Pub Date : 2025-02-10DOI: 10.1186/s11671-025-04204-y
Zesen Zhou, Zhilong Gan, Lei Cao
Graphene-based terahertz (THz) metamaterials (MMs) are at the forefront of high-sensitivity sensing, with applications spanning biochemical to environmental fields. This review examines recent advances in graphene MMs-based THz sensors, covering foundational theories and innovative designs, from complex patterns to graphene-dielectric and graphene-metal hybrids. We explore ultra-trace detection enabled by (pi)-(pi) stacking mechanisms, expanding capabilities beyond conventional refractive index-based methods. Despite significant theoretical progress, practical challenges remain due to material constraints; solutions such as multilayer graphene structures and hybrid low-mobility designs are discussed to enhance experimental feasibility. This review provides a comprehensive perspective on the evolving impact of graphene MMs, positioning them as transformative tools in multidisciplinary THz sensing.
{"title":"Recent progress in terahertz sensors based on graphene metamaterials","authors":"Zesen Zhou, Zhilong Gan, Lei Cao","doi":"10.1186/s11671-025-04204-y","DOIUrl":"10.1186/s11671-025-04204-y","url":null,"abstract":"<div><p>Graphene-based terahertz (THz) metamaterials (MMs) are at the forefront of high-sensitivity sensing, with applications spanning biochemical to environmental fields. This review examines recent advances in graphene MMs-based THz sensors, covering foundational theories and innovative designs, from complex patterns to graphene-dielectric and graphene-metal hybrids. We explore ultra-trace detection enabled by <span>(pi)</span>-<span>(pi)</span> stacking mechanisms, expanding capabilities beyond conventional refractive index-based methods. Despite significant theoretical progress, practical challenges remain due to material constraints; solutions such as multilayer graphene structures and hybrid low-mobility designs are discussed to enhance experimental feasibility. This review provides a comprehensive perspective on the evolving impact of graphene MMs, positioning them as transformative tools in multidisciplinary THz sensing.</p></div>","PeriodicalId":51136,"journal":{"name":"Nanoscale Research Letters","volume":"20 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s11671-025-04204-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143379843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-10DOI: 10.1186/s11671-025-04201-1
Min Seok Kim, Sang Ho Lee, Jin Park, Seung Ji Bae, Jeong Woo Hong, Won Suk Koh, Gang San Yun, Jaewon Jang, Jin-Hyuk Bae, In Man Kang
This study presents a novel three-dimensional stacked capacitorless dynamic random access memory (1T-DRAM) architecture, designed using a partially etched nanosheet (PE NS) to overcome the scaling limitations of traditional DRAM designs. By leveraging the floating body effect, this architecture eliminates the need for capacitors, thereby improving integration density and memory performance. Through Sentaurus technology computer-aided design simulations, we compare the PE NS 1T-DRAM device with a conventional NS 1T-DRAM device to evaluate its effectiveness. The results reveal superior retention time (RT) and sensing margin (SM) performance of the proposed PE NS 1T-DRAM device, surpassing the memory criteria outlined by the International Roadmap for Devices and Systems, which requires an RT exceeding 64 ms at 358 K. This enhanced performance of the proposed device is attributed to its extension region, which functions as a potential well for efficient hole storage, as well as the suppression of Shockley‒Read‒Hall recombination. The PE NS 1T-DRAM device also demonstrates robustness to disturbances, maintaining over 89% of its SM and RT under diverse conditions. This superiority is again attributed to its extension region, which minimizes the effects of current flow and electrostatic potential rise. These results highlight the potential of the PE NS 1T-DRAM design for future high-density memory applications.
{"title":"Novel three-dimensional stacked capacitorless DRAM architecture using partially etched nanosheets for high-density memory applications","authors":"Min Seok Kim, Sang Ho Lee, Jin Park, Seung Ji Bae, Jeong Woo Hong, Won Suk Koh, Gang San Yun, Jaewon Jang, Jin-Hyuk Bae, In Man Kang","doi":"10.1186/s11671-025-04201-1","DOIUrl":"10.1186/s11671-025-04201-1","url":null,"abstract":"<div><p>This study presents a novel three-dimensional stacked capacitorless dynamic random access memory (1T-DRAM) architecture, designed using a partially etched nanosheet (PE NS) to overcome the scaling limitations of traditional DRAM designs. By leveraging the floating body effect, this architecture eliminates the need for capacitors, thereby improving integration density and memory performance. Through Sentaurus technology computer-aided design simulations, we compare the PE NS 1T-DRAM device with a conventional NS 1T-DRAM device to evaluate its effectiveness. The results reveal superior retention time (RT) and sensing margin (SM) performance of the proposed PE NS 1T-DRAM device, surpassing the memory criteria outlined by the International Roadmap for Devices and Systems, which requires an RT exceeding 64 ms at 358 K. This enhanced performance of the proposed device is attributed to its extension region, which functions as a potential well for efficient hole storage, as well as the suppression of Shockley‒Read‒Hall recombination. The PE NS 1T-DRAM device also demonstrates robustness to disturbances, maintaining over 89% of its SM and RT under diverse conditions. This superiority is again attributed to its extension region, which minimizes the effects of current flow and electrostatic potential rise. These results highlight the potential of the PE NS 1T-DRAM design for future high-density memory applications.</p></div>","PeriodicalId":51136,"journal":{"name":"Nanoscale Research Letters","volume":"20 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s11671-025-04201-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143373245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In the domain of respiratory illnesses, asthma remains a critical obstacle. The heterogeneous nature of this chronic inflammatory disease poses challenges during its treatment. Glucocorticoid-based combination drug therapy now dominates clinical treatments for asthma; however, glucocorticoid resistance, numerous adverse effects, the incidence of inadequate drug delivery, and other factors need the development of more effective therapies. In recent years, there has been extensive research on nanotechnology in medicine. It has been shown in studies that these drug delivery systems can greatly enhance targeting and bioavailability and decrease the toxicity of medication. Nanoparticle drug delivery systems offer improved therapeutic efficacy compared to conventional administration techniques. Nanotechnology enables advancements in precision medicine, offering benefits for heterogeneous conditions such as asthma. This review will examine the critical factors of asthma to consider when formulating medications, as well as the role of nanomaterials and their mechanisms of action in pulmonary medicine for asthma treatment.
{"title":"Innovative approaches to asthma treatment: harnessing nanoparticle technology","authors":"Vanshika Goswami, Kushneet Kaur Sodhi, Chandra Kant Singh","doi":"10.1186/s11671-025-04211-z","DOIUrl":"10.1186/s11671-025-04211-z","url":null,"abstract":"<div><p>In the domain of respiratory illnesses, asthma remains a critical obstacle. The heterogeneous nature of this chronic inflammatory disease poses challenges during its treatment. Glucocorticoid-based combination drug therapy now dominates clinical treatments for asthma; however, glucocorticoid resistance, numerous adverse effects, the incidence of inadequate drug delivery, and other factors need the development of more effective therapies. In recent years, there has been extensive research on nanotechnology in medicine. It has been shown in studies that these drug delivery systems can greatly enhance targeting and bioavailability and decrease the toxicity of medication. Nanoparticle drug delivery systems offer improved therapeutic efficacy compared to conventional administration techniques. Nanotechnology enables advancements in precision medicine, offering benefits for heterogeneous conditions such as asthma. This review will examine the critical factors of asthma to consider when formulating medications, as well as the role of nanomaterials and their mechanisms of action in pulmonary medicine for asthma treatment.</p></div>","PeriodicalId":51136,"journal":{"name":"Nanoscale Research Letters","volume":"20 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s11671-025-04211-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143370042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-07DOI: 10.1186/s11671-025-04182-1
Francesca Pancrazi, Omar De Bei, Francesco Lavecchia di Tocco, Marialaura Marchetti, Barbara Campanini, Salvatore Cannistraro, Stefano Bettati, Anna Rita Bizzarri
Iron surface determinant B (IsdB), a Staphylococcus aureus (SA) surface protein involved in both heme iron acquisition from host hemoglobin (Hb) and bacterial adhesion, is a proven virulence factor that can be targeted for the design of antibacterial molecules or vaccines. Recent single-molecule experiments on IsdB interaction with cell adhesion factors revealed an increase of the complex lifetime upon applying a stronger force (catch bond); this was suggested to favor host invasion under shear stress. An increased bond strength under mechanical stress was also detected by Atomic Force Spectroscopy (AFS) for the interaction between IsdB and Hb. Structural information on the underlying molecular mechanisms at the basis of this behaviour in IsdB-based complexes is missing. Here, we show that the single point mutation of Pro173 in the IsdB domain responsible for Hb binding, which weakens the IsdB:Hb interaction without hampering heme extraction, totally abolishes the previously observed behavior. Remarkably, Pro173 does not directly interact with Hb, but undergoes cis–trans isomerization upon IsdB:Hb complex formation, coupled to folding-upon binding of the corresponding protein loop. Our results suggest that these events might represent the molecular basis for the stress-dependence of bond strength observed for wild type IsdB, shedding light on the mechanisms that govern the capability of SA to infect host cells.
{"title":"Proline isomerization modulates the bacterial IsdB/hemoglobin interaction: an atomic force spectroscopy study","authors":"Francesca Pancrazi, Omar De Bei, Francesco Lavecchia di Tocco, Marialaura Marchetti, Barbara Campanini, Salvatore Cannistraro, Stefano Bettati, Anna Rita Bizzarri","doi":"10.1186/s11671-025-04182-1","DOIUrl":"10.1186/s11671-025-04182-1","url":null,"abstract":"<div><p>Iron surface determinant B (IsdB), a <i>Staphylococcus aureus</i> (SA) surface protein involved in both heme iron acquisition from host hemoglobin (Hb) and bacterial adhesion, is a proven virulence factor that can be targeted for the design of antibacterial molecules or vaccines. Recent single-molecule experiments on IsdB interaction with cell adhesion factors revealed an increase of the complex lifetime upon applying a stronger force (catch bond); this was suggested to favor host invasion under shear stress. An increased bond strength under mechanical stress was also detected by Atomic Force Spectroscopy (AFS) for the interaction between IsdB and Hb. Structural information on the underlying molecular mechanisms at the basis of this behaviour in IsdB-based complexes is missing. Here, we show that the single point mutation of Pro173 in the IsdB domain responsible for Hb binding, which weakens the IsdB:Hb interaction without hampering heme extraction, totally abolishes the previously observed behavior. Remarkably, Pro173 does not directly interact with Hb, but undergoes <i>cis–trans</i> isomerization upon IsdB:Hb complex formation, coupled to folding-upon binding of the corresponding protein loop. Our results suggest that these events might represent the molecular basis for the stress-dependence of bond strength observed for wild type IsdB, shedding light on the mechanisms that govern the capability of SA to infect host cells.</p></div>","PeriodicalId":51136,"journal":{"name":"Nanoscale Research Letters","volume":"20 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s11671-025-04182-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143361857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-30DOI: 10.1186/s11671-024-04163-w
Amy Sarah Benjamin, Sunita Nayak
Osteosarcoma (OS) is distinguished as a high-grade malignant tumor, characterized by rapid systemic metastasis, particularly to the lungs, resulting in very low survival rates. Understanding the complexities of tumor development and mutation is the need of the hour for the advancement of targeted therapies in cancer care. A significant innovation in this area is the use of nanotechnology, specifically nanoparticles, to tackle various challenges in cancer treatment. Iron oxide nanoparticles stand out in both therapeutic and diagnostic applications, offering a versatile platform for targeted drug delivery, hyperthermia, magneto-thermal therapy, and combinational therapy using modulation of ferroptosis pathways. These nanoparticles are easy to synthesize, non-toxic, biocompatible, and display enhanced circulation time within the system. They can also be easily conjugated to anti-cancer drugs, targeting agents, or genetic vectors that respond to specific stimuli or pH changes. The surface functionalization of these nanoparticles using bioactive molecules unveils a promising and effective nanoparticle system for assisting osteosarcoma therapy. This review will summarize the current conventional therapies for osteosarcoma and their disadvantages, the synthesis and modification of iron oxide nanoparticles documented in the literature, cellular targeting and uptake mechanism, with focus on their functionalization using natural biomaterials and application strategies towards management of osteosarcoma. The review also compiles the translational challenges and future prospects that must be addressed for clinical advancements of iron oxide based osteosarcoma treatment in the future.