首页 > 最新文献

Nanoscale Research Letters最新文献

英文 中文
Nanodelivery of nucleic acids for plant genetic engineering
IF 5.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-02-12 DOI: 10.1186/s11671-025-04207-9
Shufeng Liu, Yixian Zheng, Linsi Pan, Wencai Wang, Yongquan Li, Zhaojun Liu, Xianzhi Zhang

Genetic engineering in plants serves as a crucial method for enhancing crop quality, yield, and climate resilience through the manipulation of genetic circuits. A novel genetic transformation approach utilizing nanocarriers as a sound plant genetic engineering technique enables the delivery of DNAs or RNAs into the plant cells. Significant advances have recently been made on the nanotechnology-based delivery of nucleic acids in plants. In this review, several nanoparticle-mediated DNA and RNA delivery systems are discussed respectively, involving latest progresses and drawbacks of these approaches used in plant genetic engineering. We also underscores the current challenges that must be addressed in the implementation of nanoparticles-based strategies for plant gene delivery. Furthermore and more importantly, plant-derived exosome-like nanoparticles that facilitate nucleic acids transfer between organisms was initially proposed as a novel and promising nanodelivery platform for the CRISPR/Cas9 genome editing toolkit in plants. We believe that this review will be beneficial for an effective exploration of nucleic acid nanodelivery to aid the plant genetic engineering in modern agriculture.

{"title":"Nanodelivery of nucleic acids for plant genetic engineering","authors":"Shufeng Liu,&nbsp;Yixian Zheng,&nbsp;Linsi Pan,&nbsp;Wencai Wang,&nbsp;Yongquan Li,&nbsp;Zhaojun Liu,&nbsp;Xianzhi Zhang","doi":"10.1186/s11671-025-04207-9","DOIUrl":"10.1186/s11671-025-04207-9","url":null,"abstract":"<div><p>Genetic engineering in plants serves as a crucial method for enhancing crop quality, yield, and climate resilience through the manipulation of genetic circuits. A novel genetic transformation approach utilizing nanocarriers as a sound plant genetic engineering technique enables the delivery of DNAs or RNAs into the plant cells. Significant advances have recently been made on the nanotechnology-based delivery of nucleic acids in plants. In this review, several nanoparticle-mediated DNA and RNA delivery systems are discussed respectively, involving latest progresses and drawbacks of these approaches used in plant genetic engineering. We also underscores the current challenges that must be addressed in the implementation of nanoparticles-based strategies for plant gene delivery. Furthermore and more importantly, plant-derived exosome-like nanoparticles that facilitate nucleic acids transfer between organisms was initially proposed as a novel and promising nanodelivery platform for the CRISPR/Cas9 genome editing toolkit in plants. We believe that this review will be beneficial for an effective exploration of nucleic acid nanodelivery to aid the plant genetic engineering in modern agriculture.</p></div>","PeriodicalId":51136,"journal":{"name":"Nanoscale Research Letters","volume":"20 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s11671-025-04207-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143396522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Paraffin-based composites containing high density particles: lead and bismuth and its’ oxides as γ-ray shielding materials: an experimental study
IF 5.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-02-12 DOI: 10.1186/s11671-025-04203-z
Jolanta Sobczak, Krzysztof Cioch, Gaweł Żyła

Shielding nano- and microcomposites have emerged as a promising solution in the constantly growing requirements and expectations in the field of radiological protection. The majority of gamma and X-ray shielding nanocomposites are based on polymers due to lightweight, low cost and flexibility as the inviting features in comparison to traditional lead shields. Taking this into consideration, the following study proposes gamma-ray shielding composites characterized by their susceptibility to shape change using the heat and manual pressure. The paraffin-based composites were filled with pure lead and bismuth particles (Bi and Pb, in one mass fraction: 10 wt%) as well as it’s oxides: bismuth (III) oxide (Bi2O3) particles and lead (II,IV) oxide particles (Pb3O4) (manufactured in two concentrations: 10 and 50 wt%). Based on experimental studies utilizing 60Co the half-value layers were calculated approximately 13–14 cm and ca. 9 cm for 10 wt% and 50 wt% filler concentration, respectively. The relatively quick and straightforward manufacturing process, utilizing two commercially available components, allows for the production of a gamma-ray shielding composite featuring a variety of shape choices, facilitating its use in areas where acquiring complex shields remains problematic, or the desired shape development requires repetition of the production process, changes in some of its stages and modification of the composition.

{"title":"Paraffin-based composites containing high density particles: lead and bismuth and its’ oxides as γ-ray shielding materials: an experimental study","authors":"Jolanta Sobczak,&nbsp;Krzysztof Cioch,&nbsp;Gaweł Żyła","doi":"10.1186/s11671-025-04203-z","DOIUrl":"10.1186/s11671-025-04203-z","url":null,"abstract":"<div><p>Shielding nano- and microcomposites have emerged as a promising solution in the constantly growing requirements and expectations in the field of radiological protection. The majority of gamma and X-ray shielding nanocomposites are based on polymers due to lightweight, low cost and flexibility as the inviting features in comparison to traditional lead shields. Taking this into consideration, the following study proposes gamma-ray shielding composites characterized by their susceptibility to shape change using the heat and manual pressure. The paraffin-based composites were filled with pure lead and bismuth particles (Bi and Pb, in one mass fraction: 10 wt%) as well as it’s oxides: bismuth (III) oxide (Bi<sub>2</sub>O<sub>3</sub>) particles and lead (II,IV) oxide particles (Pb<sub>3</sub>O<sub>4</sub>) (manufactured in two concentrations: 10 and 50 wt%). Based on experimental studies utilizing <sup>60</sup>Co the half-value layers were calculated approximately 13–14 cm and ca. 9 cm for 10 wt% and 50 wt% filler concentration, respectively. The relatively quick and straightforward manufacturing process, utilizing two commercially available components, allows for the production of a gamma-ray shielding composite featuring a variety of shape choices, facilitating its use in areas where acquiring complex shields remains problematic, or the desired shape development requires repetition of the production process, changes in some of its stages and modification of the composition.</p></div>","PeriodicalId":51136,"journal":{"name":"Nanoscale Research Letters","volume":"20 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s11671-025-04203-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143396520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design and simulation of a highly efficient eco-friendly, non-toxic perovskite solar cell
IF 5.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-02-12 DOI: 10.1186/s11671-025-04190-1
G. S. Ahathiyan, H. Victor Du John, D. Jackuline Moni, K. Martin Sagayam, Binay Kumar Pandey, Digvijay Pandey, Mesfin Esayas Lelisho

A highly efficient and nontoxic material methylammoniumtin(II) iodideperovskite solar cell is proposed. This proposed solar cell uses CH3NH3SnI3 as the absorber layer, TiO2 as an Electron transport layer (ETL), Indium tin oxide as a buffer layer, and Copper(I) oxide as the hole transport layer (HTL). The device is simulated using the SCAPS-1D simulation tool. This study details the optimization of a set of parameters, including the defect densities and the thickness of the absorber layer. The proposed structure is highly optimized result of 31.73% of enhanced power conversion efficiency (PCE), a JSC of 24.526 mA/cm2 (short-circuit current), FF of 81.40% (fill factor), and a VOC of 1.56 V (open-circuit voltage) is obtained through simulation process. Compared to previously reported works, the performance of the device has improved significantly due to better optimization. Along with this electrical characteristic temperature analyses, conductance voltage, capacitance–voltage, and bandgap analyses have also been carried out to examine the device’s efficiency and performance.

{"title":"Design and simulation of a highly efficient eco-friendly, non-toxic perovskite solar cell","authors":"G. S. Ahathiyan,&nbsp;H. Victor Du John,&nbsp;D. Jackuline Moni,&nbsp;K. Martin Sagayam,&nbsp;Binay Kumar Pandey,&nbsp;Digvijay Pandey,&nbsp;Mesfin Esayas Lelisho","doi":"10.1186/s11671-025-04190-1","DOIUrl":"10.1186/s11671-025-04190-1","url":null,"abstract":"<div><p>A highly efficient and nontoxic material methylammoniumtin(II) iodideperovskite solar cell is proposed. This proposed solar cell uses CH<sub>3</sub>NH<sub>3</sub>SnI<sub>3</sub> as the absorber layer, TiO<sub>2</sub> as an Electron transport layer (ETL), Indium tin oxide as a buffer layer, and Copper(I) oxide as the hole transport layer (HTL). The device is simulated using the SCAPS-1D simulation tool. This study details the optimization of a set of parameters, including the defect densities and the thickness of the absorber layer. The proposed structure is highly optimized result of 31.73% of enhanced power conversion efficiency (PCE), a J<sub>SC</sub> of 24.526 mA/cm<sup>2</sup> (short-circuit current), FF of 81.40% (fill factor), and a V<sub>OC</sub> of 1.56 V (open-circuit voltage) is obtained through simulation process. Compared to previously reported works, the performance of the device has improved significantly due to better optimization. Along with this electrical characteristic temperature analyses, conductance voltage, capacitance–voltage, and bandgap analyses have also been carried out to examine the device’s efficiency and performance.</p></div>","PeriodicalId":51136,"journal":{"name":"Nanoscale Research Letters","volume":"20 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s11671-025-04190-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143396519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fabrication of lipid-modified drug nanocrystals loaded injectable hydrogel for breast cancer therapy
IF 5.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-02-12 DOI: 10.1186/s11671-025-04195-w
Manish Kumar, Abhishek Jha, Pooja Goswami, Ritika Srivastava, Manjit Manjit, Kanchan Bharti, Biplob Koch, Brahmeshwar Mishra

The current study includes the design of soluplus stabilized, lipid-coated, and fucoidan-oleylamine conjugate modified paclitaxel nanocrystals. The nanocrystals (Lipid-NCs) were about 100 nm, homogeneous, stable and showed improved drug release compared to pure PTX. The nanocrystals were subsequently loaded in an in situ gel-forming hydrogel for the intratumoral injection. The resulting hydrogel exhibited a sol-form at the lower temperature of 2–8 °C while converted to a gel-form at the body temperature. The injectable hydrogel had a reasonable viscosity, an acceptable pH, good syringeability, and a quick sol–gel transition. The hydrogel demonstrated high payload potential, homogeneous distribution, and controlled long-term drug release. In vivo studies revealed the higher efficacy of Lipid-NCs hydrogel in tumor inhibition while avoiding systemic toxicity, compared to pure PTX-loaded hydrogel and intravenously administered PTX. In conclusion, nanocrystal-loaded hydrogel is a promising localized drug delivery system for breast cancer therapy.

Graphical abstract

{"title":"Fabrication of lipid-modified drug nanocrystals loaded injectable hydrogel for breast cancer therapy","authors":"Manish Kumar,&nbsp;Abhishek Jha,&nbsp;Pooja Goswami,&nbsp;Ritika Srivastava,&nbsp;Manjit Manjit,&nbsp;Kanchan Bharti,&nbsp;Biplob Koch,&nbsp;Brahmeshwar Mishra","doi":"10.1186/s11671-025-04195-w","DOIUrl":"10.1186/s11671-025-04195-w","url":null,"abstract":"<div><p>The current study includes the design of soluplus stabilized, lipid-coated, and fucoidan-oleylamine conjugate modified paclitaxel nanocrystals. The nanocrystals (Lipid-NCs) were about 100 nm, homogeneous, stable and showed improved drug release compared to pure PTX. The nanocrystals were subsequently loaded in an in situ gel-forming hydrogel for the intratumoral injection. The resulting hydrogel exhibited a sol-form at the lower temperature of 2–8 °C while converted to a gel-form at the body temperature. The injectable hydrogel had a reasonable viscosity, an acceptable pH, good syringeability, and a quick sol–gel transition. The hydrogel demonstrated high payload potential, homogeneous distribution, and controlled long-term drug release. In vivo studies revealed the higher efficacy of Lipid-NCs hydrogel in tumor inhibition while avoiding systemic toxicity, compared to pure PTX-loaded hydrogel and intravenously administered PTX. In conclusion, nanocrystal-loaded hydrogel is a promising localized drug delivery system for breast cancer therapy.</p><h3>Graphical abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":51136,"journal":{"name":"Nanoscale Research Letters","volume":"20 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s11671-025-04195-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143396521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis of SrAl2O4 and MgCoO2 bimetallic inorganic nanomaterials for thermal and electrochemical applications
IF 5.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-02-11 DOI: 10.1186/s11671-025-04198-7
Arunkumar Lagashetty, B. J. Girija, H. Mohana, B. Jyothibai, Roja Kasal, B. M. Roja, J. Thipperudrappa

Bimetallic inorganic nanoparticles are vital due to their high biocompatibility, stability and comparatively less toxicity. Nanosized bimetallic oxide materials have been extensively studied worldwide due to their unique properties such as electrical, magnetic and mechanical properties. Present work is reporting the size-controlled synthesis of strontium aluminate and magnesium cobaltate nanoparticles (SrAl2O4 and MgCoO2) by self-propagating combustion reaction using polymer fuel. Size of the prepared SrAl2O4 and MgCoO2 samples distributed on the DLS spectrum was 76 nm and 100 nm respectively. The structural and morphological characterization of the prepared nano oxide samples were carried out by X-ray diffraction (XRD) and scanning electron microscope (SEM) analysis respectively. It shows high crystalline and compact nature of the samples. FT-IR instrumentation was used to study the bonding nature of both the oxide nano samples. Formation of metal oxide and metal–metal bonding can supports the sample formation. EDX analysis carried out to further confirm the presence of Sr, Al, Mg and Co metals and also characteristics absorption peaks of signals demonstrate the final phases of the samples. UV–vis spectroscopic analysis and fluorescence study of the samples was undertaken to know the absorption and emission behaviour respectively. In continuation, the thermal and electrochemical studies of prepared samples were analyzed. Thermal investigation assesses the thermal behaviour of the samples, which shows high thermal stability. The preliminary results of CV study concluding that, the samples are electro active nature and also show possible electrochemical applications. The insights gained from this work contribute to the growing body of knowledge in metal oxide nanomaterials and pave the way for innovations in electrical and thermal-related technologies.

{"title":"Synthesis of SrAl2O4 and MgCoO2 bimetallic inorganic nanomaterials for thermal and electrochemical applications","authors":"Arunkumar Lagashetty,&nbsp;B. J. Girija,&nbsp;H. Mohana,&nbsp;B. Jyothibai,&nbsp;Roja Kasal,&nbsp;B. M. Roja,&nbsp;J. Thipperudrappa","doi":"10.1186/s11671-025-04198-7","DOIUrl":"10.1186/s11671-025-04198-7","url":null,"abstract":"<div><p>Bimetallic inorganic nanoparticles are vital due to their high biocompatibility, stability and comparatively less toxicity. Nanosized bimetallic oxide materials have been extensively studied worldwide due to their unique properties such as electrical, magnetic and mechanical properties. Present work is reporting the size-controlled synthesis of strontium aluminate and magnesium cobaltate nanoparticles (SrAl<sub>2</sub>O<sub>4</sub> and MgCoO<sub>2</sub>) by self-propagating combustion reaction using polymer fuel. Size of the prepared SrAl<sub>2</sub>O<sub>4</sub> and MgCoO<sub>2</sub> samples distributed on the DLS spectrum was 76 nm and 100 nm respectively. The structural and morphological characterization of the prepared nano oxide samples were carried out by X-ray diffraction (XRD) and scanning electron microscope (SEM) analysis respectively. It shows high crystalline and compact nature of the samples. FT-IR instrumentation was used to study the bonding nature of both the oxide nano samples. Formation of metal oxide and metal–metal bonding can supports the sample formation. EDX analysis carried out to further confirm the presence of Sr, Al, Mg and Co metals and also characteristics absorption peaks of signals demonstrate the final phases of the samples. UV–vis spectroscopic analysis and fluorescence study of the samples was undertaken to know the absorption and emission behaviour respectively. In continuation, the thermal and electrochemical studies of prepared samples were analyzed. Thermal investigation assesses the thermal behaviour of the samples, which shows high thermal stability. The preliminary results of CV study concluding that, the samples are electro active nature and also show possible electrochemical applications. The insights gained from this work contribute to the growing body of knowledge in metal oxide nanomaterials and pave the way for innovations in electrical and thermal-related technologies.</p></div>","PeriodicalId":51136,"journal":{"name":"Nanoscale Research Letters","volume":"20 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s11671-025-04198-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143388717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Activity of silver-zinc nanozeolite-based antibiofilm wound dressings in an in vitro biofilm model and comparison with commercial dressings
IF 5.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-02-11 DOI: 10.1186/s11671-025-04208-8
Sarah Abdulaziz Alobaid, Sweta Shrestha, Morgan Tasseff, Bo Wang, Monique L. van Hoek, Prabir K. Dutta

Background

Infected wounds are a major health problem as infection can delay wound healing. Wound dressings play an important part in wound care by maintaining a suitable environment that promotes healing. Silver sulfadiazine dressings have been used to prevent infection in burn wounds. Presently, many commercial silver dressings have obtained FDA clearance.

Results

In this study, we report on a novel silver dressing using microporous aluminosilicate zeolites, termed ABF-XenoMEM. Silver and zinc ions are encapsulated in the zeolite supercages. We show that the silver-zinc zeolite (AM30) alone is effective at inhibiting biofilm formation. The encapsulation protects the silver from rapidly precipitating in biological fluids. We exploit the negatively charged zeolite surface to associate positively charged quaternary ammonium ions (quat) with the zeolite. The combination of the AM30 with the quat enhances the antimicrobial activity. The colloidal nature of the zeolite materials makes it possible to make uniform deposits on a commercial extracellular matrix membrane to develop the final dressing (ABF-XenoMEM). The optimum loading of silver, zinc, and quat on the dressing was found to be 30, 3.7, and 221 µg/cm2. Using a colony biofilm model, the activity of ABF-XenoMEM is compared with four well-studied silver-based commercial dressings towards mature biofilms of Pseudomonas aeruginosa PAO1 (ATCC 4708) and methicillin-resistant Staphylococcus aureus (ATCC 33592). Cytotoxicity of the dressings was examined in HepG2 cells using the MTT assay.

Conclusion

This study shows that the ABF-XenoMEM is competitive with extensively used commercial wound dressings in a colony biofilm model. Nanozeolite-entrapped silver/zinc antimicrobials in association with quat have the potential for application in biofilm-infected wounds and require animal and clinical studies for definitive proof.

Graphical abstract

{"title":"Activity of silver-zinc nanozeolite-based antibiofilm wound dressings in an in vitro biofilm model and comparison with commercial dressings","authors":"Sarah Abdulaziz Alobaid,&nbsp;Sweta Shrestha,&nbsp;Morgan Tasseff,&nbsp;Bo Wang,&nbsp;Monique L. van Hoek,&nbsp;Prabir K. Dutta","doi":"10.1186/s11671-025-04208-8","DOIUrl":"10.1186/s11671-025-04208-8","url":null,"abstract":"<div><h3>Background</h3><p>Infected wounds are a major health problem as infection can delay wound healing. Wound dressings play an important part in wound care by maintaining a suitable environment that promotes healing. Silver sulfadiazine dressings have been used to prevent infection in burn wounds. Presently, many commercial silver dressings have obtained FDA clearance.</p><h3>Results</h3><p>In this study, we report on a novel silver dressing using microporous aluminosilicate zeolites, termed ABF-XenoMEM. Silver and zinc ions are encapsulated in the zeolite supercages. We show that the silver-zinc zeolite (AM30) alone is effective at inhibiting biofilm formation. The encapsulation protects the silver from rapidly precipitating in biological fluids. We exploit the negatively charged zeolite surface to associate positively charged quaternary ammonium ions (quat) with the zeolite. The combination of the AM30 with the quat enhances the antimicrobial activity. The colloidal nature of the zeolite materials makes it possible to make uniform deposits on a commercial extracellular matrix membrane to develop the final dressing (ABF-XenoMEM). The optimum loading of silver, zinc, and quat on the dressing was found to be 30, 3.7, and 221 µg/cm<sup>2</sup>. Using a colony biofilm model, the activity of ABF-XenoMEM is compared with four well-studied silver-based commercial dressings towards mature biofilms of <i>Pseudomonas aeruginosa</i> PAO1 (ATCC 4708) and methicillin-resistant <i>Staphylococcus aureus</i> (ATCC 33592). Cytotoxicity of the dressings was examined in HepG2 cells using the MTT assay.</p><h3>Conclusion</h3><p>This study shows that the ABF-XenoMEM is competitive with extensively used commercial wound dressings in a colony biofilm model. Nanozeolite-entrapped silver/zinc antimicrobials in association with quat have the potential for application in biofilm-infected wounds and require animal and clinical studies for definitive proof.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":51136,"journal":{"name":"Nanoscale Research Letters","volume":"20 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s11671-025-04208-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143388733","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Facile synthesis of copper, nickel and their bimetallic nanoparticles: optical and structural characterization
IF 5.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-02-11 DOI: 10.1186/s11671-025-04197-8
Abdul Waheed Aman, Ganesan Krishnan, Mohammad Abdullah Sadiqi, Mahmood Alhajj, Nurul Hidayat

This paper reports the synthesis and characterization of some spherical crystalline copper (Cu), nickel (Ni), and their bimetallic (Cu–Ni) nanoparticles (NPs) produced in deionized (DI) water via pulse laser ablation in liquid (PLAL) technique. XRD and SAED patterns showed the high crystallinity of the synthesized nanostructures with face-centered cubic structure. The TEM and HRTEM images revealed the nucleation of spherical nanocrystals with a size range of 2.525 nm, and no remarkable aggregation was seen. Some core–shell oxidized Cu and Ni nanostructures related to the dissolved oxygen in DI water were detected. The UV–Vis absorption spectra at different aging times showed that pure metal nanoparticles are more stable than bimetallic nanoparticles. Localized surface plasmon resonance (LSPR) absorption peaks were recorded at 645 nm and 596 nm wavelengths for Cu and Cu–Ni colloidal solutions, respectively. The PL emission peaks at shorter wavelengths indicated that synthesized nanoparticles are blue luminescent. The achievement of pure and spherical copper, nickel, and their bimetallic nanoparticles with enhanced optical properties could be beneficial for advancing photocatalysis and antibacterial activity.

{"title":"Facile synthesis of copper, nickel and their bimetallic nanoparticles: optical and structural characterization","authors":"Abdul Waheed Aman,&nbsp;Ganesan Krishnan,&nbsp;Mohammad Abdullah Sadiqi,&nbsp;Mahmood Alhajj,&nbsp;Nurul Hidayat","doi":"10.1186/s11671-025-04197-8","DOIUrl":"10.1186/s11671-025-04197-8","url":null,"abstract":"<div><p>This paper reports the synthesis and characterization of some spherical crystalline copper (Cu), nickel (Ni), and their bimetallic (Cu–Ni) nanoparticles (NPs) produced in deionized (DI) water via pulse laser ablation in liquid (PLAL) technique. XRD and SAED patterns showed the high crystallinity of the synthesized nanostructures with face-centered cubic structure. The TEM and HRTEM images revealed the nucleation of spherical nanocrystals with a size range of 2.5<b>–</b>25 nm, and no remarkable aggregation was seen. Some core–shell oxidized Cu and Ni nanostructures related to the dissolved oxygen in DI water were detected. The UV–Vis absorption spectra at different aging times showed that pure metal nanoparticles are more stable than bimetallic nanoparticles. Localized surface plasmon resonance (LSPR) absorption peaks were recorded at 645 nm and 596 nm wavelengths for Cu and Cu–Ni colloidal solutions, respectively. The PL emission peaks at shorter wavelengths indicated that synthesized nanoparticles are blue luminescent. The achievement of pure and spherical copper, nickel, and their bimetallic nanoparticles with enhanced optical properties could be beneficial for advancing photocatalysis and antibacterial activity.</p></div>","PeriodicalId":51136,"journal":{"name":"Nanoscale Research Letters","volume":"20 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s11671-025-04197-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143388718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Heisenberg indistinguishability principle versus magnetic hyperfine fields
IF 5.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-02-11 DOI: 10.1186/s11671-025-04202-0
Mohammad Ghafari, Herbert Gleiter, Tao Feng

In previous investigations it was reported that certain transition metal-rich amorphous alloys consist of distorted bcc nano-clusters. Two kinds of these amorphous alloys are of special interest due to their physical properties: (1) metallic glasses with no boundaries between grains and (2) nanoglasses. Nanoglasses are specified with a high proportion of boundary /Interface between amorphous grains. Similar to the nanoglasses, the nano-sized crystalline clusters such as bcc-Fe clusters consist meanly of two components: (1) nanometer-size bcc-Fe clusters (frequently called nanograins with sizes of about 3 nm or less) and (2) Interfaces between grain. A fundamentally feature of these materials seems to be their magnetic properties that are controlled by a quantum mechanical effect, the indistinguishability effect. Based on the experimentally observed magnetic properties of nano-sized bcc-Fe, it is suggesting that the application of the indistinguishability effect may open the way for the production and understanding of this class of materials.

{"title":"Heisenberg indistinguishability principle versus magnetic hyperfine fields","authors":"Mohammad Ghafari,&nbsp;Herbert Gleiter,&nbsp;Tao Feng","doi":"10.1186/s11671-025-04202-0","DOIUrl":"10.1186/s11671-025-04202-0","url":null,"abstract":"<div><p>In previous investigations it was reported that certain transition metal-rich amorphous alloys consist of distorted bcc nano-clusters. Two kinds of these amorphous alloys are of special interest due to their physical properties: (1) metallic glasses with no boundaries between grains and (2) nanoglasses. Nanoglasses are specified with a high proportion of boundary /Interface between amorphous grains. Similar to the nanoglasses, the nano-sized crystalline clusters such as bcc-Fe clusters consist meanly of two components: (1) nanometer-size bcc-Fe clusters (frequently called nanograins with sizes of about 3 nm or less) and (2) Interfaces between grain. A fundamentally feature of these materials seems to be their magnetic properties that are controlled by a quantum mechanical effect, the indistinguishability effect. Based on the experimentally observed magnetic properties of nano-sized bcc-Fe, it is suggesting that the application of the indistinguishability effect may open the way for the production and understanding of this class of materials.</p></div>","PeriodicalId":51136,"journal":{"name":"Nanoscale Research Letters","volume":"20 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s11671-025-04202-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143379747","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Novel technologies for CO2 conversion to renewable fuels, chemicals, and value-added products
IF 5.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-02-11 DOI: 10.1186/s11671-025-04214-w
Omojola Awogbemi, Dawood A. Desai

Population growth, urbanization, industrialization, and increased socioeconomic activities have escalated carbon dioxide (CO2) formation and concentration in the atmosphere. Increased generation and release of CO2 into the atmosphere exacerbates global warming and impedes environmental sustainability. One of the strategies to combat the unpleasant impact of CO2 in the atmosphere is the conversion of CO2 into useful products. This study reviews the benefits, drawbacks, and recommendations for effectively utilizing conventional, hybrid, and novel technologies for converting CO2 into energy and chemical products. The deficiencies noticed with chemical, thermal, biological, and catalytic CO2 conversion technologies (CTs) necessitated the use of hybrid conversion technologies such as biochemical, electrochemical, photocatalytic, and plasma chemical. The study posits that the development and deployment of novel CO2 CTs like bio-electrochemical, photo-electrochemical, and artificial photosynthesis will advance the research domain and revolutionize product formation. The transformation of CO2 into renewable fuels such as methane, syngas, and C2 fuels and chemical products such as methanol, formic acid, dimethyl carbonate, oxygenates, formaldehyde, and hydrocarbons is, eco-friendly, reduces air pollution, mitigates climate change, supports energy security, and provides valuable feedstocks for industries. The study recommends optimization of process parameters and reactor design configurations, increased funding, provision of regulatory framework and support, and partnerships among academia, industry players, and government agencies to achieve cost reduction, reduce environmental impacts, and combat drawbacks associated with CO2 CTs.

{"title":"Novel technologies for CO2 conversion to renewable fuels, chemicals, and value-added products","authors":"Omojola Awogbemi,&nbsp;Dawood A. Desai","doi":"10.1186/s11671-025-04214-w","DOIUrl":"10.1186/s11671-025-04214-w","url":null,"abstract":"<div><p>Population growth, urbanization, industrialization, and increased socioeconomic activities have escalated carbon dioxide (CO<sub>2</sub>) formation and concentration in the atmosphere. Increased generation and release of CO<sub>2</sub> into the atmosphere exacerbates global warming and impedes environmental sustainability. One of the strategies to combat the unpleasant impact of CO<sub>2</sub> in the atmosphere is the conversion of CO<sub>2</sub> into useful products. This study reviews the benefits, drawbacks, and recommendations for effectively utilizing conventional, hybrid, and novel technologies for converting CO2 into energy and chemical products. The deficiencies noticed with chemical, thermal, biological, and catalytic CO<sub>2</sub> conversion technologies (CTs) necessitated the use of hybrid conversion technologies such as biochemical, electrochemical, photocatalytic, and plasma chemical. The study posits that the development and deployment of novel CO<sub>2</sub> CTs like bio-electrochemical, photo-electrochemical, and artificial photosynthesis will advance the research domain and revolutionize product formation. The transformation of CO<sub>2</sub> into renewable fuels such as methane, syngas, and C2 fuels and chemical products such as methanol, formic acid, dimethyl carbonate, oxygenates, formaldehyde, and hydrocarbons is, eco-friendly, reduces air pollution, mitigates climate change, supports energy security, and provides valuable feedstocks for industries. The study recommends optimization of process parameters and reactor design configurations, increased funding, provision of regulatory framework and support, and partnerships among academia, industry players, and government agencies to achieve cost reduction, reduce environmental impacts, and combat drawbacks associated with CO<sub>2</sub> CTs.</p></div>","PeriodicalId":51136,"journal":{"name":"Nanoscale Research Letters","volume":"20 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s11671-025-04214-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143388690","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Trends in nanobody technology in industrialization
IF 5.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-02-10 DOI: 10.1186/s11671-025-04200-2
Yuhao Wu

Antibodies, which are important research entities in the field of biopharmaceuticals, hold a key position in the global pharmaceutical market. Nanobodies [a single-domain antibody (VHH)] have gradually shown unique advantages due to their specificity, small molecule size, high affinity, good stability, flexible delivery routes, and fast tissue penetration. The importance of nanobodies in the imaging, diagnosis, and treatment of diseases, especially tumors and autoimmune diseases, is increasing. This review addresses key technological hurdles, such as humanization, immunogenicity, and production scalability, and highlights novel strategies to overcome these challenges, including PEGylation, fusion with long-lived serum proteins, and advanced microbial expression systems. This review summarizes the characteristics, production, and industrialization of nanobodies, including nanobody-derived patents and clinical trials, from 2014 to 2023. Finally, the review explores some challenges associated with nanobody technology in biopharmaceuticals, therapeutic interventions, and diagnostic tools and potential solutions.

{"title":"Trends in nanobody technology in industrialization","authors":"Yuhao Wu","doi":"10.1186/s11671-025-04200-2","DOIUrl":"10.1186/s11671-025-04200-2","url":null,"abstract":"<div><p>Antibodies, which are important research entities in the field of biopharmaceuticals, hold a key position in the global pharmaceutical market. Nanobodies [a single-domain antibody (VHH)] have gradually shown unique advantages due to their specificity, small molecule size, high affinity, good stability, flexible delivery routes, and fast tissue penetration. The importance of nanobodies in the imaging, diagnosis, and treatment of diseases, especially tumors and autoimmune diseases, is increasing. This review addresses key technological hurdles, such as humanization, immunogenicity, and production scalability, and highlights novel strategies to overcome these challenges, including PEGylation, fusion with long-lived serum proteins, and advanced microbial expression systems. This review summarizes the characteristics, production, and industrialization of nanobodies, including nanobody-derived patents and clinical trials, from 2014 to 2023. Finally, the review explores some challenges associated with nanobody technology in biopharmaceuticals, therapeutic interventions, and diagnostic tools and potential solutions.</p></div>","PeriodicalId":51136,"journal":{"name":"Nanoscale Research Letters","volume":"20 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s11671-025-04200-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143373244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nanoscale Research Letters
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1