase in the heat wave season length. Heat wave frequency and intensity are largely observed during the ENSO La Nina and neutral phases along with NAO negative phase as well as IOD negative and neutral phases. However, further investigation is required to see the occurrence of heat waves in different climate zones over Saudi Arabia at various seasons and their teleconnection to large-scale circulations.</p>","PeriodicalId":51132,"journal":{"name":"Meteorology and Atmospheric Physics","volume":"13 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140314141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Seasonal dependence of characteristics of rain drop size distribution over two different climatic zones of India 印度两个不同气候带雨滴大小分布特征的季节性变化
IF 2 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2024-03-27 DOI: 10.1007/s00703-024-01012-4
Darga Saheb Shaik, M. Venkat Ratnam, K. V. Subrahmanyam, B. L. Madhavan, K. Kishore Kumar

Raindrop size distribution (DSD) plays a significant role in understanding the microphysical process of rainfall and the quantitative precipitation estimation (QPE) in hydrology, especially in urban environments which has spatial and temporal variability. In this study, the seasonal variation in DSD and its response to cloud regimes over two contrasting coastal sites (i.e. Kolkata (22.58° N, 88.45° E) and Trivandrum (8.43° N, 76.98° E) of India obtained using laser precipitation monitor (LPM) disdrometer for more than 2 years are investigated. The results show a significant difference in DSD spectra between Kolkata and Trivandrum. It is observed that the smaller-size (< 0.5 mm) particles are more dominant over Trivandrum than at Kolkata. During the monsoon, larger raindrops (D > 2 mm) dominate over Kolkata when compared with Trivandrum and clear separations in DSD were observed in the pre-monsoon season. The percentage contribution of the rain types to the total rainfall duration over Kolkata (Trivandrum) is found to be about 74.13% (80.50%), 18.97% (15.35%) and 6.98% (4.13%) for stratiform, transition and convective, respectively. In the convective rain, the smaller (mid-size, 1 < D < 3 mm and large, D > 3 mm) drops concentrations are higher (lower) over Trivandrum, while mid-size and larger (smaller, D < 0.5 mm) drops are higher (lower) over Kolkata. The convective rains are dominated by continental/maritime and maritime over Kolkata and Trivandrum, respectively. As the rain rate increases, the DSD spectra have larger widths with peaks around diameter D ~ 0.5 mm over both the locations. Further, the empirical relations between reflectivity (Z) and rain rate (R) were established, which are found to be different for different rain types. In each rain type, the Z-R relationship over Kolkata (Trivandrum) is Z = 56.4*R1.94 (Z = 21.3*R2.18), Z = 118.8*R1.89 (Z = 106.4*R1.83), and Z = 388.0*R1.54 (Z = 303.1*R1.38) for convective, transition and stratiform rains, respectively. These results clearly indicate that the two locations are dominated by different cloud systems and microphysical processes. Therefore, the present results are expected to provide a better understanding of regional DSD variability and Z-R relationship with seasons, rain types and cloud microphysical processes, which is the significance of the present study.

雨滴粒径分布(DSD)对于理解降雨的微物理过程和水文学中的定量降水估算(QPE)具有重要作用,尤其是在具有时空变异性的城市环境中。本研究利用激光降水监测仪 (LPM) 测距仪,对印度两个不同的沿海地点(即加尔各答(北纬 22.58°,东经 88.45°)和特里凡得琅(北纬 8.43°,东经 76.98°))进行了为期两年多的研究,调查了 DSD 的季节变化及其对云系的响应。结果表明,加尔各答和特里凡得琅的 DSD 光谱存在明显差异。据观察,在特里凡得琅,较小尺寸(0.5 毫米)的颗粒比在加尔各答更占优势。在季风季节,与特里凡得琅相比,较大的雨滴(D > 2 毫米)在加尔各答占主导地位,在季风前的季节,DSD 有明显的差异。在加尔各答(特里凡得琅)的总降雨持续时间中,平流雨、过渡雨和对流雨的降雨类型所占百分比分别为 74.13% (80.50%)、18.97% (15.35%) 和 6.98% (4.13%)。在对流雨中,特里凡得琅上空的较小(中等大小,1 < D < 3 毫米和较大,D > 3 毫米)雨滴浓度较高(较低),而加尔各答上空的中等大小和较大(较小,D < 0.5 毫米)雨滴浓度较高(较低)。加尔各答和特里凡得琅上空的对流雨分别以大陆性/海洋性和海洋性为主。随着降雨率的增加,两地的 DSD 频谱宽度增大,直径 D ~ 0.5 毫米附近出现峰值。此外,还建立了反射率(Z)与降雨率(R)之间的经验关系,发现不同类型的降雨会有不同的反射率。在每种雨型中,加尔各答(特里凡得琅)上空对流雨、过渡雨和层状雨的 Z-R 关系分别为 Z = 56.4*R1.94 (Z = 21.3*R2.18)、Z = 118.8*R1.89 (Z = 106.4*R1.83)和 Z = 388.0*R1.54 (Z = 303.1*R1.38)。这些结果清楚地表明,两地由不同的云系和微物理过程主导。因此,本研究结果有望使人们更好地理解区域 DSD 变异性以及 Z-R 与季节、雨类型和云微物理过程的关系,这也是本研究的意义所在。
{"title":"Seasonal dependence of characteristics of rain drop size distribution over two different climatic zones of India","authors":"Darga Saheb Shaik, M. Venkat Ratnam, K. V. Subrahmanyam, B. L. Madhavan, K. Kishore Kumar","doi":"10.1007/s00703-024-01012-4","DOIUrl":"https://doi.org/10.1007/s00703-024-01012-4","url":null,"abstract":"<p>Raindrop size distribution (DSD) plays a significant role in understanding the microphysical process of rainfall and the quantitative precipitation estimation (QPE) in hydrology, especially in urban environments which has spatial and temporal variability. In this study, the seasonal variation in DSD and its response to cloud regimes over two contrasting coastal sites (i.e. Kolkata (22.58° N, 88.45° E) and Trivandrum (8.43° N, 76.98° E) of India obtained using laser precipitation monitor (LPM) disdrometer for more than 2 years are investigated. The results show a significant difference in DSD spectra between Kolkata and Trivandrum. It is observed that the smaller-size (&lt; 0.5 mm) particles are more dominant over Trivandrum than at Kolkata. During the monsoon, larger raindrops (D &gt; 2 mm) dominate over Kolkata when compared with Trivandrum and clear separations in DSD were observed in the pre-monsoon season. The percentage contribution of the rain types to the total rainfall duration over Kolkata (Trivandrum) is found to be about 74.13% (80.50%), 18.97% (15.35%) and 6.98% (4.13%) for stratiform, transition and convective, respectively. In the convective rain, the smaller (mid-size, 1 &lt; D &lt; 3 mm and large, D &gt; 3 mm) drops concentrations are higher (lower) over Trivandrum, while mid-size and larger (smaller, D &lt; 0.5 mm) drops are higher (lower) over Kolkata. The convective rains are dominated by continental/maritime and maritime over Kolkata and Trivandrum, respectively. As the rain rate increases, the DSD spectra have larger widths with peaks around diameter D ~ 0.5 mm over both the locations. Further, the empirical relations between reflectivity (Z) and rain rate (R) were established, which are found to be different for different rain types. In each rain type, the Z-R relationship over Kolkata (Trivandrum) is Z = 56.4*R<sup>1.94</sup> (Z = 21.3*R<sup>2.18</sup>), Z = 118.8*R<sup>1.89</sup> (Z = 106.4*R<sup>1.83</sup>), and Z = 388.0*R<sup>1.54</sup> (Z = 303.1*R<sup>1.38</sup>) for convective, transition and stratiform rains, respectively. These results clearly indicate that the two locations are dominated by different cloud systems and microphysical processes. Therefore, the present results are expected to provide a better understanding of regional DSD variability and Z-R relationship with seasons, rain types and cloud microphysical processes, which is the significance of the present study.</p>","PeriodicalId":51132,"journal":{"name":"Meteorology and Atmospheric Physics","volume":"44 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140314409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Projected change in precipitation and temperature over undivided Sudan and its major cities 未划分的苏丹及其主要城市降水和气温的预测变化
IF 2 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2024-03-24 DOI: 10.1007/s00703-024-01017-z
A. A. A. Mohamed, P. Maharana, Shyam S. Phartyal, A. P. Dimri

This study investigates the trend in the projected rainfall and temperature over undivided Sudan and its major cities of political, trade, and agricultural significance under two different Representative Concentration Pathways (RCPs; RCP2.6 and RCP8.5). Available high-resolution datasets from the Coordinated Regional Climate Downscaling Experiment- Coordinated Output for Regional Evaluations (CORDEX-CORE) at a resolution of 25 km along with their ensemble are considered. The study analyzes projected climate conditions, with a specific emphasis on the near future (2036–2060) and far future (2071–2095). The rainfall distribution is projected to decline across South Sudan (undivided Sudan) under RCP2.6 (RCP8.5). The projected temperature is significantly increasing while rainfall is decreasing across all cities, with these trends being more pronounced under the RCP8.5 scenario. These changes could potentially result in various climate extremes such as severe heatwaves, droughts, and wildfires, which could have significant impacts on the ecosystems, agriculture, public health and ultimately, the livelihood and socio-economic condition of the people. The findings of the study will assist the governments, local administration and town planners in formulating short-term and long-term strategies for adaptation and mitigation, aimed at reducing the impacts of climate change. The study suggests specific measures to address the extreme heat and water deficit at the local scale, hence making it a valuable policy document for addressing the changing climate in undivided Sudan.

本研究调查了在两种不同的代表性气候路径(RCPs:RCP2.6 和 RCP8.5)下,未划分的苏丹及其主要政治、贸易和农业城市的降雨量和气温的预测趋势。研究考虑了协调区域气候降尺度试验--区域评估协调输出(CORDEX-CORE)中分辨率为 25 千米的现有高分辨率数据集及其集合。研究分析了预测的气候条件,重点是近期(2036-2060 年)和远期(2071-2095 年)。根据 RCP2.6(RCP8.5)预测,整个南苏丹(未分割的苏丹)的降雨量分布将下降。预计所有城市的气温都会明显升高,而降雨量则会减少,在 RCP8.5 情景下,这些趋势更加明显。这些变化有可能导致各种极端气候,如严重的热浪、干旱和野火,从而对生态系统、农业、公共卫生产生重大影响,并最终影响人们的生活和社会经济状况。研究结果将有助于政府、地方行政部门和城市规划者制定短期和长期的适应和减缓战略,以减少气候变化的影响。该研究提出了在地方范围内解决极端炎热和缺水问题的具体措施,因此成为应对苏丹未分割地区不断变化的气候的一份有价值的政策文件。
{"title":"Projected change in precipitation and temperature over undivided Sudan and its major cities","authors":"A. A. A. Mohamed, P. Maharana, Shyam S. Phartyal, A. P. Dimri","doi":"10.1007/s00703-024-01017-z","DOIUrl":"https://doi.org/10.1007/s00703-024-01017-z","url":null,"abstract":"<p>This study investigates the trend in the projected rainfall and temperature over undivided Sudan and its major cities of political, trade, and agricultural significance under two different Representative Concentration Pathways (RCPs; RCP2.6 and RCP8.5). Available high-resolution datasets from the Coordinated Regional Climate Downscaling Experiment- Coordinated Output for Regional Evaluations (CORDEX-CORE) at a resolution of 25 km along with their ensemble are considered. The study analyzes projected climate conditions, with a specific emphasis on the near future (2036–2060) and far future (2071–2095). The rainfall distribution is projected to decline across South Sudan (undivided Sudan) under RCP2.6 (RCP8.5). The projected temperature is significantly increasing while rainfall is decreasing across all cities, with these trends being more pronounced under the RCP8.5 scenario. These changes could potentially result in various climate extremes such as severe heatwaves, droughts, and wildfires, which could have significant impacts on the ecosystems, agriculture, public health and ultimately, the livelihood and socio-economic condition of the people. The findings of the study will assist the governments, local administration and town planners in formulating short-term and long-term strategies for adaptation and mitigation, aimed at reducing the impacts of climate change. The study suggests specific measures to address the extreme heat and water deficit at the local scale, hence making it a valuable policy document for addressing the changing climate in undivided Sudan.</p>","PeriodicalId":51132,"journal":{"name":"Meteorology and Atmospheric Physics","volume":"53 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140198998","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
El Niño Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) signatures in tropical ozone in the Upper Troposphere Lower Stratosphere (UTLS) 对流层上部平流层下部热带臭氧中的厄尔尼诺南方涛动(ENSO)和印度洋偶极子(IOD)特征
IF 2 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2024-03-06 DOI: 10.1007/s00703-024-01007-1
Oindrila Nath, Bhupendra Bahadur Singh, Ravi Kumar Kunchala

This study examines the combined influence of El Niño-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD) on Upper Troposphere Lower Stratosphere (UTLS) ozone variability. The investigation employs data from the Microwave Limb Sounder (MLS) aboard the Aura Satellite and the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA5 reanalysis, spanning the period 2005–2020 across tropical latitudes (20º N–20º S). Three specific events were chosen for analysis: a strong La Niña event in 2010, the co-occurrence of El Niño and moderate IOD in 2015, and a robust IOD event in 2019. During years marked by the simultaneous occurrence of ENSO and IOD events, the UTLS (100 hPa altitude is considered for the present study. 82 hPa is the altitude just above the tropopause, therefore also shown in the results) ozone mixing ratio demonstrates a decline in absolute values. The Quasi-biennial Oscillation (QBO) was also investigated, revealing a synchronized variation with the ozone anomaly in the UTLS region. Furthermore, the calculated eddy heat flux, utilized as a proxy for the Brewer–Dobson Circulation (BDC), aligns with the UTLS ozone anomalies, indicating a positive (negative) anomaly during periods of intense tropical downwelling (upwelling). To quantitatively elucidate the contributions of ENSO, IOD, and QBO to the observed ozone anomaly, a multivariate linear regression analysis was executed utilizing the least square method. The findings underscore that a notable fraction—about one-fourth of the observed UTLS ozone anomaly within the study timeframe (2005–2020) can be attributed collectively to ENSO, IOD, and QBO. This preliminary exploration underscores the substantial role played by large-scale climate drivers emanating from the Pacific and Indian oceans in shaping UTLS ozone distribution. These insights emphasize the significance of considering these climatic influences when examining the intricate dynamics and variability of UTLS ozone patterns.

本研究探讨了厄尔尼诺-南方涛动(ENSO)和印度洋偶极子(IOD)对对流层上部平流层下部臭氧变化的综合影响。调查采用了 Aura 卫星上的微波测边仪和欧洲中期天气预报中心 ERA5 再分析的数据,时间跨度为 2005-2020 年,横跨热带纬度(北纬 20 度-南纬 20 度)。我们选择了三个具体事件进行分析:2010 年的强拉尼娜事件、2015 年的厄尔尼诺和中度 IOD 同时发生事件以及 2019 年的强 IOD 事件。在厄尔尼诺/南方涛动和 IOD 事件同时发生的年份,本研究考虑了UTLS(100 hPa 高度)。82 hPa 是对流层顶正上方的高度,因此也显示在结果中)臭氧混合比的绝对值有所下降。还对准双年涛动(QBO)进行了研究,结果表明UTLS 区域的臭氧异常与准双年涛动同步变化。此外,作为布鲁尔-多布森环流(BDC)的代用指标,计算得出的涡旋热通量与UTLS臭氧异常值一致,表明在热带强烈下沉(上涌)期间出现正(负)异常。为了从数量上阐明厄尔尼诺/南方涛动、IOD 和 QBO 对观测到的臭氧异常的影响,利用最小二乘法进行了多元线性回归分析。研究结果表明,在研究时间范围(2005-2020 年)内观测到的 UTLS 臭氧异常中,有相当一部分(约四分之一)可归因于厄尔尼诺/南方涛动、国际大 气环流和 QBO。这一初步探索强调了来自太平洋和印度洋的大尺度气候驱动因素在影响 UTLS 臭氧分布方面所起的重要作用。这些见解强调了在研究UTLS 臭氧模式的复杂动态和变异性时考虑这些气候影响因素的重要性。
{"title":"El Niño Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) signatures in tropical ozone in the Upper Troposphere Lower Stratosphere (UTLS)","authors":"Oindrila Nath, Bhupendra Bahadur Singh, Ravi Kumar Kunchala","doi":"10.1007/s00703-024-01007-1","DOIUrl":"https://doi.org/10.1007/s00703-024-01007-1","url":null,"abstract":"<p>This study examines the combined influence of El Niño-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD) on Upper Troposphere Lower Stratosphere (UTLS) ozone variability. The investigation employs data from the Microwave Limb Sounder (MLS) aboard the Aura Satellite and the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA5 reanalysis, spanning the period 2005–2020 across tropical latitudes (20º N–20º S). Three specific events were chosen for analysis: a strong La Niña event in 2010, the co-occurrence of El Niño and moderate IOD in 2015, and a robust IOD event in 2019. During years marked by the simultaneous occurrence of ENSO and IOD events, the UTLS (100 hPa altitude is considered for the present study. 82 hPa is the altitude just above the tropopause, therefore also shown in the results) ozone mixing ratio demonstrates a decline in absolute values. The Quasi-biennial Oscillation (QBO) was also investigated, revealing a synchronized variation with the ozone anomaly in the UTLS region. Furthermore, the calculated eddy heat flux, utilized as a proxy for the Brewer–Dobson Circulation (BDC), aligns with the UTLS ozone anomalies, indicating a positive (negative) anomaly during periods of intense tropical downwelling (upwelling). To quantitatively elucidate the contributions of ENSO, IOD, and QBO to the observed ozone anomaly, a multivariate linear regression analysis was executed utilizing the least square method. The findings underscore that a notable fraction—about one-fourth of the observed UTLS ozone anomaly within the study timeframe (2005–2020) can be attributed collectively to ENSO, IOD, and QBO. This preliminary exploration underscores the substantial role played by large-scale climate drivers emanating from the Pacific and Indian oceans in shaping UTLS ozone distribution. These insights emphasize the significance of considering these climatic influences when examining the intricate dynamics and variability of UTLS ozone patterns.</p>","PeriodicalId":51132,"journal":{"name":"Meteorology and Atmospheric Physics","volume":"25 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140044931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysis of flux footprints in fragmented, heterogeneous croplands 分析破碎、异质耕地中的通量足迹
IF 2 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2024-02-15 DOI: 10.1007/s00703-023-01004-w

Abstract

An accurate quantification of fluxes from heterogeneous sites and further bifurcation into contributing homogeneous fluxes is an active field of research. Among such sites, fragmented croplands with varying surface roughness characteristics pose formidable challenges for footprint analysis. We conducted two flux monitoring experiments in fragmented croplands characterized by two dissimilar surfaces with objectives to: (i) evaluate the performance of two analytical footprint models in heterogeneous canopy considering aggregated roughness parameters and (ii) analyze the contribution of fluxes from individual surfaces under changing wind speed. A set of three eddy covariance (EC) towers (one each capturing the homogenous fluxes from individual surfaces and a third, high tower capturing the heterogeneous mixed fluxes) was used for method validation. High-quality EC fluxes that fulfill stationarity and internal turbulence tests were analyzed considering daytime, unstable conditions. In the first experiment, source area contribution from a surface is gradually reduced by progressive cut, and its effect on high-tower flux measurements is analyzed. Two footprint models (Kormann and Meixner ‘KM’; analytical solution to Lagrangian model ‘FFP’) with modified surface roughness parameters were applied under changing source area contributions. FFP model has consistently over predicted the footprints (RMSEFFP = 0.31 m−1, PBIASFFP = 19.00), whereas KM model prediction was gradually changed from over prediction to under prediction towards higher upwind distances (RMSEKM = 0.02 m−1, PBIASKM = 8.50). Sensitivity analysis revealed that the models are more sensitive to turbulent conditions than surface characteristics. This motivated to conduct the second experiment, where the fractional contribution of individual surfaces (α and β) to the heterogeneous fluxes measured by the high tower (T3) was estimated using the principle of superposition (FT3 = α FT1 + β FT2). Results showed that α and β are dynamic during daylight hours and strongly depend on mean wind speed (U) and friction velocity (u*). The contribution of fluxes from adjoining fields [1 − (α + β)] is significant beyond 80% isopleth. Our findings provide guidelines for future analysis of fluxes in heterogeneous, fragmented croplands.

摘要 准确量化来自异质场地的通量,并进一步将其分叉为同质通量,是一个活跃的研究领域。在这些地点中,具有不同表面粗糙度特征的破碎耕地给足迹分析带来了巨大挑战。我们在以两种不同表面为特征的破碎耕地中进行了两次通量监测实验,目的是:(i) 评估两种分析足迹模型在异质冠层中的性能,同时考虑到粗糙度参数的聚合;(ii) 分析风速变化时来自单个表面的通量贡献。方法验证使用了一组三个涡度协方差(EC)塔(每个塔捕获来自单个表面的同质通量,第三个高塔捕获异质混合通量)。考虑到白天的不稳定条件,对符合静止性和内部湍流测试的高质量 EC 通量进行了分析。在第一个实验中,通过渐进式切割逐渐减少了表面的源面积贡献,并分析了其对高塔通量测量的影响。在改变源面积贡献的情况下,应用了两个修改了表面粗糙度参数的足迹模型(Kormann 和 Meixner "KM";拉格朗日模型的解析解 "FFP")。FFP 模型对足迹的预测一直偏高(RMSEFFP = 0.31 m-1,PBIASFFP = 19.00),而 KM 模型对上风距离的预测从偏高逐渐变为偏低(RMSEKM = 0.02 m-1,PBIASKM = 8.50)。敏感性分析表明,模型对湍流条件比对表面特征更敏感。这促使我们进行了第二次实验,利用叠加原理(FT3 = α FT1 + β FT2)估算了各个表面(α 和 β)对高塔(T3)测量的异质通量的贡献率。结果表明,α 和 β 在白天是动态的,与平均风速 (U) 和摩擦速度 (u*) 密切相关。来自邻近区域的通量[1 - (α + β)]在 80% 等距线以外的区域具有重要作用。我们的研究结果为今后分析异质、破碎耕地的通量提供了指导。
{"title":"Analysis of flux footprints in fragmented, heterogeneous croplands","authors":"","doi":"10.1007/s00703-023-01004-w","DOIUrl":"https://doi.org/10.1007/s00703-023-01004-w","url":null,"abstract":"<h3>Abstract</h3> <p>An accurate quantification of fluxes from heterogeneous sites and further bifurcation into contributing homogeneous fluxes is an active field of research. Among such sites, fragmented croplands with varying surface roughness characteristics pose formidable challenges for footprint analysis. We conducted two flux monitoring experiments in fragmented croplands characterized by two dissimilar surfaces with objectives to: (i) evaluate the performance of two analytical footprint models in heterogeneous canopy considering aggregated roughness parameters and (ii) analyze the contribution of fluxes from individual surfaces under changing wind speed. A set of three eddy covariance (EC) towers (one each capturing the homogenous fluxes from individual surfaces and a third, high tower capturing the heterogeneous mixed fluxes) was used for method validation. High-quality EC fluxes that fulfill stationarity and internal turbulence tests were analyzed considering daytime, unstable conditions. In the first experiment, source area contribution from a surface is gradually reduced by progressive cut, and its effect on high-tower flux measurements is analyzed. Two footprint models (Kormann and Meixner ‘KM’; analytical solution to Lagrangian model ‘FFP’) with modified surface roughness parameters were applied under changing source area contributions. FFP model has consistently over predicted the footprints (RMSE<sub>FFP</sub> = 0.31 m<sup>−1</sup>, PBIAS<sub>FFP</sub> = 19.00), whereas KM model prediction was gradually changed from over prediction to under prediction towards higher upwind distances (RMSE<sub>KM</sub> = 0.02 m<sup>−1</sup>, PBIAS<sub>KM</sub> = 8.50). Sensitivity analysis revealed that the models are more sensitive to turbulent conditions than surface characteristics. This motivated to conduct the second experiment, where the fractional contribution of individual surfaces (<em>α</em> and <em>β</em>) to the heterogeneous fluxes measured by the high tower (T3) was estimated using the principle of superposition (FT3 = <em>α</em> FT1 + <em>β</em> FT2). Results showed that <em>α</em> and <em>β</em> are dynamic during daylight hours and strongly depend on mean wind speed (<em>U</em>) and friction velocity (<em>u</em>*). The contribution of fluxes from adjoining fields [1 − (<em>α</em> + <em>β</em>)] is significant beyond 80% isopleth. Our findings provide guidelines for future analysis of fluxes in heterogeneous, fragmented croplands.</p>","PeriodicalId":51132,"journal":{"name":"Meteorology and Atmospheric Physics","volume":"9 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139752478","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A new approach to air mass characterization over the Indian region using INSAT-3DR sounder data 利用 INSAT-3DR 探测器数据确定印度地区气团特征的新方法
IF 2 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2024-02-13 DOI: 10.1007/s00703-023-01005-9
C. Mahesh, P. K. Dileep, Anish Kumar M. Nair, K. V. S. Namboodiri

This paper presents a first-time satellite-based air mass analysis over the Indian region using Indian National SATellite System (INSAT)-3DR sounder data. The Indian region is characterized by circulations and air mass fronts which have an influential role in deciding the synoptic weather. Usually, air mass analysis is carried out using radiosonde and atmospheric model-based reanalysis data. Both these datasets have intrinsic limitations due to sparse observations and other error sources. The present study is carried out using meteorologically significant satellite-derived 850 hPa level mixing ratio, optical depth, and equivalent potential temperature. The study elicits relative movements and mixing of different air masses during different seasons over the Indian region. The air mass features are well represented by mixing ratio and optical depth compared to potential temperature. The study brings forth prominent interacting air masses and their relative abundance during different seasons. The statistical analysis of air masses during different seasons at 850 hPa estimates the average values of physical attributes concerning different air masses. From the case analysis of air masses, at 850 hPa, a dry pool of mixing ratio is observed during the pre-monsoon (April–May) months. The analysis suggests that the reason for the formation of dry pool over Bay of Bengal and Arabian Sea is frequent anticyclonic formation during the period. The present study limelights the potential of satellite-derived mixing ratio profiles to understand the weather features associated with air mass interactions over the Indian region.

本文首次利用印度国家卫星系统(INSAT)-3DR 探测器数据对印度地区进行了基于卫星的气团分析。印度地区的特点是有环流和气团锋面,这对决定天气的同步变化具有重要影响。通常,气团分析是利用无线电探测仪和基于大气模型的再分析数据进行的。由于观测数据稀少和其他误差来源,这两种数据集都有其内在的局限性。本研究利用气象意义重大的卫星衍生 850 hPa 水平混合比、光学深度和等效势温进行。研究显示了印度地区不同季节不同气团的相对移动和混合情况。与位势温度相比,混合比和光学深度能很好地反映气团特征。研究提出了不同季节中相互作用的突出气团及其相对丰度。通过对不同季节 850 百帕高度的气团进行统计分析,可以估算出不同气团物理属性的平均值。从对气团的案例分析来看,在 850 hPa 上,季风前期(4 月至 5 月)会出现混合比干燥的气团。分析表明,孟加拉湾和阿拉伯海上空形成干池的原因是这一时期频繁形成反气旋。本研究凸显了卫星衍生混合比剖面在了解印度地区与气团相互作用相关的天气特征方面的潜力。
{"title":"A new approach to air mass characterization over the Indian region using INSAT-3DR sounder data","authors":"C. Mahesh, P. K. Dileep, Anish Kumar M. Nair, K. V. S. Namboodiri","doi":"10.1007/s00703-023-01005-9","DOIUrl":"https://doi.org/10.1007/s00703-023-01005-9","url":null,"abstract":"<p>This paper presents a first-time satellite-based air mass analysis over the Indian region using Indian National SATellite System (INSAT)-3DR sounder data. The Indian region is characterized by circulations and air mass fronts which have an influential role in deciding the synoptic weather. Usually, air mass analysis is carried out using radiosonde and atmospheric model-based reanalysis data. Both these datasets have intrinsic limitations due to sparse observations and other error sources. The present study is carried out using meteorologically significant satellite-derived 850 hPa level mixing ratio, optical depth, and equivalent potential temperature. The study elicits relative movements and mixing of different air masses during different seasons over the Indian region. The air mass features are well represented by mixing ratio and optical depth compared to potential temperature. The study brings forth prominent interacting air masses and their relative abundance during different seasons. The statistical analysis of air masses during different seasons at 850 hPa estimates the average values of physical attributes concerning different air masses. From the case analysis of air masses, at 850 hPa, a dry pool of mixing ratio is observed during the pre-monsoon (April–May) months. The analysis suggests that the reason for the formation of dry pool over Bay of Bengal and Arabian Sea is frequent anticyclonic formation during the period. The present study limelights the potential of satellite-derived mixing ratio profiles to understand the weather features associated with air mass interactions over the Indian region.</p>","PeriodicalId":51132,"journal":{"name":"Meteorology and Atmospheric Physics","volume":"87 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139752592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Associating daily meteorological variables of a local climate using DCCA, sample entropy, Lévy-index and Hurst–Kolmogorov exponents: a case study 利用 DCCA、样本熵、Lévy 指数和 Hurst-Kolmogorov 指数关联当地气候的每日气象变量:案例研究
IF 2 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2024-02-12 DOI: 10.1007/s00703-024-01006-2
Humberto Millán, Riccardo Biondi, Ramiro Cumbrera, Everaldo Freitas-Guedes

The nonlinear scaling of meteorological processes is an issue of much interest. The objectives of the present work were (a) to investigate cross-correlations between pairs of meteorological time series using different resolutions and (b) to explore the long-range cross-correlations through different scaling exponents. We used 13 years of daily records of rainfall, relative humidity, cloudiness and vapor pressure ranging from January 1st 1996 to December 31st 2009. Data sets were compiled from Veguita agro-meteorological station at Granma province, Cuba. Detrended cross-correlation analysis, multiscale sample entropy, Lévy-stable laws and Hurst–Kolmogorov dynamics were the main methodological and theoretical tools. The detrended cross-correlation coefficient showed significant cross-correlation between rainfall, relative humidity, cloudiness and actual vapor pressure at all investigated time scales. The individual Hurst exponents were in the range 0.62 ≤ H ≤ 0.72 which is consistent with long-range correlated patterns. Bivariate Hurst exponents (Hxy) were larger than the average exponents of the separate processes (Hx and Hy, respectively). The Hurst–Kolmogorov exponents estimated from the climacograms were in the range 0.6 ≤ H ≤ 0.7 (0.603 ≤ β ≤ 0.798) consistent with the values estimated from detrended fluctuation analysis. Each pair of meteorological variables fitted reasonably well bistable distributions with approximately the same Lévy index (α ≅ 0.736). Hurst–Kolmogorov and infinite variance processes are important drivers of the atmospheric dynamics which can explain the persistence of extreme events (droughts) usually observed in the studied region. The multivariate multiscale sample entropy method and multivariate stable distributions could be valuable candidates for describing daily atmospheric processes.

气象过程的非线性缩放是一个备受关注的问题。本研究的目标是:(a) 利用不同的分辨率研究气象时间序列之间的交叉相关性;(b) 通过不同的缩放指数探索长程交叉相关性。我们使用了 1996 年 1 月 1 日至 2009 年 12 月 31 日 13 年的降雨量、相对湿度、云量和水汽压的每日记录。数据集来自古巴格拉玛省的维吉塔农业气象站。主要的方法和理论工具有脱趋势交叉相关分析、多尺度样本熵、Lévy-稳定定律和 Hurst-Kolmogorov 动力学。去趋势交叉相关系数显示,在所有研究的时间尺度上,降雨量、相对湿度、云量和实际水汽压之间都存在显著的交叉相关性。单个赫斯特指数的范围为 0.62 ≤ H ≤ 0.72,这与长程相关模式一致。双变量赫斯特指数(Hxy)大于单独过程的平均指数(分别为 Hx 和 Hy)。根据气候图估算的赫斯特-科尔莫格罗夫指数在 0.6 ≤ H ≤ 0.7(0.603 ≤ β ≤ 0.798)的范围内,与去趋势波动分析估算的值一致。每对气象变量都合理地拟合了双稳态分布,具有大致相同的莱维指数(α ≅ 0.736)。赫斯特-科尔莫戈罗夫过程和无限方差过程是大气动力学的重要驱动力,可以解释研究区域通常观测到的极端事件(干旱)的持续性。多变量多尺度样本熵方法和多变量稳定分布可能是描述日常大气过程的重要候选方法。
{"title":"Associating daily meteorological variables of a local climate using DCCA, sample entropy, Lévy-index and Hurst–Kolmogorov exponents: a case study","authors":"Humberto Millán, Riccardo Biondi, Ramiro Cumbrera, Everaldo Freitas-Guedes","doi":"10.1007/s00703-024-01006-2","DOIUrl":"https://doi.org/10.1007/s00703-024-01006-2","url":null,"abstract":"<p>The nonlinear scaling of meteorological processes is an issue of much interest. The objectives of the present work were (a) to investigate cross-correlations between pairs of meteorological time series using different resolutions and (b) to explore the long-range cross-correlations through different scaling exponents. We used 13 years of daily records of rainfall, relative humidity, cloudiness and vapor pressure ranging from January 1st 1996 to December 31st 2009. Data sets were compiled from Veguita agro-meteorological station at Granma province, Cuba. Detrended cross-correlation analysis, multiscale sample entropy, Lévy-stable laws and Hurst–Kolmogorov dynamics were the main methodological and theoretical tools. The detrended cross-correlation coefficient showed significant cross-correlation between rainfall, relative humidity, cloudiness and actual vapor pressure at all investigated time scales. The individual Hurst exponents were in the range 0.62 ≤ <i>H</i> ≤ 0.72 which is consistent with long-range correlated patterns. Bivariate Hurst exponents (<i>H</i><sub><i>xy</i></sub>) were larger than the average exponents of the separate processes (<i>H</i><sub><i>x</i></sub> and <i>H</i><sub><i>y</i></sub>, respectively). The Hurst–Kolmogorov exponents estimated from the climacograms were in the range 0.6 ≤ <i>H</i> ≤ 0.7 (0.603 ≤ <i>β</i> ≤ 0.798) consistent with the values estimated from detrended fluctuation analysis. Each pair of meteorological variables fitted reasonably well bistable distributions with approximately the same Lévy index (<i>α</i> ≅ 0.736). Hurst–Kolmogorov and infinite variance processes are important drivers of the atmospheric dynamics which can explain the persistence of extreme events (droughts) usually observed in the studied region. The multivariate multiscale sample entropy method and multivariate stable distributions could be valuable candidates for describing daily atmospheric processes.</p>","PeriodicalId":51132,"journal":{"name":"Meteorology and Atmospheric Physics","volume":"171 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139752483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synoptic and cloud-scale aspects related to an extreme rainfall event that occurred in April 2019 in the city of Rio de Janeiro (Brazil) 与 2019 年 4 月在里约热内卢市(巴西)发生的一次极端降雨事件有关的综合和云尺度问题
IF 2 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2024-01-17 DOI: 10.1007/s00703-023-01003-x
Fabricio Polifke da Silva, Wanderson Luiz-Silva, Joao H. Huamán-Chinchay, José Ricardo de Almeida França

The development, rate, and duration of extreme rainfall events over a region depend on the coexistence and strength of multiple atmospheric physical conditions. Then, understanding the synoptic and cloud-scale aspects is a continuous, crucial integrated task between universities and operational centers aiming for early warning and risk management. This study first evaluates the large-scale atmospheric circulation, instability behavior, and moisture parameters before and after the start of rainfall. It also investigates the dynamic triggering for an extreme rainfall event in Rio de Janeiro between April 08th and 09th, 2019. Secondly, this study intended to examine the microphysics cloud aspects using data from the Geostationary Operational Environmental Satellite (GOES-16). From monthly records and the 99th percentile of accumulated daily rainfall, it was possible to highlight the spatial rainfall dependence on seasonal and topography with higher rainfall values recorded in the south portion of the city of Rio de Janeiro. From the large-scale synoptic aspects, concomitant circulations related to upper, middle, and lower atmospheric levels creating a dynamic vertical structure favorable to convective development were verified over southeastern Brazil. The thermodynamic parameters showed different characteristics before and after rainfall started, suggesting multi-parameters' importance as so-called "instability ingredients" for evaluating the atmospheric potential for clouds and rainfall development. The velocity divergence in upper atmospheric levels was a determinant dynamic forcing for deep convection evolution. Lastly, regarding the wind circulations, northwest winds before precipitation and a change in wind direction were related to the region's frontal systems passage. The cloud microphysics aspects showed that the channel differences approach showed that monitoring top cloud glaciation, vertical development, and particle size are indicators of heavy rainfall when the cloud top offering considerable vertical growth was a helpful tool to identify regions with huge potential to develop heavy rain.

一个地区极端降雨事件的发展、速度和持续时间取决于多种大气物理条件的共存和强度。因此,了解同步尺度和云尺度方面的情况是大学和业务中心之间一项持续、关键的综合任务,旨在进行早期预警和风险管理。本研究首先评估了降雨开始前后的大尺度大气环流、不稳定行为和水汽参数。它还调查了 2019 年 4 月 8 日至 9 日期间里约热内卢极端降雨事件的动态触发因素。其次,本研究旨在利用地球静止业务环境卫星(GOES-16)的数据研究微物理云方面。从月度记录和累计日降雨量的第 99 百分位数来看,里约热内卢市南部地区的降雨量较高,可以突出显示降雨量与季节和地形的空间依赖关系。从大尺度同步方面来看,与高层、中层和低层大气相关的伴生环流在巴西东南部上空形成了有利于对流发展的动态垂直结构。热力学参数在降雨开始前和降雨开始后显示出不同的特征,表明多参数作为所谓的 "不稳定成分 "在评估大气中云层和降雨发展潜力方面的重要性。高层大气的速度分异是深层对流演变的决定性动力。最后,在风环流方面,降水前的西北风和风向的变化与该地区锋面系统的通过有关。云微观物理方面的研究表明,通道差异法显示,当云顶提供相当大的垂直增长时,监测云顶冰川、垂直发展和颗粒大小是强降雨的指标,是识别具有巨大发展潜力的强降雨区域的有用工具。
{"title":"Synoptic and cloud-scale aspects related to an extreme rainfall event that occurred in April 2019 in the city of Rio de Janeiro (Brazil)","authors":"Fabricio Polifke da Silva, Wanderson Luiz-Silva, Joao H. Huamán-Chinchay, José Ricardo de Almeida França","doi":"10.1007/s00703-023-01003-x","DOIUrl":"https://doi.org/10.1007/s00703-023-01003-x","url":null,"abstract":"<p>The development, rate, and duration of extreme rainfall events over a region depend on the coexistence and strength of multiple atmospheric physical conditions. Then, understanding the synoptic and cloud-scale aspects is a continuous, crucial integrated task between universities and operational centers aiming for early warning and risk management. This study first evaluates the large-scale atmospheric circulation, instability behavior, and moisture parameters before and after the start of rainfall. It also investigates the dynamic triggering for an extreme rainfall event in Rio de Janeiro between April 08th and 09th, 2019. Secondly, this study intended to examine the microphysics cloud aspects using data from the Geostationary Operational Environmental Satellite (GOES-16). From monthly records and the 99th percentile of accumulated daily rainfall, it was possible to highlight the spatial rainfall dependence on seasonal and topography with higher rainfall values recorded in the south portion of the city of Rio de Janeiro. From the large-scale synoptic aspects, concomitant circulations related to upper, middle, and lower atmospheric levels creating a dynamic vertical structure favorable to convective development were verified over southeastern Brazil. The thermodynamic parameters showed different characteristics before and after rainfall started, suggesting multi-parameters' importance as so-called \"instability ingredients\" for evaluating the atmospheric potential for clouds and rainfall development. The velocity divergence in upper atmospheric levels was a determinant dynamic forcing for deep convection evolution. Lastly, regarding the wind circulations, northwest winds before precipitation and a change in wind direction were related to the region's frontal systems passage. The cloud microphysics aspects showed that the channel differences approach showed that monitoring top cloud glaciation, vertical development, and particle size are indicators of heavy rainfall when the cloud top offering considerable vertical growth was a helpful tool to identify regions with huge potential to develop heavy rain.</p>","PeriodicalId":51132,"journal":{"name":"Meteorology and Atmospheric Physics","volume":"101 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139498688","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-scale numerical simulations of the synoptic environment, Diablo windstorm, and wildfire formation mechanisms for the Tubbs Fire (2017) 多尺度数值模拟图布斯大火的同步环境、暗黑风暴和野火形成机制(2017 年)
IF 2 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2024-01-03 DOI: 10.1007/s00703-023-01001-z
Jackson T. Wiles, Yuh-Lang Lin, Michael L. Kaplan

The Advanced Research Weather Research and Forecasting (WRF-ARW) model was used to simulate the downscale evolving atmospheric dynamical processes conducive to the intensification and propagation of the Tubbs Fire (2017). This wildfire impacted Napa and Sonoma Counties, California, spreading quickly and erratically through complex mountainous terrain due in large part to downslope Diablo Winds. The Tubbs Fire spread over 36,000 acres and destroyed 5,636 structures, killing 22. The simulations and supporting observations during the pre-Diablo Wind period indicate a well-defined inverted surface trough in Northern California’s Central Valley, along with a strong amplifying trough in the mid-troposphere and attendant cold frontogenesis over the Sierra Nevada. Mid-upper tropospheric jet streak flow, along with simulated and observed soundings from Reno, Nevada, indicate a mid-upper tropospheric jet indirect, exit-region descending, secondary circulation in conjunction with lower mid-tropospheric cold air advection caused by the southwestward low-level jet under the upper level jet’s entrance region. These adjustments enabled the organization of a deepening and ascending inversion over the Sierra Nevada, as well as a self-induced wave critical layer between 850 and 700 hPa prior to Diablo Wind formation. As the organizing jet streak departed, the discontinuously stratified atmosphere over the Sierra Nevada and coastal mountains in Northern California provided a favorable environment for mountain wave amplification. Intensifying leeside sinking motion coupled with wave steepening resulted in strong downslope winds in Northern California. Upward propagating mountain waves are present coinciding with the steepening of the isentropic surfaces consistent with the resonant interaction of nonlinear gravity waves. The model also simulated the development of a hydraulic jump in the lower troposphere on the lee side of the mountain range during Diablo Wind development. The simulation and observations indicate that the favorable environment for Diablo Winds resulted from the baroclinic jet-front system propagating over the Sierra Nevada when it produced a highly discontinuously stratified atmosphere favorable for nonlinear mountain wave amplification. However, the main surge of momentum down the leeside is only indirectly coupled with the jet streak’s exit region, being the result of cold frontogenesis, which allows for vertically differential cold air advection and its attendant discontinuously stratified vertical atmospheric structure.

高级研究天气研究和预报(WRF-ARW)模型被用于模拟有利于 Tubbs 火灾(2017 年)加剧和传播的下尺度演变大气动力学过程。这场野火影响了加利福尼亚州的纳帕县和索诺玛县,在很大程度上由于下坡暗黑风的作用,野火在复杂的山区地形中迅速而不规则地蔓延。Tubbs 大火蔓延了 36,000 英亩,烧毁了 5,636 座建筑,造成 22 人死亡。迪亚波罗风前期的模拟和辅助观测结果表明,北加州中央山谷出现了一个清晰的倒转地表槽,同时对流层中层出现了一个强烈的放大槽,内华达山脉上空也随之出现了冷锋。对流层中上层喷流条纹流以及来自内华达州雷诺的模拟和观测探测结果表明,对流层中上层喷流间接、出口区域下降、次级环流与对流层中下层冷空气平流共同作用,由高层喷流入口区域下的西南向低层喷流引起。这些调整使得内华达山脉上空的反常现象不断加深和上升,并在暗黑破坏风形成之前,在 850 和 700 hPa 之间形成了一个自导波临界层。当组织喷流条纹离开时,内华达山脉和北加州沿海山脉上空的不连续分层大气为山地波放大提供了有利环境。不断加强的左侧下沉运动加上波浪的陡峭化导致了北加州强劲的下坡风。在等熵面陡峭化的同时,出现了向上传播的山波,这与非线性重力波的共振相互作用是一致的。该模型还模拟了在迪亚波罗风的发展过程中,山脉靠山一侧对流层下部出现的水力跃迁。模拟和观测结果表明,迪亚波罗风的有利环境来自于在内华达山脉上空传播的条气流喷射锋系统,当时它产生了有利于非线性山波放大的高度不连续分层大气。然而,左侧的主要动量涌流只是与喷流条纹的出口区域间接耦合,是冷锋生成的结果,这使得垂直差异冷空气平流和随之而来的不连续分层垂直大气结构成为可能。
{"title":"Multi-scale numerical simulations of the synoptic environment, Diablo windstorm, and wildfire formation mechanisms for the Tubbs Fire (2017)","authors":"Jackson T. Wiles, Yuh-Lang Lin, Michael L. Kaplan","doi":"10.1007/s00703-023-01001-z","DOIUrl":"https://doi.org/10.1007/s00703-023-01001-z","url":null,"abstract":"<p>The Advanced Research Weather Research and Forecasting (WRF-ARW) model was used to simulate the downscale evolving atmospheric dynamical processes conducive to the intensification and propagation of the Tubbs Fire (2017). This wildfire impacted Napa and Sonoma Counties, California, spreading quickly and erratically through complex mountainous terrain due in large part to downslope Diablo Winds. The Tubbs Fire spread over 36,000 acres and destroyed 5,636 structures, killing 22. The simulations and supporting observations during the pre-Diablo Wind period indicate a well-defined inverted surface trough in Northern California’s Central Valley, along with a strong amplifying trough in the mid-troposphere and attendant cold frontogenesis over the Sierra Nevada. Mid-upper tropospheric jet streak flow, along with simulated and observed soundings from Reno, Nevada, indicate a mid-upper tropospheric jet indirect, exit-region descending, secondary circulation in conjunction with lower mid-tropospheric cold air advection caused by the southwestward low-level jet under the upper level jet’s entrance region. These adjustments enabled the organization of a deepening and ascending inversion over the Sierra Nevada, as well as a self-induced wave critical layer between 850 and 700 hPa prior to Diablo Wind formation. As the organizing jet streak departed, the discontinuously stratified atmosphere over the Sierra Nevada and coastal mountains in Northern California provided a favorable environment for mountain wave amplification. Intensifying leeside sinking motion coupled with wave steepening resulted in strong downslope winds in Northern California. Upward propagating mountain waves are present coinciding with the steepening of the isentropic surfaces consistent with the resonant interaction of nonlinear gravity waves. The model also simulated the development of a hydraulic jump in the lower troposphere on the lee side of the mountain range during Diablo Wind development. The simulation and observations indicate that the favorable environment for Diablo Winds resulted from the baroclinic jet-front system propagating over the Sierra Nevada when it produced a highly discontinuously stratified atmosphere favorable for nonlinear mountain wave amplification. However, the main surge of momentum down the leeside is only indirectly coupled with the jet streak’s exit region, being the result of cold frontogenesis, which allows for vertically differential cold air advection and its attendant discontinuously stratified vertical atmospheric structure.</p>","PeriodicalId":51132,"journal":{"name":"Meteorology and Atmospheric Physics","volume":"13 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139092538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Meteorology and Atmospheric Physics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1