首页 > 最新文献

Big Data最新文献

英文 中文
Kriging, Polynomial Chaos Expansion, and Low-Rank Approximations in Material Science and Big Data Analytics. 材料科学和大数据分析中的克里金法、多项式混沌展开和低域近似。
IF 2.6 4区 计算机科学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2024-08-01 Epub Date: 2023-04-24 DOI: 10.1089/big.2022.0124
Golsa Mahdavi, Mohammad Amin Hariri-Ardebili

In material science and engineering, the estimation of material properties and their failure modes is associated with physical experiments followed by modeling and optimization. However, proper optimization is challenging and computationally expensive. The main reason is the highly nonlinear behavior of brittle materials such as concrete. In this study, the application of surrogate models to predict the mechanical characteristics of concrete is investigated. Specifically, meta-models such as polynomial chaos expansion, Kriging, and canonical low-rank approximation are used for predicting the compressive strength of two different types of concrete (collected from experimental data in the literature). Various assumptions in surrogate models are examined, and the accuracy of each one is evaluated for the problem at hand. Finally, the optimal solution is provided. This study paves the road for other applications of surrogate models in material science and engineering.

在材料科学与工程领域,材料特性及其失效模式的估算与物理实验有关,随后是建模和优化。然而,适当的优化具有挑战性,且计算成本高昂。主要原因在于混凝土等脆性材料的高度非线性行为。在本研究中,将研究如何应用代用模型来预测混凝土的力学特性。具体来说,多项式混沌扩展、克里金法和典型低阶近似等元模型被用于预测两种不同类型混凝土的抗压强度(从文献中收集的实验数据)。研究了代用模型中的各种假设,并针对当前问题评估了每种假设的准确性。最后,提供了最佳解决方案。这项研究为代用模型在材料科学与工程领域的其他应用铺平了道路。
{"title":"Kriging, Polynomial Chaos Expansion, and Low-Rank Approximations in Material Science and Big Data Analytics.","authors":"Golsa Mahdavi, Mohammad Amin Hariri-Ardebili","doi":"10.1089/big.2022.0124","DOIUrl":"10.1089/big.2022.0124","url":null,"abstract":"<p><p>In material science and engineering, the estimation of material properties and their failure modes is associated with physical experiments followed by modeling and optimization. However, proper optimization is challenging and computationally expensive. The main reason is the highly nonlinear behavior of brittle materials such as concrete. In this study, the application of surrogate models to predict the mechanical characteristics of concrete is investigated. Specifically, meta-models such as polynomial chaos expansion, Kriging, and canonical low-rank approximation are used for predicting the compressive strength of two different types of concrete (collected from experimental data in the literature). Various assumptions in surrogate models are examined, and the accuracy of each one is evaluated for the problem at hand. Finally, the optimal solution is provided. This study paves the road for other applications of surrogate models in material science and engineering.</p>","PeriodicalId":51314,"journal":{"name":"Big Data","volume":" ","pages":"270-281"},"PeriodicalIF":2.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9446353","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Research on the Influence of Information Iterative Propagation on Complex Network Structure. 信息迭代传播对复杂网络结构的影响研究。
IF 2.6 4区 计算机科学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2024-07-27 DOI: 10.1089/big.2023.0016
Yinuo Qian, Fuzhong Nian, Zheming Wang, Yabing Yao

Dynamic propagation will affect the change of network structure. Different networks are affected by the iterative propagation of information to different degrees. The iterative propagation of information in the network changes the connection strength of the chain edge between nodes. Most studies on temporal networks build networks based on time characteristics, and the iterative propagation of information in the network can also reflect the time characteristics of network evolution. The change of network structure is a macromanifestation of time characteristics, whereas the dynamics in the network is a micromanifestation of time characteristics. How to concretely visualize the change of network structure influenced by the characteristics of propagation dynamics has become the focus of this article. The appearance of chain edge is the micro change of network structure, and the division of community is the macro change of network structure. Based on this, the node participation is proposed to quantify the influence of different users on the information propagation in the network, and it is simulated in different types of networks. By analyzing the iterative propagation of information, the weighted network of different networks based on the iterative propagation of information is constructed. Finally, the chain edge and community division in the network are analyzed to achieve the purpose of quantifying the influence of network propagation on complex network structure.

动态传播会影响网络结构的变化。不同的网络受信息迭代传播的影响程度不同。网络中信息的迭代传播会改变节点间链边的连接强度。大多数关于时态网络的研究都是基于时间特征来构建网络的,网络中信息的迭代传播也能反映网络演化的时间特征。网络结构的变化是时间特征的宏观体现,而网络中的动态变化则是时间特征的微观体现。如何具体直观地体现传播动力学特征对网络结构变化的影响,成为本文讨论的重点。链边的出现是网络结构的微观变化,社区的划分是网络结构的宏观变化。在此基础上,提出了节点参与度来量化不同用户对网络信息传播的影响,并在不同类型的网络中进行了模拟。通过对信息迭代传播的分析,构建了基于信息迭代传播的不同网络的加权网络。最后,通过分析网络中的链边和社区划分,达到量化网络传播对复杂网络结构影响的目的。
{"title":"Research on the Influence of Information Iterative Propagation on Complex Network Structure.","authors":"Yinuo Qian, Fuzhong Nian, Zheming Wang, Yabing Yao","doi":"10.1089/big.2023.0016","DOIUrl":"https://doi.org/10.1089/big.2023.0016","url":null,"abstract":"<p><p>Dynamic propagation will affect the change of network structure. Different networks are affected by the iterative propagation of information to different degrees. The iterative propagation of information in the network changes the connection strength of the chain edge between nodes. Most studies on temporal networks build networks based on time characteristics, and the iterative propagation of information in the network can also reflect the time characteristics of network evolution. The change of network structure is a macromanifestation of time characteristics, whereas the dynamics in the network is a micromanifestation of time characteristics. How to concretely visualize the change of network structure influenced by the characteristics of propagation dynamics has become the focus of this article. The appearance of chain edge is the micro change of network structure, and the division of community is the macro change of network structure. Based on this, the node participation is proposed to quantify the influence of different users on the information propagation in the network, and it is simulated in different types of networks. By analyzing the iterative propagation of information, the weighted network of different networks based on the iterative propagation of information is constructed. Finally, the chain edge and community division in the network are analyzed to achieve the purpose of quantifying the influence of network propagation on complex network structure.</p>","PeriodicalId":51314,"journal":{"name":"Big Data","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141789804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Fast Survival Support Vector Regression Approach to Large Scale Credit Scoring via Safe Screening. 通过安全筛选进行大规模信用评分的快速生存支持向量回归方法。
IF 2.6 4区 计算机科学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2024-07-23 DOI: 10.1089/big.2023.0033
Hong Wang, Ling Hong

Survival models have found wider and wider applications in credit scoring recently due to their ability to estimate the dynamics of risk over time. In this research, we propose a Buckley-James safe sample screening support vector regression (BJS4VR) algorithm to model large-scale survival data by combing the Buckley-James transformation and support vector regression. Different from previous support vector regression survival models, censored samples here are imputed using a censoring unbiased Buckley-James estimator. Safe sample screening is then applied to discard samples that guaranteed to be non-active at the final optimal solution from the original data to improve efficiency. Experimental results on the large-scale real lending club loan data have shown that the proposed BJS4VR model outperforms existing popular survival models such as RSFM, CoxRidge and CoxBoost in terms of both prediction accuracy and time efficiency. Important variables highly correlated with credit risk are also identified with the proposed method.

由于生存模型能够估计随时间变化的风险动态,因此近来在信用评分领域得到了越来越广泛的应用。在这项研究中,我们提出了一种巴克利-詹姆斯安全样本筛选支持向量回归(BJS4VR)算法,通过结合巴克利-詹姆斯变换和支持向量回归,对大规模生存数据进行建模。与以往的支持向量回归生存模型不同,这里的删减样本是使用删减无偏的巴克利-詹姆斯估计器来估算的。然后应用安全样本筛选,从原始数据中剔除保证在最终最优解中不活跃的样本,以提高效率。在大规模真实借贷俱乐部贷款数据上的实验结果表明,所提出的 BJS4VR 模型在预测准确性和时间效率方面都优于现有的流行生存模型,如 RSFM、CoxRidge 和 CoxBoost。此外,所提出的方法还识别出了与信贷风险高度相关的重要变量。
{"title":"A Fast Survival Support Vector Regression Approach to Large Scale Credit Scoring via Safe Screening.","authors":"Hong Wang, Ling Hong","doi":"10.1089/big.2023.0033","DOIUrl":"https://doi.org/10.1089/big.2023.0033","url":null,"abstract":"<p><p>Survival models have found wider and wider applications in credit scoring recently due to their ability to estimate the dynamics of risk over time. In this research, we propose a Buckley-James safe sample screening support vector regression (BJS4VR) algorithm to model large-scale survival data by combing the Buckley-James transformation and support vector regression. Different from previous support vector regression survival models, censored samples here are imputed using a censoring unbiased Buckley-James estimator. Safe sample screening is then applied to discard samples that guaranteed to be non-active at the final optimal solution from the original data to improve efficiency. Experimental results on the large-scale real lending club loan data have shown that the proposed BJS4VR model outperforms existing popular survival models such as RSFM, CoxRidge and CoxBoost in terms of both prediction accuracy and time efficiency. Important variables highly correlated with credit risk are also identified with the proposed method.</p>","PeriodicalId":51314,"journal":{"name":"Big Data","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141753329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Content-Aware Human Mobility Pattern Extraction. 内容感知的人类移动模式提取。
IF 2.6 4区 计算机科学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2024-07-10 DOI: 10.1089/big.2022.0281
Shengwen Li, Chaofan Fan, Tianci Li, Renyao Chen, Qingyuan Liu, Junfang Gong

Extracting meaningful patterns of human mobility from accumulating trajectories is essential for understanding human behavior. However, previous works identify human mobility patterns based on the spatial co-occurrence of trajectories, which ignores the effect of activity content, leaving challenges in effectively extracting and understanding patterns. To bridge this gap, this study incorporates the activity content of trajectories to extract human mobility patterns, and proposes acontent-aware mobility pattern model. The model first embeds the activity content in distributed continuous vector space by taking point-of-interest as an agent and then extracts representative and interpretable mobility patterns from human trajectory sets using a derived topic model. To investigate the performance of the proposed model, several evaluation metrics are developed, including pattern coherence, pattern similarity, and manual scoring. A real-world case study is conducted, and its experimental results show that the proposed model improves interpretability and helps to understand mobility patterns. This study provides not only a novel solution and several evaluation metrics for human mobility patterns but also a method reference for fusing content semantics of human activities for trajectory analysis and mining.

从累积的轨迹中提取有意义的人类移动模式对于理解人类行为至关重要。然而,以往的研究基于轨迹的空间共现来识别人类移动模式,忽略了活动内容的影响,给有效提取和理解模式带来了挑战。为了弥补这一不足,本研究结合轨迹的活动内容来提取人类移动模式,并提出了一种主动感知移动模式模型。该模型首先以兴趣点为代理将活动内容嵌入分布式连续向量空间,然后利用衍生的主题模型从人类轨迹集中提取具有代表性和可解释性的移动模式。为了研究拟议模型的性能,开发了几个评估指标,包括模式一致性、模式相似性和人工评分。我们进行了一项真实世界案例研究,实验结果表明,所提出的模型提高了可解释性,有助于理解移动模式。这项研究不仅为人类移动模式提供了新颖的解决方案和多个评价指标,还为融合人类活动的内容语义进行轨迹分析和挖掘提供了方法参考。
{"title":"Content-Aware Human Mobility Pattern Extraction.","authors":"Shengwen Li, Chaofan Fan, Tianci Li, Renyao Chen, Qingyuan Liu, Junfang Gong","doi":"10.1089/big.2022.0281","DOIUrl":"https://doi.org/10.1089/big.2022.0281","url":null,"abstract":"<p><p>Extracting meaningful patterns of human mobility from accumulating trajectories is essential for understanding human behavior. However, previous works identify human mobility patterns based on the spatial co-occurrence of trajectories, which ignores the effect of activity content, leaving challenges in effectively extracting and understanding patterns. To bridge this gap, this study incorporates the activity content of trajectories to extract human mobility patterns, and proposes acontent-aware mobility pattern model. The model first embeds the activity content in distributed continuous vector space by taking point-of-interest as an agent and then extracts representative and interpretable mobility patterns from human trajectory sets using a derived topic model. To investigate the performance of the proposed model, several evaluation metrics are developed, including pattern coherence, pattern similarity, and manual scoring. A real-world case study is conducted, and its experimental results show that the proposed model improves interpretability and helps to understand mobility patterns. This study provides not only a novel solution and several evaluation metrics for human mobility patterns but also a method reference for fusing content semantics of human activities for trajectory analysis and mining.</p>","PeriodicalId":51314,"journal":{"name":"Big Data","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141565068","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Intelligent Channel Estimation Algorithm Based on Extended Model for 5G-V2X. 基于 5G-V2X 扩展模型的智能信道估计算法。
IF 4.6 4区 计算机科学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2024-04-01 Epub Date: 2023-02-27 DOI: 10.1089/big.2022.0029
Jie Huang, Cheng Xu, Zhaohua Ji, Shan Xiao, Teng Liu, Nan Ma, Qinghui Zhou

Car networking systems based on 5G-V2X (vehicle-to-everything) have high requirements for reliability and low-latency communication to further improve communication performance. In the V2X scenario, this article establishes an extended model (basic expansion model) suitable for high-speed mobile scenarios based on the sparsity of the channel impulse response. And propose a channel estimation algorithm based on deep learning, the method designed a multilayer convolutional neural network to complete frequency domain interpolation. A two-way control cycle gating unit (bidirectional gated recurrent unit) is designed to predict the state in the time domain. And introduce speed parameters and multipath parameters to accurately train channel data under different moving speed environments. System simulation shows that the proposed algorithm can accurately train the number of channels. Compared with the traditional car networking channel estimation algorithm, the proposed algorithm improves the accuracy of channel estimation and effectively reduces the bit error rate.

基于 5G-V2X(车到万物)的车联网系统对可靠性和低延迟通信有很高的要求,以进一步提高通信性能。在V2X场景下,本文基于信道脉冲响应的稀疏性,建立了适用于高速移动场景的扩展模型(基本扩展模型)。并提出一种基于深度学习的信道估计算法,该方法设计了一个多层卷积神经网络来完成频域插值。设计了一个双向控制周期门控单元(双向门控递归单元)来预测时域中的状态。并引入速度参数和多径参数,精确训练不同移动速度环境下的信道数据。系统仿真表明,所提出的算法可以精确训练信道数。与传统车联网信道估计算法相比,提出的算法提高了信道估计的准确性,有效降低了误码率。
{"title":"An Intelligent Channel Estimation Algorithm Based on Extended Model for 5G-V2X.","authors":"Jie Huang, Cheng Xu, Zhaohua Ji, Shan Xiao, Teng Liu, Nan Ma, Qinghui Zhou","doi":"10.1089/big.2022.0029","DOIUrl":"10.1089/big.2022.0029","url":null,"abstract":"<p><p>Car networking systems based on 5G-V2X (vehicle-to-everything) have high requirements for reliability and low-latency communication to further improve communication performance. In the V2X scenario, this article establishes an extended model (basic expansion model) suitable for high-speed mobile scenarios based on the sparsity of the channel impulse response. And propose a channel estimation algorithm based on deep learning, the method designed a multilayer convolutional neural network to complete frequency domain interpolation. A two-way control cycle gating unit (bidirectional gated recurrent unit) is designed to predict the state in the time domain. And introduce speed parameters and multipath parameters to accurately train channel data under different moving speed environments. System simulation shows that the proposed algorithm can accurately train the number of channels. Compared with the traditional car networking channel estimation algorithm, the proposed algorithm improves the accuracy of channel estimation and effectively reduces the bit error rate.</p>","PeriodicalId":51314,"journal":{"name":"Big Data","volume":" ","pages":"127-140"},"PeriodicalIF":4.6,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9328213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preemptive Epidemic Information Transmission Model Using Nonreplication Edge Node Connectivity in Health Care Networks. 在医疗网络中使用无复制边缘节点连接的抢先式流行病信息传输模型
IF 4.6 4区 计算机科学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2024-04-01 Epub Date: 2023-04-19 DOI: 10.1089/big.2022.0278
Chandu Thota, Constandinos X Mavromoustakis, George Mastorakis

The reliability in medical data organization and transmission is eased with the inheritance of information and communication technologies in recent years. The growth of digital communication and sharing medium imposes the necessity for optimizing the accessibility and transmission of sensitive medical data to the end-users. In this article, the Preemptive Information Transmission Model (PITM) is introduced for improving the promptness in medical data delivery. This transmission model is designed to acquire the least communication in an epidemic region for seamless information availability. The proposed model makes use of a noncyclic connection procedure and preemptive forwarding inside and outside the epidemic region. The first is responsible for replication-less connection maximization ensuring better availability of the edge nodes. The connection replications are reduced using the pruning tree classifiers based on the communication time and delivery balancing factor. The later process is responsible for the reliable forwarding of the acquired data using a conditional selection of the infrastructure units. Both the processes of PITM are accountable for improving the delivery of observed medical data, over better transmissions, communication time, and achieving fewer delays.

近年来,随着信息和通信技术的发展,医疗数据组织和传输的可靠性得到了提高。随着数字通信和共享媒介的发展,有必要优化敏感医疗数据对终端用户的访问和传输。本文介绍了抢先信息传输模型(PITM),以提高医疗数据传输的及时性。该传输模型旨在获取疫区内最少的通信量,以实现信息的无缝可用性。所提出的模型利用非循环连接程序和疫区内外的抢先转发。前者负责无复制连接的最大化,确保边缘节点更好的可用性。根据通信时间和传输平衡因素,使用剪枝树分类器减少连接复制。后一个流程负责通过有条件地选择基础设施单元,可靠地转发获取的数据。PITM 的这两个过程都负责改进所观察到的医疗数据的传输,以获得更好的传输效果、更短的通信时间和更少的延迟。
{"title":"Preemptive Epidemic Information Transmission Model Using Nonreplication Edge Node Connectivity in Health Care Networks.","authors":"Chandu Thota, Constandinos X Mavromoustakis, George Mastorakis","doi":"10.1089/big.2022.0278","DOIUrl":"10.1089/big.2022.0278","url":null,"abstract":"<p><p>The reliability in medical data organization and transmission is eased with the inheritance of information and communication technologies in recent years. The growth of digital communication and sharing medium imposes the necessity for optimizing the accessibility and transmission of sensitive medical data to the end-users. In this article, the Preemptive Information Transmission Model (PITM) is introduced for improving the promptness in medical data delivery. This transmission model is designed to acquire the least communication in an epidemic region for seamless information availability. The proposed model makes use of a noncyclic connection procedure and preemptive forwarding inside and outside the epidemic region. The first is responsible for replication-less connection maximization ensuring better availability of the edge nodes. The connection replications are reduced using the pruning tree classifiers based on the communication time and delivery balancing factor. The later process is responsible for the reliable forwarding of the acquired data using a conditional selection of the infrastructure units. Both the processes of PITM are accountable for improving the delivery of observed medical data, over better transmissions, communication time, and achieving fewer delays.</p>","PeriodicalId":51314,"journal":{"name":"Big Data","volume":" ","pages":"141-154"},"PeriodicalIF":4.6,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9440721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Image Smart Segmentation Analysis Against Diabetic Foot Ulcer Using Internet of Things with Virtual Sensing. 利用虚拟传感物联网对糖尿病足溃疡进行图像智能分割分析。
IF 4.6 4区 计算机科学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2024-04-01 Epub Date: 2023-06-08 DOI: 10.1089/big.2022.0283
Chandu Thota, Dinesh Jackson Samuel, Mustafa Musa Jaber, M M Kamruzzaman, Renjith V Ravi, Lydia J Gnanasigamani, R Premalatha

Diabetic foot ulcer (DFU) is a problem worldwide, and prevention is crucial. The image segmentation analysis of DFU identification plays a significant role. This will produce different segmentation of the same idea, incomplete, imprecise, and other problems. To address these issues, a method of image segmentation analysis of DFU through internet of things with the technique of virtual sensing for semantically similar objects, the analysis of four levels of range segmentation (region-based, edge-based, image-based, and computer-aided design-based range segmentation) for deeper segmentation of images is implemented. In this study, the multimodal is compressed with the object co-segmentation for semantical segmentation. The result is predicting the better validity and reliability assessment. The experimental results demonstrate that the proposed model can efficiently perform segmentation analysis, with a lower error rate, than the existing methodologies. The findings on the multiple-image dataset show that DFU obtains an average segmentation score of 90.85% and 89.03% correspondingly in two types of labeled ratios before DFU with virtual sensing and after DFU without virtual sensing (i.e., 25% and 30%), which is an increase of 10.91% and 12.22% over the previous best results. In live DFU studies, our proposed system improved by 59.1% compared with existing deep segmentation-based techniques and its average image smart segmentation improvements over its contemporaries are 15.06%, 23.94%, and 45.41%, respectively. Proposed range-based segmentation achieves interobserver reliability by 73.9% on the positive test namely likelihood ratio test set with only a 0.25 million parameters at the pace of labeled data.

糖尿病足溃疡(DFU)是一个世界性问题,预防至关重要。DFU 识别的图像分割分析起着重要作用。然而,目前对 DFU 的图像分割分析还存在一定的局限性,会产生同一概念的不同分割、不完整、不精确等问题。为解决这些问题,本文提出了一种通过物联网对 DFU 进行图像分割分析的方法,该方法利用虚拟传感技术对语义相似的物体进行分割,通过四个层次的范围分割分析(基于区域的范围分割、基于边缘的范围分割、基于图像的范围分割和基于计算机辅助设计的范围分割)对图像进行更深层次的分割。在本研究中,多模态压缩与对象共分割用于语义分割。结果预测了更好的有效性和可靠性评估。实验结果表明,与现有方法相比,所提出的模型能有效地进行分割分析,且错误率较低。对多图像数据集的研究结果表明,在有虚拟传感的 DFU 之前和无虚拟传感的 DFU 之后(即 25% 和 30%),DFU 在两类标注比例下分别获得了 90.85% 和 89.03% 的平均分割得分,比之前的最佳结果分别提高了 10.91% 和 12.22%。在实时 DFU 研究中,与现有的基于深度分割的技术相比,我们提出的系统提高了 59.1%,其平均图像智能分割改进率分别为 15.06%、23.94% 和 45.41%。在正向测试即似然比测试集上,拟议的基于范围的分割技术在标注数据的速度上只需 25 万个参数,就能实现 73.9% 的观察者间可靠性。
{"title":"Image Smart Segmentation Analysis Against Diabetic Foot Ulcer Using Internet of Things with Virtual Sensing.","authors":"Chandu Thota, Dinesh Jackson Samuel, Mustafa Musa Jaber, M M Kamruzzaman, Renjith V Ravi, Lydia J Gnanasigamani, R Premalatha","doi":"10.1089/big.2022.0283","DOIUrl":"10.1089/big.2022.0283","url":null,"abstract":"<p><p>Diabetic foot ulcer (DFU) is a problem worldwide, and prevention is crucial. The image segmentation analysis of DFU identification plays a significant role. This will produce different segmentation of the same idea, incomplete, imprecise, and other problems. To address these issues, a method of image segmentation analysis of DFU through internet of things with the technique of virtual sensing for semantically similar objects, the analysis of four levels of range segmentation (region-based, edge-based, image-based, and computer-aided design-based range segmentation) for deeper segmentation of images is implemented. In this study, the multimodal is compressed with the object co-segmentation for semantical segmentation. The result is predicting the better validity and reliability assessment. The experimental results demonstrate that the proposed model can efficiently perform segmentation analysis, with a lower error rate, than the existing methodologies. The findings on the multiple-image dataset show that DFU obtains an average segmentation score of 90.85% and 89.03% correspondingly in two types of labeled ratios before DFU with virtual sensing and after DFU without virtual sensing (i.e., 25% and 30%), which is an increase of 10.91% and 12.22% over the previous best results. In live DFU studies, our proposed system improved by 59.1% compared with existing deep segmentation-based techniques and its average image smart segmentation improvements over its contemporaries are 15.06%, 23.94%, and 45.41%, respectively. Proposed range-based segmentation achieves interobserver reliability by 73.9% on the positive test namely likelihood ratio test set with only a 0.25 million parameters at the pace of labeled data.</p>","PeriodicalId":51314,"journal":{"name":"Big Data","volume":" ","pages":"155-172"},"PeriodicalIF":4.6,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9595875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Opinion Evolution with Information Quality of Public Person and Mass Acceptance Threshold. 公众人物的信息质量与大众接受阈值的舆论演变。
IF 4.6 4区 计算机科学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2024-04-01 Epub Date: 2023-05-29 DOI: 10.1089/big.2022.0271
Jing Wei, Yuguang Jia, Wanyi Tie, Hengmin Zhu, Weidong Huang

Public persons are nodes with high attention to public events, and their opinions can directly affect the development on events. However, because of rationality, the followers' acceptance to the public persons' opinions will depend on the information trait on public persons' opinions and own comprehension. To study how different opinions of the public persons guide different followers, we build an opinion dynamics model, which would provide a theoretical method for public opinion management. Based on the classical bounded confidence model, we extract the information quality variables and individual trust threshold and introduce them to construct our two-stage opinion evolution model. And then in the simulation experiments, we analyze the different effects of opinion information quality, opinion release time, and frequency on public opinion by adjusting the different parameters. Finally, we added a case to compare real data, the data from classical model simulation and the data from improved model simulation to verify the effectiveness on our model. The research found that the more sufficient the argument and the more moderate the attitude, the more likely to guide the public opinion. If public person holds different opinions and different information quality, he should choose different time to present his opinion to achieve ideal guide effect. When public person holds neutral opinion and the information quality is relatively general, he/she can intervene in public opinion as soon as possible to control final public opinion; when public person holds extreme opinion and the information quality is relatively high, he/she can choose to express opinion after a certain period on public opinion evolution, which is conducive to improve the guidance effect on public opinion. The frequency of releasing opinions of public person consistently has a positive impact on the final public opinion.

公众人物是公共事件中关注度较高的节点,他们的意见会直接影响事件的发展。然而,由于理性的原因,追随者对公众人物意见的接受程度取决于公众人物意见的信息特征和自身的理解能力。为了研究公众人物的不同观点如何引导不同的追随者,我们建立了一个舆论动态模型,为舆论管理提供理论方法。在经典有界信任模型的基础上,我们提取了信息质量变量和个体信任阈值,并将其引入到两阶段舆论演化模型的构建中。然后在模拟实验中,通过调整不同的参数,分析舆情信息质量、舆情发布时间和频率对舆情的不同影响。最后,我们增加了一个案例,将真实数据、经典模型模拟数据和改进模型模拟数据进行对比,以验证模型的有效性。研究发现,论证越充分、态度越温和,越容易引导舆论。如果公众持有不同的观点,信息质量也不同,则应选择不同的时间发表观点,以达到理想的引导效果。当公众持中立意见,信息质量相对一般时,可以尽快介入舆论,控制最终舆论;当公众持极端意见,信息质量相对较高时,可以选择在舆论演变到一定阶段后再发表意见,有利于提高舆论引导效果。公众发布舆情的频率对最终舆情具有持续的积极影响。
{"title":"Opinion Evolution with Information Quality of Public Person and Mass Acceptance Threshold.","authors":"Jing Wei, Yuguang Jia, Wanyi Tie, Hengmin Zhu, Weidong Huang","doi":"10.1089/big.2022.0271","DOIUrl":"10.1089/big.2022.0271","url":null,"abstract":"<p><p>Public persons are nodes with high attention to public events, and their opinions can directly affect the development on events. However, because of rationality, the followers' acceptance to the public persons' opinions will depend on the information trait on public persons' opinions and own comprehension. To study how different opinions of the public persons guide different followers, we build an opinion dynamics model, which would provide a theoretical method for public opinion management. Based on the classical bounded confidence model, we extract the information quality variables and individual trust threshold and introduce them to construct our two-stage opinion evolution model. And then in the simulation experiments, we analyze the different effects of opinion information quality, opinion release time, and frequency on public opinion by adjusting the different parameters. Finally, we added a case to compare real data, the data from classical model simulation and the data from improved model simulation to verify the effectiveness on our model. The research found that the more sufficient the argument and the more moderate the attitude, the more likely to guide the public opinion. If public person holds different opinions and different information quality, he should choose different time to present his opinion to achieve ideal guide effect. When public person holds neutral opinion and the information quality is relatively general, he/she can intervene in public opinion as soon as possible to control final public opinion; when public person holds extreme opinion and the information quality is relatively high, he/she can choose to express opinion after a certain period on public opinion evolution, which is conducive to improve the guidance effect on public opinion. The frequency of releasing opinions of public person consistently has a positive impact on the final public opinion.</p>","PeriodicalId":51314,"journal":{"name":"Big Data","volume":" ","pages":"100-109"},"PeriodicalIF":4.6,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9547763","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced Neural Network-Based Univariate Time-Series Forecasting Model for Big Data. 基于神经网络的大数据单变量时间序列预测模型。
IF 4.6 4区 计算机科学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2024-04-01 Epub Date: 2023-02-24 DOI: 10.1089/big.2022.0155
Suyel Namasudra, S Dhamodharavadhani, R Rathipriya, Ruben Gonzalez Crespo, Nageswara Rao Moparthi

Big data is a combination of large structured, semistructured, and unstructured data collected from various sources that must be processed before using them in many analytical applications. Anomalies or inconsistencies in big data refer to the occurrences of some data that are in some way unusual and do not fit the general patterns. It is considered one of the major problems of big data. Data trust method (DTM) is a technique used to identify and replace anomaly or untrustworthy data using the interpolation method. This article discusses the DTM used for univariate time series (UTS) forecasting algorithms for big data, which is considered the preprocessing approach by using a neural network (NN) model. In this work, DTM is the combination of statistical-based untrustworthy data detection method and statistical-based untrustworthy data replacement method, and it is used to improve the forecast quality of UTS. In this study, an enhanced NN model has been proposed for big data that incorporates DTMs with the NN-based UTS forecasting model. The coefficient variance root mean squared error is utilized as the main characteristic indicator in the proposed work to choose the best UTS data for model development. The results show the effectiveness of the proposed method as it can improve the prediction process by determining and replacing the untrustworthy big data.

大数据是从各种来源收集的大量结构化、半结构化和非结构化数据的组合,在许多分析应用中使用这些数据之前必须对其进行处理。大数据中的异常或不一致是指某些数据在某种程度上不寻常,不符合一般模式。它被认为是大数据的主要问题之一。数据信任方法(DTM)是一种使用插值法识别和替换异常或不可信数据的技术。本文讨论了用于大数据单变量时间序列(UTS)预测算法的 DTM,它被认为是使用神经网络(NN)模型的预处理方法。在这项工作中,DTM 是基于统计的不可信数据检测方法和基于统计的不可信数据替换方法的组合,用于提高 UTS 的预测质量。本研究提出了一种针对大数据的增强型 NN 模型,将 DTM 与基于 NN 的UTS 预测模型相结合。该模型以系数方差均方根误差为主要特征指标,选择最佳的UTS数据进行模型开发。结果表明了所提方法的有效性,因为它可以通过确定和替换不可信的大数据来改进预测过程。
{"title":"Enhanced Neural Network-Based Univariate Time-Series Forecasting Model for Big Data.","authors":"Suyel Namasudra, S Dhamodharavadhani, R Rathipriya, Ruben Gonzalez Crespo, Nageswara Rao Moparthi","doi":"10.1089/big.2022.0155","DOIUrl":"10.1089/big.2022.0155","url":null,"abstract":"<p><p>Big data is a combination of large structured, semistructured, and unstructured data collected from various sources that must be processed before using them in many analytical applications. Anomalies or inconsistencies in big data refer to the occurrences of some data that are in some way unusual and do not fit the general patterns. It is considered one of the major problems of big data. Data trust method (DTM) is a technique used to identify and replace anomaly or untrustworthy data using the interpolation method. This article discusses the DTM used for univariate time series (UTS) forecasting algorithms for big data, which is considered the preprocessing approach by using a neural network (NN) model. In this work, DTM is the combination of statistical-based untrustworthy data detection method and statistical-based untrustworthy data replacement method, and it is used to improve the forecast quality of UTS. In this study, an enhanced NN model has been proposed for big data that incorporates DTMs with the NN-based UTS forecasting model. The coefficient variance root mean squared error is utilized as the main characteristic indicator in the proposed work to choose the best UTS data for model development. The results show the effectiveness of the proposed method as it can improve the prediction process by determining and replacing the untrustworthy big data.</p>","PeriodicalId":51314,"journal":{"name":"Big Data","volume":" ","pages":"83-99"},"PeriodicalIF":4.6,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9320511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cloud-Based Advanced Shuffled Frog Leaping Algorithm for Tasks Scheduling. 基于云的任务调度高级洗牌蛙跳算法。
IF 4.6 4区 计算机科学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2024-04-01 Epub Date: 2023-03-03 DOI: 10.1089/big.2022.0095
Dipesh Kumar, Nirupama Mandal, Yugal Kumar

In recent years, the world has seen incremental growth in online activities owing to which the volume of data in cloud servers has also been increasing exponentially. With rapidly increasing data, load on cloud servers has increased in the cloud computing environment. With rapidly evolving technology, various cloud-based systems were developed to enhance the user experience. But, the increased online activities around the globe have also increased data load on the cloud-based systems. To maintain the efficiency and performance of the applications hosted in cloud servers, task scheduling has become very important. The task scheduling process helps in reducing the makespan time and average cost by scheduling the tasks to virtual machines (VMs). The task scheduling depends on assigning tasks to VMs to process the incoming tasks. The task scheduling should follow some algorithm for assigning tasks to VMs. Many researchers have proposed different scheduling algorithms for task scheduling in the cloud computing environment. In this article, an advanced form of the shuffled frog optimization algorithm, which works on the nature and behavior of frogs searching for food, has been proposed. The authors have introduced a new algorithm to shuffle the position of frogs in memeplex to obtain the best result. By using this optimization technique, the cost function of the central processing unit, makespan, and fitness function were calculated. The fitness function is the sum of the budget cost function and the makespan time. The proposed method helps in reducing the makespan time as well as the average cost by scheduling the tasks to VMs effectively. Finally, the performance of the proposed advanced shuffled frog optimization method is compared with existing task scheduling methods such as whale optimization-based scheduler (W-Scheduler), sliced particle swarm optimization (SPSO-SA), inverted ant colony optimization algorithm, and static learning particle swarm optimization (SLPSO-SA) in terms of average cost and metric makespan. Experimentally, it was concluded that the proposed advanced frog optimization algorithm can schedule tasks to the VMs more effectively as compared with other scheduling methods with a makespan of 6, average cost of 4, and fitness of 10.

近年来,全球在线活动不断增加,云服务器中的数据量也因此呈指数级增长。随着数据量的快速增长,云计算环境中云服务器的负载也随之增加。随着技术的快速发展,各种基于云的系统应运而生,以提升用户体验。但是,全球在线活动的增加也增加了云计算系统的数据负载。为了保持云服务器托管应用程序的效率和性能,任务调度变得非常重要。任务调度过程通过将任务调度到虚拟机(VM),有助于缩短运行时间和降低平均成本。任务调度取决于向虚拟机分配任务,以处理接收到的任务。任务调度应遵循某种算法将任务分配给虚拟机。许多研究人员为云计算环境中的任务调度提出了不同的调度算法。本文提出了一种高级形式的洗牌青蛙优化算法,该算法基于青蛙寻找食物的性质和行为。作者引入了一种新算法,对 memeplex 中青蛙的位置进行洗牌,以获得最佳结果。通过使用这种优化技术,计算出了中央处理单元的成本函数、makespan 和适应度函数。合适度函数是预算成本函数和间隔时间之和。通过有效地将任务调度到虚拟机上,所提出的方法有助于减少正常运行时间和平均成本。最后,将所提出的高级洗牌蛙优化方法的性能与现有的任务调度方法进行了比较,如基于鲸鱼优化的调度器(W-Scheduler)、切片粒子群优化(SPSO-SA)、倒置蚁群优化算法和静态学习粒子群优化(SLPSO-SA)在平均成本和度量间隔方面的性能。实验结果表明,与其他调度方法相比,所提出的高级蛙群优化算法能更有效地将任务调度到虚拟机上,其makespan为6,平均成本为4,适合度为10。
{"title":"Cloud-Based Advanced Shuffled Frog Leaping Algorithm for Tasks Scheduling.","authors":"Dipesh Kumar, Nirupama Mandal, Yugal Kumar","doi":"10.1089/big.2022.0095","DOIUrl":"10.1089/big.2022.0095","url":null,"abstract":"<p><p>In recent years, the world has seen incremental growth in online activities owing to which the volume of data in cloud servers has also been increasing exponentially. With rapidly increasing data, load on cloud servers has increased in the cloud computing environment. With rapidly evolving technology, various cloud-based systems were developed to enhance the user experience. But, the increased online activities around the globe have also increased data load on the cloud-based systems. To maintain the efficiency and performance of the applications hosted in cloud servers, task scheduling has become very important. The task scheduling process helps in reducing the makespan time and average cost by scheduling the tasks to virtual machines (VMs). The task scheduling depends on assigning tasks to VMs to process the incoming tasks. The task scheduling should follow some algorithm for assigning tasks to VMs. Many researchers have proposed different scheduling algorithms for task scheduling in the cloud computing environment. In this article, an advanced form of the shuffled frog optimization algorithm, which works on the nature and behavior of frogs searching for food, has been proposed. The authors have introduced a new algorithm to shuffle the position of frogs in memeplex to obtain the best result. By using this optimization technique, the cost function of the central processing unit, makespan, and fitness function were calculated. The fitness function is the sum of the budget cost function and the makespan time. The proposed method helps in reducing the makespan time as well as the average cost by scheduling the tasks to VMs effectively. Finally, the performance of the proposed advanced shuffled frog optimization method is compared with existing task scheduling methods such as whale optimization-based scheduler (W-Scheduler), sliced particle swarm optimization (SPSO-SA), inverted ant colony optimization algorithm, and static learning particle swarm optimization (SLPSO-SA) in terms of average cost and metric makespan. Experimentally, it was concluded that the proposed advanced frog optimization algorithm can schedule tasks to the VMs more effectively as compared with other scheduling methods with a makespan of 6, average cost of 4, and fitness of 10.</p>","PeriodicalId":51314,"journal":{"name":"Big Data","volume":" ","pages":"110-126"},"PeriodicalIF":4.6,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10821344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Big Data
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1