首页 > 最新文献

Big Data最新文献

英文 中文
Changes in Reasons for Visits to Primary Care as a Result of the COVID-19 Pandemic: by INTRePID COVID-19 大流行导致初级保健就诊原因的变化:按 INTRePID 分类
IF 4.6 4区 计算机科学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2023-11-01 DOI: 10.1370/afm.22.s1.5425
Karen Tu, M. Lapadula
{"title":"Changes in Reasons for Visits to Primary Care as a Result of the COVID-19 Pandemic: by INTRePID","authors":"Karen Tu, M. Lapadula","doi":"10.1370/afm.22.s1.5425","DOIUrl":"https://doi.org/10.1370/afm.22.s1.5425","url":null,"abstract":"","PeriodicalId":51314,"journal":{"name":"Big Data","volume":"11 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139301044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Breast cancer screening during the COVID-19 Pandemic in the United States: Results from real-world health records data 美国 COVID-19 大流行期间的乳腺癌筛查:来自真实世界健康记录数据的结果
IF 4.6 4区 计算机科学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2023-11-01 DOI: 10.1370/afm.22.s1.4885
William Curry, Wen-Jan Tuan, Qiushi Chen, Andrew Chung
{"title":"Breast cancer screening during the COVID-19 Pandemic in the United States: Results from real-world health records data","authors":"William Curry, Wen-Jan Tuan, Qiushi Chen, Andrew Chung","doi":"10.1370/afm.22.s1.4885","DOIUrl":"https://doi.org/10.1370/afm.22.s1.4885","url":null,"abstract":"","PeriodicalId":51314,"journal":{"name":"Big Data","volume":"48 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139292120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Novel Method for Utilizing Electronic Health Record Data in Condition-specific Research 在特定病症研究中利用电子健康记录数据的新方法
IF 4.6 4区 计算机科学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2023-11-01 DOI: 10.1370/afm.22.s1.4955
Tarin Clay, Melissa Filippi, Elise Robertson, Cory B. Lutgen, Elisabeth F. Callen
{"title":"A Novel Method for Utilizing Electronic Health Record Data in Condition-specific Research","authors":"Tarin Clay, Melissa Filippi, Elise Robertson, Cory B. Lutgen, Elisabeth F. Callen","doi":"10.1370/afm.22.s1.4955","DOIUrl":"https://doi.org/10.1370/afm.22.s1.4955","url":null,"abstract":"","PeriodicalId":51314,"journal":{"name":"Big Data","volume":"12 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139294842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Harmonized Healthcare Database across Family Medicine Institutions 全科医疗机构的统一医疗保健数据库
IF 4.6 4区 计算机科学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2023-11-01 DOI: 10.1370/afm.22.s1.5404
Chance R. Strenth, David Schneider, U. Sambamoorthi, Sravan Mattevada, Kimberly Fulda, Bhaskar Thakur, Anna Espinoza
{"title":"Harmonized Healthcare Database across Family Medicine Institutions","authors":"Chance R. Strenth, David Schneider, U. Sambamoorthi, Sravan Mattevada, Kimberly Fulda, Bhaskar Thakur, Anna Espinoza","doi":"10.1370/afm.22.s1.5404","DOIUrl":"https://doi.org/10.1370/afm.22.s1.5404","url":null,"abstract":"","PeriodicalId":51314,"journal":{"name":"Big Data","volume":"14 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139291188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identifying the Factors Associated with the Accumulation of Diabetes Complications to Inform a Prediction Tool 确定糖尿病并发症累积的相关因素,为预测工具提供依据
IF 4.6 4区 计算机科学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2023-11-01 DOI: 10.1370/afm.22.s1.5071
Winston R. Liaw, Ben King, Omolola E. Adepoju, Jiangtao Luo, Ioannis Kakadiaris, Todd Prewitt, Jessica Dobbins, Pete Womack
{"title":"Identifying the Factors Associated with the Accumulation of Diabetes Complications to Inform a Prediction Tool","authors":"Winston R. Liaw, Ben King, Omolola E. Adepoju, Jiangtao Luo, Ioannis Kakadiaris, Todd Prewitt, Jessica Dobbins, Pete Womack","doi":"10.1370/afm.22.s1.5071","DOIUrl":"https://doi.org/10.1370/afm.22.s1.5071","url":null,"abstract":"","PeriodicalId":51314,"journal":{"name":"Big Data","volume":"23 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139291940","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Big Data Confidentiality: An Approach Toward Corporate Compliance Using a Rule-Based System. 大数据保密:使用基于规则的系统实现企业合规的方法。
IF 4.6 4区 计算机科学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2023-10-31 DOI: 10.1089/big.2022.0201
Georgios Vranopoulos, Nathan Clarke, Shirley Atkinson

Organizations have been investing in analytics relying on internal and external data to gain a competitive advantage. However, the legal and regulatory acts imposed nationally and internationally have become a challenge, especially for highly regulated sectors such as health or finance/banking. Data handlers such as Facebook and Amazon have already sustained considerable fines or are under investigation due to violations of data governance. The era of big data has further intensified the challenges of minimizing the risk of data loss by introducing the dimensions of Volume, Velocity, and Variety into confidentiality. Although Volume and Velocity have been extensively researched, Variety, "the ugly duckling" of big data, is often neglected and difficult to solve, thus increasing the risk of data exposure and data loss. In mitigating the risk of data exposure and data loss in this article, a framework is proposed to utilize algorithmic classification and workflow capabilities to provide a consistent approach toward data evaluations across the organizations. A rule-based system, implementing the corporate data classification policy, will minimize the risk of exposure by facilitating users to identify the approved guidelines and enforce them quickly. The framework includes an exception handling process with appropriate approval for extenuating circumstances. The system was implemented in a proof of concept working prototype to showcase the capabilities and provide a hands-on experience. The information system was evaluated and accredited by a diverse audience of academics and senior business executives in the fields of security and data management. The audience had an average experience of ∼25 years and amasses a total experience of almost three centuries (294 years). The results confirmed that the 3Vs are of concern and that Variety, with a majority of 90% of the commentators, is the most troubling. In addition to that, with an approximate average of 60%, it was confirmed that appropriate policies, procedure, and prerequisites for classification are in place while implementation tools are lagging.

组织一直在投资于依赖内部和外部数据的分析,以获得竞争优势。然而,国家和国际上实施的法律和监管法案已成为一项挑战,尤其是对卫生或金融/银行等高度监管的部门而言。脸书(Facebook)和亚马逊(Amazon)等数据处理公司已经因违反数据治理规定而被处以巨额罚款,或正在接受调查。大数据时代通过将Volume、Velocity和Variety等维度引入保密性,进一步加剧了将数据丢失风险降至最低的挑战。尽管Volume和Velocity已经得到了广泛的研究,但Variety这个大数据的“丑小鸭”却经常被忽视和难以解决,从而增加了数据暴露和数据丢失的风险。在本文中,为了降低数据暴露和数据丢失的风险,提出了一个框架,利用算法分类和工作流功能,为跨组织的数据评估提供一致的方法。一个基于规则的系统,实施公司数据分类政策,将通过方便用户识别批准的指导方针并迅速执行,将暴露风险降至最低。该框架包括一个例外处理程序,对情有可原的情况给予适当批准。该系统是在概念验证工作原型中实现的,以展示其能力并提供动手体验。安全和数据管理领域的学者和高级企业高管对该信息系统进行了评估和认可。观众平均经历了~25年,积累了近三个世纪(294年)的总经历。结果证实,3V令人担忧,而拥有90%评论员的《综艺》是最令人担忧的。除此之外,平均水平约为60%,证实了适当的分类政策、程序和先决条件已经到位,而实施工具却滞后。
{"title":"Big Data Confidentiality: An Approach Toward Corporate Compliance Using a Rule-Based System.","authors":"Georgios Vranopoulos,&nbsp;Nathan Clarke,&nbsp;Shirley Atkinson","doi":"10.1089/big.2022.0201","DOIUrl":"https://doi.org/10.1089/big.2022.0201","url":null,"abstract":"<p><p>Organizations have been investing in analytics relying on internal and external data to gain a competitive advantage. However, the legal and regulatory acts imposed nationally and internationally have become a challenge, especially for highly regulated sectors such as health or finance/banking. Data handlers such as Facebook and Amazon have already sustained considerable fines or are under investigation due to violations of data governance. The era of big data has further intensified the challenges of minimizing the risk of data loss by introducing the dimensions of Volume, Velocity, and Variety into confidentiality. Although Volume and Velocity have been extensively researched, Variety, \"the ugly duckling\" of big data, is often neglected and difficult to solve, thus increasing the risk of data exposure and data loss. In mitigating the risk of data exposure and data loss in this article, a framework is proposed to utilize algorithmic classification and workflow capabilities to provide a consistent approach toward data evaluations across the organizations. A rule-based system, implementing the corporate data classification policy, will minimize the risk of exposure by facilitating users to identify the approved guidelines and enforce them quickly. The framework includes an exception handling process with appropriate approval for extenuating circumstances. The system was implemented in a proof of concept working prototype to showcase the capabilities and provide a hands-on experience. The information system was evaluated and accredited by a diverse audience of academics and senior business executives in the fields of security and data management. The audience had an average experience of ∼25 years and amasses a total experience of almost three centuries (294 years). The results confirmed that the 3Vs are of concern and that Variety, with a majority of 90% of the commentators, is the most troubling. In addition to that, with an approximate average of 60%, it was confirmed that appropriate policies, procedure, and prerequisites for classification are in place while implementation tools are lagging.</p>","PeriodicalId":51314,"journal":{"name":"Big Data","volume":" ","pages":""},"PeriodicalIF":4.6,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71415222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Consumer Segmentation Based on Location and Timing Dimensions Using Big Data from Business-to-Customer Retailing Marketplaces. 利用从企业到客户零售市场的大数据,基于位置和时间维度的消费者细分。
IF 4.6 4区 计算机科学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2023-10-30 DOI: 10.1089/big.2022.0307
Fatemeh Ehsani, Monireh Hosseini

Consumer segmentation is an electronic marketing practice that involves dividing consumers into groups with similar features to discover their preferences. In the business-to-customer (B2C) retailing industry, marketers explore big data to segment consumers based on various dimensions. However, among these dimensions, the motives of location and time of shopping have received relatively less attention. In this study, we use the recency, frequency, monetary, and tenure (RFMT) method to segment consumers into 10 groups based on their time and geographical features. To explore location, we investigate market distribution, revenue distribution, and consumer distribution. Geographical coordinates and peculiarities are estimated based on consumer density. Regarding time exploration, we evaluate the accuracy of product delivery and the timing of promotions. To pinpoint the target consumers, we display the main hotspots on the distribution heatmap. Furthermore, we identify the optimal time for purchase and the most densely populated locations of beneficial consumers. In addition, we evaluate product distribution to determine the most popular product categories. Based on the RFMT segmentation and product popularity, we have developed a product recommender system to assist marketers in attracting and engaging potential consumers. Through a case study using data from massive B2C retailing, we conclude that the proposed segmentation provides superior insights into consumer behavior and improves product recommendation performance.

消费者细分是一种电子营销实践,包括将消费者分为具有相似特征的群体,以发现他们的偏好。在企业对客户(B2C)零售业中,营销人员探索大数据,根据不同维度对消费者进行细分。然而,在这些维度中,购物地点和时间的动机受到的关注相对较少。在这项研究中,我们使用最近度、频率、货币和保有权(RFMT)方法,根据消费者的时间和地理特征将其分为10组。为了探索地点,我们调查了市场分布、收入分布和消费者分布。地理坐标和特性是根据消费者密度估计的。关于时间探索,我们评估产品交付的准确性和促销时间。为了准确定位目标消费者,我们在分销热图上显示了主要热点。此外,我们确定了有利消费者的最佳购买时间和人口最密集的地点。此外,我们评估产品分布,以确定最受欢迎的产品类别。基于RFMT细分和产品受欢迎程度,我们开发了一个产品推荐系统,以帮助营销人员吸引和吸引潜在消费者。通过使用大规模B2C零售数据的案例研究,我们得出结论,所提出的细分提供了对消费者行为的卓越见解,并提高了产品推荐性能。
{"title":"Consumer Segmentation Based on Location and Timing Dimensions Using Big Data from Business-to-Customer Retailing Marketplaces.","authors":"Fatemeh Ehsani, Monireh Hosseini","doi":"10.1089/big.2022.0307","DOIUrl":"10.1089/big.2022.0307","url":null,"abstract":"<p><p>Consumer segmentation is an electronic marketing practice that involves dividing consumers into groups with similar features to discover their preferences. In the business-to-customer (B2C) retailing industry, marketers explore big data to segment consumers based on various dimensions. However, among these dimensions, the motives of location and time of shopping have received relatively less attention. In this study, we use the recency, frequency, monetary, and tenure (RFMT) method to segment consumers into 10 groups based on their time and geographical features. To explore location, we investigate market distribution, revenue distribution, and consumer distribution. Geographical coordinates and peculiarities are estimated based on consumer density. Regarding time exploration, we evaluate the accuracy of product delivery and the timing of promotions. To pinpoint the target consumers, we display the main hotspots on the distribution heatmap. Furthermore, we identify the optimal time for purchase and the most densely populated locations of beneficial consumers. In addition, we evaluate product distribution to determine the most popular product categories. Based on the RFMT segmentation and product popularity, we have developed a product recommender system to assist marketers in attracting and engaging potential consumers. Through a case study using data from massive B2C retailing, we conclude that the proposed segmentation provides superior insights into consumer behavior and improves product recommendation performance.</p>","PeriodicalId":51314,"journal":{"name":"Big Data","volume":" ","pages":""},"PeriodicalIF":4.6,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71415223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Service Level Agreement Monitoring as a Service: An Independent Monitoring Service for Service Level Agreements in Clouds. 服务级别协议监控即服务:云中服务级别协议的独立监控服务。
IF 4.6 4区 计算机科学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2023-10-01 Epub Date: 2022-01-24 DOI: 10.1089/big.2021.0274
Afzal Badshah, Ateeqa Jalal, Umar Farooq, Ghani-Ur Rehman, Shahab S Band, Celestine Iwendi

The cloud network is rapidly growing due to a massive increase in interconnected devices and the emergence of different technologies such as the Internet of things, fog computing, and artificial intelligence. In response, cloud computing needs reliable dealings among the service providers, brokers, and consumers. The existing cloud monitoring frameworks such as Amazon Cloud Watch, Paraleap Azure Watch, and Rack Space Cloud Kick work under the control of service providers. They work fine; however, this may create dissatisfaction among customers over Service Level Agreement (SLA) violations. Customers' dissatisfaction may drastically reduce the businesses of service providers. To cope with the earlier mentioned issue and get in line with cloud philosophy, Monitoring as a Service (MaaS), completely independent in nature, is needed for observing and regulating the cloud businesses. However, the existing MaaS frameworks do not address the comprehensive SLA for customer satisfaction and penalties management. This article proposes a reliable framework for monitoring the provider's services by adopting third-party monitoring services with clearcut SLA and penalties management. Since this framework monitors SLA as a cloud monitoring service, it is named as SLA-MaaS. On violations, it penalizes those who are found in breach of terms and condition enlisted in SLA. Simulation results confirmed that the proposed framework adequately satisfies the customers (as well as service providers). This helps in developing a trustworthy relationship among cloud partners and increases customer attention and retention.

由于互联设备的大量增加以及物联网、雾计算和人工智能等不同技术的出现,云网络正在迅速发展。作为回应,云计算需要服务提供商、经纪人和消费者之间的可靠交易。现有的云监控框架,如Amazon cloud Watch、Paraleap Azure Watch和Rack Space cloud Kick,在服务提供商的控制下工作。它们工作良好;然而,这可能会引起客户对违反服务水平协议(SLA)的不满。客户的不满可能会大大减少服务提供商的业务。为了解决前面提到的问题并符合云的理念,监控即服务(MaaS)在本质上是完全独立的,需要用于观察和监管云业务。然而,现有的MaaS框架没有解决客户满意度和处罚管理的全面SLA问题。本文提出了一个可靠的框架,通过采用具有clearcut SLA和惩罚管理的第三方监控服务来监控提供商的服务。由于该框架将SLA作为云监控服务进行监控,因此将其命名为SLA-MaaS。关于违规行为,它惩罚那些被发现违反苏丹解放军招募的条款和条件的人。仿真结果证实,所提出的框架充分满足了客户(以及服务提供商)的要求。这有助于在云合作伙伴之间建立值得信赖的关系,并提高客户的关注度和忠诚度。
{"title":"Service Level Agreement Monitoring as a Service: An Independent Monitoring Service for Service Level Agreements in Clouds.","authors":"Afzal Badshah,&nbsp;Ateeqa Jalal,&nbsp;Umar Farooq,&nbsp;Ghani-Ur Rehman,&nbsp;Shahab S Band,&nbsp;Celestine Iwendi","doi":"10.1089/big.2021.0274","DOIUrl":"10.1089/big.2021.0274","url":null,"abstract":"<p><p>The cloud network is rapidly growing due to a massive increase in interconnected devices and the emergence of different technologies such as the Internet of things, fog computing, and artificial intelligence. In response, cloud computing needs reliable dealings among the service providers, brokers, and consumers. The existing cloud monitoring frameworks such as Amazon Cloud Watch, Paraleap Azure Watch, and Rack Space Cloud Kick work under the control of service providers. They work fine; however, this may create dissatisfaction among customers over Service Level Agreement (SLA) violations. Customers' dissatisfaction may drastically reduce the businesses of service providers. To cope with the earlier mentioned issue and get in line with cloud philosophy, Monitoring as a Service (MaaS), completely independent in nature, is needed for observing and regulating the cloud businesses. However, the existing MaaS frameworks do not address the comprehensive SLA for customer satisfaction and penalties management. This article proposes a reliable framework for monitoring the provider's services by adopting third-party monitoring services with clearcut SLA and penalties management. Since this framework monitors SLA as a cloud monitoring service, it is named as SLA-MaaS. On violations, it penalizes those who are found in breach of terms and condition enlisted in SLA. Simulation results confirmed that the proposed framework adequately satisfies the customers (as well as service providers). This helps in developing a trustworthy relationship among cloud partners and increases customer attention and retention.</p>","PeriodicalId":51314,"journal":{"name":"Big Data","volume":" ","pages":"339-354"},"PeriodicalIF":4.6,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39857084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
HUTNet: An Efficient Convolutional Neural Network for Handwritten Uchen Tibetan Character Recognition. HUTNet:一种高效的卷积神经网络,用于乌琴藏文手写体识别。
IF 4.6 4区 计算机科学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2023-10-01 Epub Date: 2023-01-19 DOI: 10.1089/big.2021.0333
Guowei Zhang, Weilan Wang, Ce Zhang, Penghai Zhao, Mingkai Zhang

Recognition of handwritten Uchen Tibetan characters input has been considered an efficient way of acquiring mass data in the digital era. However, it still faces considerable challenges due to seriously touching letters and various morphological features of identical characters. Thus, deeper neural networks are required to achieve decent recognition accuracy, making an efficient, lightweight model design important to balance the inevitable trade-off between accuracy and latency. To reduce the learnable parameters of the network as much as possible and maintain acceptable accuracy, we introduce an efficient model named HUTNet based on the internal relationship between floating-point operations per second (FLOPs) and Memory Access Cost. The proposed network achieves a ResNet-18-level accuracy of 96.86%, with only a tenth of the parameters. The subsequent pruning and knowledge distillation strategies were applied to further reduce the inference latency of the model. Experiments on the test set (Handwritten Uchen Tibetan Data set by Wang [HUTDW]) containing 562 classes of 42,068 samples show that the compressed model achieves a 96.83% accuracy while maintaining lower FLOPs and fewer parameters. To verify the effectiveness of HUTNet, we tested it on the Chinese Handwriting Data sets Handwriting Database 1.1 (HWDB1.1), in which HUTNet achieved an accuracy of 97.24%, higher than that of ResNet-18 and ResNet-34. In general, we conduct extensive experiments on resource and accuracy trade-offs and show a stronger performance compared with other famous models on HUTDW and HWDB1.1. It also unlocks the critical bottleneck for handwritten Uchen Tibetan recognition on low-power computing devices.

在数字时代,识别输入的乌陈藏文手写体被认为是获取海量数据的有效途径。然而,由于字母的感人性和相同字符的各种形态特征,它仍然面临着相当大的挑战。因此,需要更深入的神经网络来实现良好的识别精度,这使得高效、轻量级的模型设计对于平衡精度和延迟之间不可避免的权衡非常重要。为了尽可能减少网络的可学习参数并保持可接受的精度,我们引入了一个基于每秒浮点运算(FLOP)和内存访问成本之间的内部关系的高效模型HUTNet。所提出的网络实现了96.86%的ResNet-18级精度,仅具有十分之一的参数。随后的修剪和知识提取策略被应用于进一步减少模型的推理延迟。在包含562类42068个样本的测试集(王[HUTDW]的手写乌陈藏文数据集)上的实验表明,压缩模型在保持较低的FLOP和较少的参数的同时,实现了96.83%的准确率。为了验证HUTNet的有效性,我们在中文手写数据集手写数据库1.1(HWDB1.1)上对其进行了测试,其中HUTNet实现了97.24%的准确率,高于ResNet-18和ResNet-34。总的来说,我们在资源和精度权衡方面进行了广泛的实验,并在HUTDW和HWDB1.1上显示出与其他著名模型相比更强的性能。它还解开了在低功耗计算设备上手写乌琴藏文识别的关键瓶颈。
{"title":"HUTNet: An Efficient Convolutional Neural Network for Handwritten Uchen Tibetan Character Recognition.","authors":"Guowei Zhang,&nbsp;Weilan Wang,&nbsp;Ce Zhang,&nbsp;Penghai Zhao,&nbsp;Mingkai Zhang","doi":"10.1089/big.2021.0333","DOIUrl":"10.1089/big.2021.0333","url":null,"abstract":"<p><p>Recognition of handwritten Uchen Tibetan characters input has been considered an efficient way of acquiring mass data in the digital era. However, it still faces considerable challenges due to seriously touching letters and various morphological features of identical characters. Thus, deeper neural networks are required to achieve decent recognition accuracy, making an efficient, lightweight model design important to balance the inevitable trade-off between accuracy and latency. To reduce the learnable parameters of the network as much as possible and maintain acceptable accuracy, we introduce an efficient model named HUTNet based on the internal relationship between floating-point operations per second (FLOPs) and Memory Access Cost. The proposed network achieves a ResNet-18-level accuracy of 96.86%, with only a tenth of the parameters. The subsequent pruning and knowledge distillation strategies were applied to further reduce the inference latency of the model. Experiments on the test set (Handwritten Uchen Tibetan Data set by Wang [HUTDW]) containing 562 classes of 42,068 samples show that the compressed model achieves a 96.83% accuracy while maintaining lower FLOPs and fewer parameters. To verify the effectiveness of HUTNet, we tested it on the Chinese Handwriting Data sets Handwriting Database 1.1 (HWDB1.1), in which HUTNet achieved an accuracy of 97.24%, higher than that of ResNet-18 and ResNet-34. In general, we conduct extensive experiments on resource and accuracy trade-offs and show a stronger performance compared with other famous models on HUTDW and HWDB1.1. It also unlocks the critical bottleneck for handwritten Uchen Tibetan recognition on low-power computing devices.</p>","PeriodicalId":51314,"journal":{"name":"Big Data","volume":" ","pages":"387-398"},"PeriodicalIF":4.6,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10543391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Prediction and Big Data Impact Analysis of Telecom Churn by Backpropagation Neural Network Algorithm from the Perspective of Business Model. 基于商业模型的反向传播神经网络算法对电信客户流失的预测与大数据影响分析。
IF 4.6 4区 计算机科学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2023-10-01 Epub Date: 2023-01-19 DOI: 10.1089/big.2021.0365
Jiabing Xu, Jiarui Liu, Tianen Yao, Yang Li

This study aims to transform the existing telecom operators from traditional Internet operators to digital-driven services, and improve the overall competitiveness of telecom enterprises. Data mining is applied to telecom user classification to process the existing telecom user data through data integration, cleaning, standardization, and transformation. Although the existing algorithms ensure the accuracy of the algorithm on the telecom user analysis platform under big data, they do not solve the limitations of single machine computing and cannot effectively improve the training efficiency of the model. To solve this problem, this article establishes a telecom customer churn prediction model with the help of backpropagation neural network (BPNN) algorithm, and deploys the MapReduce programming framework on Hadoop platform. Using the data of a telecom company, this article analyzes the loss of telecom customers in the big data environment. The research shows that the accuracy of telecom customer churn prediction model in BPNN is 82.12%. After deploying large data sets, the learning and training time of the model is greatly shortened. When the number of nodes is 8, the acceleration ratio of the model remains at 60 seconds. Under big data, the telecom user analysis platform not only ensures the accuracy of the algorithm, but also solves the limitations of single machine computing and effectively improves the training efficiency of the model. Compared with that of the existing research, the accuracy of the model is improved by 25.36%, and the running time is shortened by about twice. This business model based on BPNN algorithm has obvious advantages in processing more data sets, and has great reference value for the digital-driven business model transformation of the telecommunications industry.

本研究旨在将现有的电信运营商从传统的互联网运营商转变为数字驱动的服务,提高电信企业的整体竞争力。数据挖掘应用于电信用户分类,通过数据集成、清理、标准化和转换来处理现有的电信用户数据。现有算法虽然保证了大数据下电信用户分析平台上算法的准确性,但并没有解决单机计算的局限性,也无法有效提高模型的训练效率。为了解决这个问题,本文借助反向传播神经网络(BPNN)算法建立了电信客户流失预测模型,并在Hadoop平台上部署了MapReduce编程框架。本文利用一家电信公司的数据,分析了大数据环境下电信客户的流失情况。研究表明,BPNN中电信客户流失预测模型的准确率为82.12%,部署了大数据集后,模型的学习和训练时间大大缩短。当节点数为8时,模型的加速比保持在60秒。在大数据下,电信用户分析平台不仅保证了算法的准确性,还解决了单机计算的局限性,有效提高了模型的训练效率。与现有研究相比,该模型的精度提高了25.36%,运行时间缩短了约两倍。这种基于BPNN算法的商业模式在处理更多数据集方面具有明显优势,对电信行业数字化驱动的商业模式转型具有很大参考价值。
{"title":"Prediction and Big Data Impact Analysis of Telecom Churn by Backpropagation Neural Network Algorithm from the Perspective of Business Model.","authors":"Jiabing Xu,&nbsp;Jiarui Liu,&nbsp;Tianen Yao,&nbsp;Yang Li","doi":"10.1089/big.2021.0365","DOIUrl":"10.1089/big.2021.0365","url":null,"abstract":"<p><p>This study aims to transform the existing telecom operators from traditional Internet operators to digital-driven services, and improve the overall competitiveness of telecom enterprises. Data mining is applied to telecom user classification to process the existing telecom user data through data integration, cleaning, standardization, and transformation. Although the existing algorithms ensure the accuracy of the algorithm on the telecom user analysis platform under big data, they do not solve the limitations of single machine computing and cannot effectively improve the training efficiency of the model. To solve this problem, this article establishes a telecom customer churn prediction model with the help of backpropagation neural network (BPNN) algorithm, and deploys the MapReduce programming framework on Hadoop platform. Using the data of a telecom company, this article analyzes the loss of telecom customers in the big data environment. The research shows that the accuracy of telecom customer churn prediction model in BPNN is 82.12%. After deploying large data sets, the learning and training time of the model is greatly shortened. When the number of nodes is 8, the acceleration ratio of the model remains at 60 seconds. Under big data, the telecom user analysis platform not only ensures the accuracy of the algorithm, but also solves the limitations of single machine computing and effectively improves the training efficiency of the model. Compared with that of the existing research, the accuracy of the model is improved by 25.36%, and the running time is shortened by about twice. This business model based on BPNN algorithm has obvious advantages in processing more data sets, and has great reference value for the digital-driven business model transformation of the telecommunications industry.</p>","PeriodicalId":51314,"journal":{"name":"Big Data","volume":" ","pages":"355-368"},"PeriodicalIF":4.6,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10549823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
Big Data
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1