Gerald H Mazurek, John Jereb, Andrew Vernon, Phillip LoBue, Stefan Goldberg, Kenneth Castro
n 2005, CDC published guidelines for using the QuantiFERON-TB Gold test (QFT-G) (Cellestis Limited, Carnegie, Victoria, Australia) (CDC. Guidelines for using the QuantiFERON-TB Gold test for detecting Mycobacterium tuberculosis infection, United States. MMWR;54[No. RR-15]:49-55). Subsequently, two new interferon gamma (IFN- gamma) release assays (IGRAs) were approved by the Food and Drug Administration (FDA) as aids in diagnosing M. tuberculosis infection, both latent infection and infection manifesting as active tuberculosis. These tests are the QuantiFERON-TB Gold In-Tube test (QFT-GIT) (Cellestis Limited, Carnegie, Victoria, Australia) and the T-SPOT.TB test (T-Spot) (Oxford Immunotec Limited, Abingdon, United Kingdom). The antigens, methods, and interpretation criteria for these assays differ from those for IGRAs approved previously by FDA. For assistance in developing recommendations related to IGRA use, CDC convened a group of experts to review the scientific evidence and provide opinions regarding use of IGRAs. Data submitted to FDA, published reports, and expert opinion related to IGRAs were used in preparing these guidelines. Results of studies examining sensitivity, specificity, and agreement for IGRAs and TST vary with respect to which test is better. Although data on the accuracy of IGRAs and their ability to predict subsequent active tuberculosis are limited, to date, no major deficiencies have been reported in studies involving various populations. This report provides guidance to U.S. public health officials, health-care providers, and laboratory workers for use of FDA-approved IGRAs in the diagnosis of M. tuberculosis infection in adults and children. In brief, TSTs and IGRAs (QFT-G, QFT-GIT, and T-Spot) may be used as aids in diagnosing M. tuberculosis infection. They may be used for surveillance purposes and to identify persons likely to benefit from treatment. Multiple additional recommendations are provided that address quality control, test selection, and medical management after testing. Although substantial progress has been made in documenting the utility of IGRAs, additional research is needed that focuses on the value and limitations of IGRAs in situations of importance to medical care or tuberculosis control. Specific areas needing additional research are listed.
{"title":"Updated guidelines for using Interferon Gamma Release Assays to detect Mycobacterium tuberculosis infection - United States, 2010.","authors":"Gerald H Mazurek, John Jereb, Andrew Vernon, Phillip LoBue, Stefan Goldberg, Kenneth Castro","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>n 2005, CDC published guidelines for using the QuantiFERON-TB Gold test (QFT-G) (Cellestis Limited, Carnegie, Victoria, Australia) (CDC. Guidelines for using the QuantiFERON-TB Gold test for detecting Mycobacterium tuberculosis infection, United States. MMWR;54[No. RR-15]:49-55). Subsequently, two new interferon gamma (IFN- gamma) release assays (IGRAs) were approved by the Food and Drug Administration (FDA) as aids in diagnosing M. tuberculosis infection, both latent infection and infection manifesting as active tuberculosis. These tests are the QuantiFERON-TB Gold In-Tube test (QFT-GIT) (Cellestis Limited, Carnegie, Victoria, Australia) and the T-SPOT.TB test (T-Spot) (Oxford Immunotec Limited, Abingdon, United Kingdom). The antigens, methods, and interpretation criteria for these assays differ from those for IGRAs approved previously by FDA. For assistance in developing recommendations related to IGRA use, CDC convened a group of experts to review the scientific evidence and provide opinions regarding use of IGRAs. Data submitted to FDA, published reports, and expert opinion related to IGRAs were used in preparing these guidelines. Results of studies examining sensitivity, specificity, and agreement for IGRAs and TST vary with respect to which test is better. Although data on the accuracy of IGRAs and their ability to predict subsequent active tuberculosis are limited, to date, no major deficiencies have been reported in studies involving various populations. This report provides guidance to U.S. public health officials, health-care providers, and laboratory workers for use of FDA-approved IGRAs in the diagnosis of M. tuberculosis infection in adults and children. In brief, TSTs and IGRAs (QFT-G, QFT-GIT, and T-Spot) may be used as aids in diagnosing M. tuberculosis infection. They may be used for surveillance purposes and to identify persons likely to benefit from treatment. Multiple additional recommendations are provided that address quality control, test selection, and medical management after testing. Although substantial progress has been made in documenting the utility of IGRAs, additional research is needed that focuses on the value and limitations of IGRAs in situations of importance to medical care or tuberculosis control. Specific areas needing additional research are listed.</p>","PeriodicalId":51328,"journal":{"name":"Mmwr Recommendations and Reports","volume":"59 RR-5","pages":"1-25"},"PeriodicalIF":33.7,"publicationDate":"2010-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"29077672","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CDC created U.S. Medical Eligibility Criteria for Contraceptive Use, 2010, from guidance developed by the World Health Organization (WHO) and finalized the recommendations after consultation with a group of health professionals who met in Atlanta, Georgia, during February 2009. This guidance comprises recommendations for the use of specific contraceptive methods by women and men who have certain characteristics or medical conditions. The majority of the U.S. guidance does not differ from the WHO guidance and covers >60 characteristics or medical conditions. However, some WHO recommendations were modified for use in the United States, including recommendations about contraceptive use for women with venous thromboembolism, valvular heart disease, ovarian cancer, and uterine fibroids and for postpartum and breastfeeding women. Recommendations were added to the U.S. guidance for women with rheumatoid arthritis, history of bariatric surgery, peripartum cardiomyopathy, endometrial hyperplasia, inflammatory bowel disease, and solid organ transplantation. The recommendations in this document are intended to assist health-care providers when they counsel women, men, and couples about contraceptive method choice. Although these recommendations are meant to serve as a source of clinical guidance, health-care providers should always consider the individual clinical circumstances of each person seeking family planning services.
{"title":"U S. Medical Eligibility Criteria for Contraceptive Use, 2010.","authors":"","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>CDC created U.S. Medical Eligibility Criteria for Contraceptive Use, 2010, from guidance developed by the World Health Organization (WHO) and finalized the recommendations after consultation with a group of health professionals who met in Atlanta, Georgia, during February 2009. This guidance comprises recommendations for the use of specific contraceptive methods by women and men who have certain characteristics or medical conditions. The majority of the U.S. guidance does not differ from the WHO guidance and covers >60 characteristics or medical conditions. However, some WHO recommendations were modified for use in the United States, including recommendations about contraceptive use for women with venous thromboembolism, valvular heart disease, ovarian cancer, and uterine fibroids and for postpartum and breastfeeding women. Recommendations were added to the U.S. guidance for women with rheumatoid arthritis, history of bariatric surgery, peripartum cardiomyopathy, endometrial hyperplasia, inflammatory bowel disease, and solid organ transplantation. The recommendations in this document are intended to assist health-care providers when they counsel women, men, and couples about contraceptive method choice. Although these recommendations are meant to serve as a source of clinical guidance, health-care providers should always consider the individual clinical circumstances of each person seeking family planning services.</p>","PeriodicalId":51328,"journal":{"name":"Mmwr Recommendations and Reports","volume":"59 RR-4","pages":"1-86"},"PeriodicalIF":33.7,"publicationDate":"2010-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"29064629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mona Marin, Karen R Broder, Jonathan L Temte, Dixie E Snider, Jane F Seward
This report presents new recommendations adopted in June 2009 by CDC's Advisory Committee on Immunization Practices (ACIP) regarding use of the combination measles, mumps, rubella, and varicella vaccine (MMRV, ProQuad, Merck & Co., Inc.). MMRV vaccine was licensed in the United States in September 2005 and may be used instead of measles, mumps, rubella vaccine (MMR, M-M-RII, Merck & Co., Inc.) and varicella vaccine (VARIVAX, Merck & Co., Inc.) to implement the recommended 2-dose vaccine schedule for prevention of measles, mumps, rubella, and varicella among children aged 12 months-12 years. At the time of its licensure, use of MMRV vaccine was preferred for both the first and second doses over separate injections of equivalent component vaccines (MMR vaccine and varicella vaccine), which was consistent with ACIP's 2006 general recommendations on use of combination vaccines (CDC. General recommendations on immunization: recommendations of the Advisory Committee on Immunization Practices [ACIP]. MMWR 2006;55;[No. RR-15]). Since July 2007, supplies of MMRV vaccine have been temporarily unavailable as a result of manufacturing constraints unrelated to efficacy or safety. MMRV vaccine is expected to be available again in the United States in May 2010. In February 2008, on the basis of preliminary data from two studies conducted postlicensure that suggested an increased risk for febrile seizures 5-12 days after vaccination among children aged 12-23 months who had received the first dose of MMRV vaccine compared with children the same age who had received the first dose of MMR vaccine and varicella vaccine administered as separate injections at the same visit, ACIP issued updated recommendations regarding MMRV vaccine use (CDC. Update: recommendations from the Advisory Committee on Immunization Practices [ACIP] regarding administration of combination MMRV vaccine. MMWR 2008;57:258-60). These updated recommendations expressed no preference for use of MMRV vaccine over separate injections of equivalent component vaccines for both the first and second doses. The final results of the two postlicensure studies indicated that among children aged 12--23 months, one additional febrile seizure occurred 5-12 days after vaccination per 2,300-2,600 children who had received the first dose of MMRV vaccine compared with children who had received the first dose of MMR vaccine and varicella vaccine administered as separate injections at the same visit. Data from postlicensure studies do not suggest that children aged 4--6 years who received the second dose of MMRV vaccine had an increased risk for febrile seizures after vaccination compared with children the same age who received MMR vaccine and varicella vaccine administered as separate injections at the same visit. In June 2009, after consideration of the postlicensure data and other evidence, ACIP adopted new recommendations regarding use of MMRV vaccine for the first and second doses and identified a personal
{"title":"Use of combination measles, mumps, rubella, and varicella vaccine: recommendations of the Advisory Committee on Immunization Practices (ACIP).","authors":"Mona Marin, Karen R Broder, Jonathan L Temte, Dixie E Snider, Jane F Seward","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>This report presents new recommendations adopted in June 2009 by CDC's Advisory Committee on Immunization Practices (ACIP) regarding use of the combination measles, mumps, rubella, and varicella vaccine (MMRV, ProQuad, Merck & Co., Inc.). MMRV vaccine was licensed in the United States in September 2005 and may be used instead of measles, mumps, rubella vaccine (MMR, M-M-RII, Merck & Co., Inc.) and varicella vaccine (VARIVAX, Merck & Co., Inc.) to implement the recommended 2-dose vaccine schedule for prevention of measles, mumps, rubella, and varicella among children aged 12 months-12 years. At the time of its licensure, use of MMRV vaccine was preferred for both the first and second doses over separate injections of equivalent component vaccines (MMR vaccine and varicella vaccine), which was consistent with ACIP's 2006 general recommendations on use of combination vaccines (CDC. General recommendations on immunization: recommendations of the Advisory Committee on Immunization Practices [ACIP]. MMWR 2006;55;[No. RR-15]). Since July 2007, supplies of MMRV vaccine have been temporarily unavailable as a result of manufacturing constraints unrelated to efficacy or safety. MMRV vaccine is expected to be available again in the United States in May 2010. In February 2008, on the basis of preliminary data from two studies conducted postlicensure that suggested an increased risk for febrile seizures 5-12 days after vaccination among children aged 12-23 months who had received the first dose of MMRV vaccine compared with children the same age who had received the first dose of MMR vaccine and varicella vaccine administered as separate injections at the same visit, ACIP issued updated recommendations regarding MMRV vaccine use (CDC. Update: recommendations from the Advisory Committee on Immunization Practices [ACIP] regarding administration of combination MMRV vaccine. MMWR 2008;57:258-60). These updated recommendations expressed no preference for use of MMRV vaccine over separate injections of equivalent component vaccines for both the first and second doses. The final results of the two postlicensure studies indicated that among children aged 12--23 months, one additional febrile seizure occurred 5-12 days after vaccination per 2,300-2,600 children who had received the first dose of MMRV vaccine compared with children who had received the first dose of MMR vaccine and varicella vaccine administered as separate injections at the same visit. Data from postlicensure studies do not suggest that children aged 4--6 years who received the second dose of MMRV vaccine had an increased risk for febrile seizures after vaccination compared with children the same age who received MMR vaccine and varicella vaccine administered as separate injections at the same visit. In June 2009, after consideration of the postlicensure data and other evidence, ACIP adopted new recommendations regarding use of MMRV vaccine for the first and second doses and identified a personal","PeriodicalId":51328,"journal":{"name":"Mmwr Recommendations and Reports","volume":"59 RR-3","pages":"1-12"},"PeriodicalIF":33.7,"publicationDate":"2010-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"28970862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Charles E Rupprecht, Deborah Briggs, Catherine M Brown, Richard Franka, Samuel L Katz, Harry D Kerr, Susan M Lett, Robin Levis, Martin I Meltzer, William Schaffner, Paul R Cieslak
This report summarizes new recommendation and updates previous recommendations of the Advisory Committee on Immunization Practices (ACIP) for postexposure prophylaxis (PEP) to prevent human rabies (CDC. Human rabies prevention---United States, 2008: recommendations of the Advisory Committee on Immunization Practices. MMWR 2008;57[No. RR-3]). Previously, ACIP recommended a 5-dose rabies vaccination regimen with human diploid cell vaccine (HDCV) or purified chick embryo cell vaccine (PCECV). These new recommendations reduce the number of vaccine doses to four. The reduction in doses recommended for PEP was based in part on evidence from rabies virus pathogenesis data, experimental animal work, clinical studies, and epidemiologic surveillance. These studies indicated that 4 vaccine doses in combination with rabies immune globulin (RIG) elicited adequate immune responses and that a fifth dose of vaccine did not contribute to more favorable outcomes. For persons previously unvaccinated with rabies vaccine, the reduced regimen of 4 1-mL doses of HDCV or PCECV should be administered intramuscularly. The first dose of the 4-dose course should be administered as soon as possible after exposure (day 0). Additional doses then should be administered on days 3, 7, and 14 after the first vaccination. ACIP recommendations for the use of RIG remain unchanged. For persons who previously received a complete vaccination series (pre- or postexposure prophylaxis) with a cell-culture vaccine or who previously had a documented adequate rabies virus-neutralizing antibody titer following vaccination with noncell-culture vaccine, the recommendation for a 2-dose PEP vaccination series has not changed. Similarly, the number of doses recommended for persons with altered immunocompetence has not changed; for such persons, PEP should continue to comprise a 5-dose vaccination regimen with 1 dose of RIG. Recommendations for pre-exposure prophylaxis also remain unchanged, with 3 doses of vaccine administered on days 0, 7, and 21 or 28. Prompt rabies PEP combining wound care, infiltration of RIG into and around the wound, and multiple doses of rabies cell-culture vaccine continue to be highly effective in preventing human rabies.
{"title":"Use of a reduced (4-dose) vaccine schedule for postexposure prophylaxis to prevent human rabies: recommendations of the advisory committee on immunization practices.","authors":"Charles E Rupprecht, Deborah Briggs, Catherine M Brown, Richard Franka, Samuel L Katz, Harry D Kerr, Susan M Lett, Robin Levis, Martin I Meltzer, William Schaffner, Paul R Cieslak","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>This report summarizes new recommendation and updates previous recommendations of the Advisory Committee on Immunization Practices (ACIP) for postexposure prophylaxis (PEP) to prevent human rabies (CDC. Human rabies prevention---United States, 2008: recommendations of the Advisory Committee on Immunization Practices. MMWR 2008;57[No. RR-3]). Previously, ACIP recommended a 5-dose rabies vaccination regimen with human diploid cell vaccine (HDCV) or purified chick embryo cell vaccine (PCECV). These new recommendations reduce the number of vaccine doses to four. The reduction in doses recommended for PEP was based in part on evidence from rabies virus pathogenesis data, experimental animal work, clinical studies, and epidemiologic surveillance. These studies indicated that 4 vaccine doses in combination with rabies immune globulin (RIG) elicited adequate immune responses and that a fifth dose of vaccine did not contribute to more favorable outcomes. For persons previously unvaccinated with rabies vaccine, the reduced regimen of 4 1-mL doses of HDCV or PCECV should be administered intramuscularly. The first dose of the 4-dose course should be administered as soon as possible after exposure (day 0). Additional doses then should be administered on days 3, 7, and 14 after the first vaccination. ACIP recommendations for the use of RIG remain unchanged. For persons who previously received a complete vaccination series (pre- or postexposure prophylaxis) with a cell-culture vaccine or who previously had a documented adequate rabies virus-neutralizing antibody titer following vaccination with noncell-culture vaccine, the recommendation for a 2-dose PEP vaccination series has not changed. Similarly, the number of doses recommended for persons with altered immunocompetence has not changed; for such persons, PEP should continue to comprise a 5-dose vaccination regimen with 1 dose of RIG. Recommendations for pre-exposure prophylaxis also remain unchanged, with 3 doses of vaccine administered on days 0, 7, and 21 or 28. Prompt rabies PEP combining wound care, infiltration of RIG into and around the wound, and multiple doses of rabies cell-culture vaccine continue to be highly effective in preventing human rabies.</p>","PeriodicalId":51328,"journal":{"name":"Mmwr Recommendations and Reports","volume":"59 RR-2","pages":"1-9"},"PeriodicalIF":33.7,"publicationDate":"2010-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"28843645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marc Fischer, Nicole Lindsey, J Erin Staples, Susan Hills
This report updates the 1993 recommendations by CDC's Advisory Committee on Immunization Practices (ACIP) regarding the prevention of Japanese encephalitis (JE) among travelers (CDC. Inactivated Japanese encephalitis virus vaccine: recommendations of the Advisory Committee on Immunization Practices [ACIP]. MMWR 1993;42[No. RR-1]). This report summarizes the epidemiology of JE, describes the two JE vaccines that are licensed in the United States, and provides recommendations for their use among travelers and laboratory workers. JE virus (JEV), a mosquito-borne flavivirus, is the most common vaccine-preventable cause of encephalitis in Asia. JE occurs throughout most of Asia and parts of the western Pacific. Among an estimated 35,000-50,000 annual cases, 20%-30% of patients die, and 30%-50% of survivors have neurologic or psychiatric sequelae. No treatment exists. For most travelers to Asia, the risk for JE is very low but varies on the basis of destination, duration, season, and activities. JE vaccine is recommended for travelers who plan to spend a month or longer in endemic areas during the JEV transmission season and for laboratory workers with a potential for exposure to infectious JEV. JE vaccine should be considered for 1) short-term (<1 month) travelers to endemic areas during the JEV transmission season if they plan to travel outside of an urban area and will have an increased risk for JEV exposure; 2) travelers to an area with an ongoing JE outbreak; and 3) travelers to endemic areas who are uncertain of specific destinations, activities, or duration of travel. JE vaccine is not recommended for short-term travelers whose visit will be restricted to urban areas or times outside of a well-defined JEV transmission season. Two JE vaccines are licensed in the United States. An inactivated mouse brain--derived JE vaccine (JE-VAX [JE-MB]) has been licensed since 1992 to prevent JE in persons aged >or=1 year traveling to JE-endemic countries. Supplies of this vaccine are limited because production has ceased. In March 2009, an inactivated Vero cell culture-derived vaccine (IXIARO [JE-VC]) was licensed for use in persons aged >or=17 years. JE-MB is the only JE vaccine available for use in children aged 1-16 years, and remaining supplies will be reserved for use in this group.
{"title":"Japanese encephalitis vaccines: recommendations of the Advisory Committee on Immunization Practices (ACIP).","authors":"Marc Fischer, Nicole Lindsey, J Erin Staples, Susan Hills","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>This report updates the 1993 recommendations by CDC's Advisory Committee on Immunization Practices (ACIP) regarding the prevention of Japanese encephalitis (JE) among travelers (CDC. Inactivated Japanese encephalitis virus vaccine: recommendations of the Advisory Committee on Immunization Practices [ACIP]. MMWR 1993;42[No. RR-1]). This report summarizes the epidemiology of JE, describes the two JE vaccines that are licensed in the United States, and provides recommendations for their use among travelers and laboratory workers. JE virus (JEV), a mosquito-borne flavivirus, is the most common vaccine-preventable cause of encephalitis in Asia. JE occurs throughout most of Asia and parts of the western Pacific. Among an estimated 35,000-50,000 annual cases, 20%-30% of patients die, and 30%-50% of survivors have neurologic or psychiatric sequelae. No treatment exists. For most travelers to Asia, the risk for JE is very low but varies on the basis of destination, duration, season, and activities. JE vaccine is recommended for travelers who plan to spend a month or longer in endemic areas during the JEV transmission season and for laboratory workers with a potential for exposure to infectious JEV. JE vaccine should be considered for 1) short-term (<1 month) travelers to endemic areas during the JEV transmission season if they plan to travel outside of an urban area and will have an increased risk for JEV exposure; 2) travelers to an area with an ongoing JE outbreak; and 3) travelers to endemic areas who are uncertain of specific destinations, activities, or duration of travel. JE vaccine is not recommended for short-term travelers whose visit will be restricted to urban areas or times outside of a well-defined JEV transmission season. Two JE vaccines are licensed in the United States. An inactivated mouse brain--derived JE vaccine (JE-VAX [JE-MB]) has been licensed since 1992 to prevent JE in persons aged >or=1 year traveling to JE-endemic countries. Supplies of this vaccine are limited because production has ceased. In March 2009, an inactivated Vero cell culture-derived vaccine (IXIARO [JE-VC]) was licensed for use in persons aged >or=17 years. JE-MB is the only JE vaccine available for use in children aged 1-16 years, and remaining supplies will be reserved for use in this group.</p>","PeriodicalId":51328,"journal":{"name":"Mmwr Recommendations and Reports","volume":"59 RR-1","pages":"1-27"},"PeriodicalIF":33.7,"publicationDate":"2010-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"28771958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
L Hannah Gould, Cheryl Bopp, Nancy Strockbine, Robyn Atkinson, Vickie Baselski, Barbara Body, Roberta Carey, Claudia Crandall, Sharon Hurd, Ray Kaplan, Marguerite Neill, Shari Shea, Patricia Somsel, Melissa Tobin-D'Angelo, Patricia M Griffin, Peter Gerner-Smidt
Shiga toxin--producing Escherichia coli (STEC) are a leading cause of bacterial enteric infections in the United States. Prompt, accurate diagnosis of STEC infection is important because appropriate treatment early in the course of infection might decrease the risk for serious complications such as renal damage and improve overall patient outcome. In addition, prompt laboratory identification of STEC strains is essential for detecting new and emerging serotypes, for effective and timely outbreak responses and control measures, and for monitoring trends in disease epidemiology. Guidelines for laboratory identification of STEC infections by clinical laboratories were published in 2006. This report provides comprehensive and detailed recommendations for STEC testing by clinical laboratories, including the recommendation that all stools submitted for routine testing from patients with acute community-acquired diarrhea (regardless of patient age, season of the year, or presence or absence of blood in the stool) be simultaneously cultured for E. coli O157:H7 (O157 STEC) and tested with an assay that detects Shiga toxins to detect non-O157 STEC. The report also includes detailed procedures for specimen selection, handling, and transport; a review of culture and nonculture tests for STEC detection; and clinical considerations and recommendations for management of patients with STEC infection. Improving the diagnostic accuracy of STEC infection by clinical laboratories should ensure prompt diagnosis and treatment of these infections in patients and increase detection of STEC outbreaks in the community.
{"title":"Recommendations for diagnosis of shiga toxin--producing Escherichia coli infections by clinical laboratories.","authors":"L Hannah Gould, Cheryl Bopp, Nancy Strockbine, Robyn Atkinson, Vickie Baselski, Barbara Body, Roberta Carey, Claudia Crandall, Sharon Hurd, Ray Kaplan, Marguerite Neill, Shari Shea, Patricia Somsel, Melissa Tobin-D'Angelo, Patricia M Griffin, Peter Gerner-Smidt","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Shiga toxin--producing Escherichia coli (STEC) are a leading cause of bacterial enteric infections in the United States. Prompt, accurate diagnosis of STEC infection is important because appropriate treatment early in the course of infection might decrease the risk for serious complications such as renal damage and improve overall patient outcome. In addition, prompt laboratory identification of STEC strains is essential for detecting new and emerging serotypes, for effective and timely outbreak responses and control measures, and for monitoring trends in disease epidemiology. Guidelines for laboratory identification of STEC infections by clinical laboratories were published in 2006. This report provides comprehensive and detailed recommendations for STEC testing by clinical laboratories, including the recommendation that all stools submitted for routine testing from patients with acute community-acquired diarrhea (regardless of patient age, season of the year, or presence or absence of blood in the stool) be simultaneously cultured for E. coli O157:H7 (O157 STEC) and tested with an assay that detects Shiga toxins to detect non-O157 STEC. The report also includes detailed procedures for specimen selection, handling, and transport; a review of culture and nonculture tests for STEC detection; and clinical considerations and recommendations for management of patients with STEC infection. Improving the diagnostic accuracy of STEC infection by clinical laboratories should ensure prompt diagnosis and treatment of these infections in patients and increase detection of STEC outbreaks in the community.</p>","PeriodicalId":51328,"journal":{"name":"Mmwr Recommendations and Reports","volume":"58 RR-12","pages":"1-14"},"PeriodicalIF":33.7,"publicationDate":"2009-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"28441063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lynne M Mofenson, Michael T Brady, Susie P Danner, Kenneth L Dominguez, Rohan Hazra, Edward Handelsman, Peter Havens, Steve Nesheim, Jennifer S Read, Leslie Serchuck, Russell Van Dyke
This report updates and combines into one document earlier versions of guidelines for preventing and treating opportunistic infections (OIs) among HIV-exposed and HIV-infected children, last published in 2002 and 2004, respectively. These guidelines are intended for use by clinicians and other health-care workers providing medical care for HIV-exposed and HIV-infected children in the United States. The guidelines discuss opportunistic pathogens that occur in the United States and one that might be acquired during international travel (i.e., malaria). Topic areas covered for each OI include a brief description of the epidemiology, clinical presentation, and diagnosis of the OI in children; prevention of exposure; prevention of disease by chemoprophylaxis and/or vaccination; discontinuation of primary prophylaxis after immune reconstitution; treatment of disease; monitoring for adverse effects during treatment; management of treatment failure; prevention of disease recurrence; and discontinuation of secondary prophylaxis after immune reconstitution. A separate document about preventing and treating of OIs among HIV-infected adults and postpubertal adolescents (Guidelines for the Prevention and Treatment of Opportunistic Infections in HIV-Infected Adults and Adolescents) was prepared by a working group of adult HIV and infectious disease specialists. The guidelines were developed by a panel of specialists in pediatric HIV infection and infectious diseases (the Pediatric Opportunistic Infections Working Group) from the U.S. government and academic institutions. For each OI, a pediatric specialist with content-matter expertise reviewed the literature for new information since the last guidelines were published; they then proposed revised recommendations at a meeting at the National Institutes of Health (NIH) in June 2007. After these presentations and discussions, the guidelines underwent further revision, with review and approval by the Working Group, and final endorsement by NIH, CDC, the HIV Medicine Association (HIVMA) of the Infectious Diseases Society of America (IDSA), the Pediatric Infectious Disease Society (PIDS), and the American Academy of Pediatrics (AAP). The recommendations are rated by a letter that indicates the strength of the recommendation and a Roman numeral that indicates the quality of the evidence supporting the recommendation so readers can ascertain how best to apply the recommendations in their practice environments. An important mode of acquisition of OIs, as well as HIV infection among children, is from their infected mother; HIV-infected women coinfected with opportunistic pathogens might be more likely than women without HIV infection to transmit these infections to their infants. In addition, HIV-infected women or HIV-infected family members coinfected with certain opportunistic pathogens might be more likely to transmit these infections horizontally to their children, resulting in increased likelihood of primary
本报告更新并合并了之前分别于 2002 年和 2004 年发布的关于预防和治疗受 HIV 感染儿童和受 HIV 感染儿童机会性感染(OIs)的指南。这些指南供在美国为接触 HIV 和感染 HIV 的儿童提供医疗服务的临床医生和其他医护人员使用。指南讨论了在美国出现的机会性病原体以及在国际旅行中可能感染的病原体(如疟疾)。每种机会性感染所涉及的主题领域包括:儿童机会性感染的流行病学、临床表现和诊断简述;预防接触;通过化学预防和/或疫苗接种预防疾病;免疫重建后停止一级预防;疾病治疗;治疗期间不良反应监测;治疗失败管理;疾病复发预防;以及免疫重建后停止二级预防。由成人艾滋病和传染病专家组成的工作组编写了一份关于预防和治疗成人艾滋病病毒感染者和青春期后青少年机会性感染的单独文件(《成人艾滋病病毒感染者和青少年机会性感染预防和治疗指南》)。该指南由来自美国政府和学术机构的儿科 HIV 感染和传染病专家小组(儿科机会性感染工作组)制定。针对每种机会性感染,一位在内容方面具有专长的儿科专家对文献进行了审查,以了解自上次指南发布以来的新信息;然后,他们于 2007 年 6 月在美国国立卫生研究院(NIH)召开的一次会议上提出了修订建议。在这些发言和讨论之后,指南又经过了进一步的修订,并由工作组审查和批准,最后由 NIH、CDC、美国传染病学会 (IDSA) 的 HIV 医学协会 (HIVMA)、儿科传染病学会 (PIDS) 和美国儿科学会 (AAP) 认可。建议以字母表示建议的力度,以罗马数字表示支持建议的证据的质量,以便读者确定如何在其实践环境中最好地应用这些建议。OIs以及儿童HIV感染的一个重要获得方式是从其受感染的母亲处获得;与未感染HIV的妇女相比,合并感染机会性病原体的HIV感染妇女可能更有可能将这些感染传染给其婴儿。此外,感染艾滋病病毒的妇女或感染艾滋病病毒的家庭成员如果同时感染了某些机会性病原体,可能更有可能将这些感染水平传播给他们的孩子,从而增加幼儿初次感染这些病原体的可能性。因此,机会性病原体感染不仅可能影响感染艾滋病毒的婴儿,也可能影响接触过艾滋病毒但未感染的婴儿,这些婴儿是由于感染艾滋病毒的母亲或合并感染的家庭成员的传播而感染病原体的。因此,这些治疗儿童 OI 的指南考虑了对所有儿童的感染治疗,包括感染 HIV 和未感染 HIV 的妇女所生的孩子。此外,围产期感染艾滋病病毒的青少年和行为感染艾滋病病毒的青少年越来越多。尽管针对青春期后青少年的指南可在成人 OI 指南中找到,但对于青春期前或青春期后的青少年,药物的药代动力学和对治疗的反应可能有所不同。因此,这些指南也适用于尚未完成青春期发育的 HIV 感染青少年的治疗。
{"title":"Guidelines for the Prevention and Treatment of Opportunistic Infections among HIV-exposed and HIV-infected children: recommendations from CDC, the National Institutes of Health, the HIV Medicine Association of the Infectious Diseases Society of America, the Pediatric Infectious Diseases Society, and the American Academy of Pediatrics.","authors":"Lynne M Mofenson, Michael T Brady, Susie P Danner, Kenneth L Dominguez, Rohan Hazra, Edward Handelsman, Peter Havens, Steve Nesheim, Jennifer S Read, Leslie Serchuck, Russell Van Dyke","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>This report updates and combines into one document earlier versions of guidelines for preventing and treating opportunistic infections (OIs) among HIV-exposed and HIV-infected children, last published in 2002 and 2004, respectively. These guidelines are intended for use by clinicians and other health-care workers providing medical care for HIV-exposed and HIV-infected children in the United States. The guidelines discuss opportunistic pathogens that occur in the United States and one that might be acquired during international travel (i.e., malaria). Topic areas covered for each OI include a brief description of the epidemiology, clinical presentation, and diagnosis of the OI in children; prevention of exposure; prevention of disease by chemoprophylaxis and/or vaccination; discontinuation of primary prophylaxis after immune reconstitution; treatment of disease; monitoring for adverse effects during treatment; management of treatment failure; prevention of disease recurrence; and discontinuation of secondary prophylaxis after immune reconstitution. A separate document about preventing and treating of OIs among HIV-infected adults and postpubertal adolescents (Guidelines for the Prevention and Treatment of Opportunistic Infections in HIV-Infected Adults and Adolescents) was prepared by a working group of adult HIV and infectious disease specialists. The guidelines were developed by a panel of specialists in pediatric HIV infection and infectious diseases (the Pediatric Opportunistic Infections Working Group) from the U.S. government and academic institutions. For each OI, a pediatric specialist with content-matter expertise reviewed the literature for new information since the last guidelines were published; they then proposed revised recommendations at a meeting at the National Institutes of Health (NIH) in June 2007. After these presentations and discussions, the guidelines underwent further revision, with review and approval by the Working Group, and final endorsement by NIH, CDC, the HIV Medicine Association (HIVMA) of the Infectious Diseases Society of America (IDSA), the Pediatric Infectious Disease Society (PIDS), and the American Academy of Pediatrics (AAP). The recommendations are rated by a letter that indicates the strength of the recommendation and a Roman numeral that indicates the quality of the evidence supporting the recommendation so readers can ascertain how best to apply the recommendations in their practice environments. An important mode of acquisition of OIs, as well as HIV infection among children, is from their infected mother; HIV-infected women coinfected with opportunistic pathogens might be more likely than women without HIV infection to transmit these infections to their infants. In addition, HIV-infected women or HIV-infected family members coinfected with certain opportunistic pathogens might be more likely to transmit these infections horizontally to their children, resulting in increased likelihood of primary ","PeriodicalId":51328,"journal":{"name":"Mmwr Recommendations and Reports","volume":"58 RR-11","pages":"1-166"},"PeriodicalIF":33.7,"publicationDate":"2009-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2821196/pdf/nihms171151.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"28458184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This report provides recommendations by CDC's Advisory Committee on Immunization Practices (ACIP) regarding the use of vaccine against infection with novel influenza A (H1N1) virus. Information on vaccination for seasonal influenza has been published previously (CDC. Prevention and control of seasonal influenza with vaccines: recommendations of the Advisory Committee on Immunization Practices [ACIP], 2009. MMWR 2009;58[No. RR-8]). Vaccines against novel influenza A (H1N1) virus infection have not yet been licensed; however, licensed vaccine is expected to be available by mid-October 2009. On July 29, 2009, ACIP reviewed epidemiologic and clinical data to determine which population groups should be targeted initially for vaccination. ACIP also considered the projected vaccine supply likely to be available when vaccine is first available and the expected increase in vaccine availability during the following 6 months. These recommendations are intended to provide vaccination programs and providers with information to assist in planning and to alert providers and the public about target groups comprising an estimated 159 million persons who are recommended to be first to receive influenza A (H1N1) 2009 monovalent vaccine. The guiding principle of these recommendations is to vaccinate as many persons as possible as quickly as possible. Vaccination efforts should begin as soon as vaccine is available. State and local health officials and vaccination providers should make decisions about vaccine administration and distribution in accordance with state and local conditions. Highlights of these recommendations include 1) the identification of five initial target groups for vaccination efforts (pregnant women, persons who live with or provide care for infants aged <6 months, health-care and emergency medical services personnel, children and young adults aged 6 months-24 years, and persons aged 25-64 years who have medical conditions that put them at higher risk for influenza-related complications), 2) establishment of priority for a subset of persons within the initial target groups in the event that initial vaccine availability is unable to meet demand, and 3) guidance on use of vaccine in other adult population groups as vaccine availability increases. Vaccination and health-care providers should be alert to announcements and additional information from state and local health departments and CDC concerning vaccination against novel influenza A (H1N1) virus infection. Additional information is available from state and local health departments and from CDC's influenza website (http://www.cdc.gov/flu).
{"title":"Use of influenza A (H1N1) 2009 monovalent vaccine: recommendations of the Advisory Committee on Immunization Practices (ACIP), 2009.","authors":"","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>This report provides recommendations by CDC's Advisory Committee on Immunization Practices (ACIP) regarding the use of vaccine against infection with novel influenza A (H1N1) virus. Information on vaccination for seasonal influenza has been published previously (CDC. Prevention and control of seasonal influenza with vaccines: recommendations of the Advisory Committee on Immunization Practices [ACIP], 2009. MMWR 2009;58[No. RR-8]). Vaccines against novel influenza A (H1N1) virus infection have not yet been licensed; however, licensed vaccine is expected to be available by mid-October 2009. On July 29, 2009, ACIP reviewed epidemiologic and clinical data to determine which population groups should be targeted initially for vaccination. ACIP also considered the projected vaccine supply likely to be available when vaccine is first available and the expected increase in vaccine availability during the following 6 months. These recommendations are intended to provide vaccination programs and providers with information to assist in planning and to alert providers and the public about target groups comprising an estimated 159 million persons who are recommended to be first to receive influenza A (H1N1) 2009 monovalent vaccine. The guiding principle of these recommendations is to vaccinate as many persons as possible as quickly as possible. Vaccination efforts should begin as soon as vaccine is available. State and local health officials and vaccination providers should make decisions about vaccine administration and distribution in accordance with state and local conditions. Highlights of these recommendations include 1) the identification of five initial target groups for vaccination efforts (pregnant women, persons who live with or provide care for infants aged <6 months, health-care and emergency medical services personnel, children and young adults aged 6 months-24 years, and persons aged 25-64 years who have medical conditions that put them at higher risk for influenza-related complications), 2) establishment of priority for a subset of persons within the initial target groups in the event that initial vaccine availability is unable to meet demand, and 3) guidance on use of vaccine in other adult population groups as vaccine availability increases. Vaccination and health-care providers should be alert to announcements and additional information from state and local health departments and CDC concerning vaccination against novel influenza A (H1N1) virus infection. Additional information is available from state and local health departments and from CDC's influenza website (http://www.cdc.gov/flu).</p>","PeriodicalId":51328,"journal":{"name":"Mmwr Recommendations and Reports","volume":"58 RR-10","pages":"1-8"},"PeriodicalIF":33.7,"publicationDate":"2009-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"28368829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lead is a potent, pervasive neurotoxicant, and elevated blood lead levels (EBLLs) can result in decreased IQ, academic failure, and behavioral problems in children. Eliminating EBLLs among children is one of the 2010 U.S. national health objectives. Data from the National Health and Nutrition Examination Survey (NHANES) indicate substantial decreases both in the percentage of persons in the United States with EBLLs and in mean BLLs among all age and ethnic groups, including children aged 1--5 years. Historically, children in low-income families served by public assistance programs have been considered to be at greater risk for EBLLs than other children. However, evidence indicates that children in low-income families are experiencing decreases in BLLs, suggesting that the EBLL disparity between Medicaid-eligible children and non--Medicaid-eligible children is diminishing. In response to these findings, the CDC Advisory Committee on Childhood Lead Poisoning Prevention is updating recommendations for blood lead screening among children eligible for Medicaid by providing recommendations for improving BLL screening and information for health-care providers, state officials, and others interested in lead-related services for Medicaid-eligible children. Because state and local officials are more familiar than federal agencies with local risk for EBLLs, CDC recommends that these officials have the flexibility to develop blood lead screening strategies that reflect local risk for EBLLs. Rather than provide universal screening to all Medicaid children, which was previously recommended, state and local officials should target screening toward specific groups of children in their area at higher risk for EBLLs. This report presents the updated CDC recommendations and provides strategies to 1) improve screening rates of children at risk for EBLLs, 2) develop surveillance strategies that are not solely dependent on BLL testing, and 3) assist states with evaluation of screening plans.
{"title":"Recommendations for blood lead screening of Medicaid-eligible children aged 1-5 years: an updated approach to targeting a group at high risk.","authors":"Anne M Wengrovitz, Mary J Brown","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Lead is a potent, pervasive neurotoxicant, and elevated blood lead levels (EBLLs) can result in decreased IQ, academic failure, and behavioral problems in children. Eliminating EBLLs among children is one of the 2010 U.S. national health objectives. Data from the National Health and Nutrition Examination Survey (NHANES) indicate substantial decreases both in the percentage of persons in the United States with EBLLs and in mean BLLs among all age and ethnic groups, including children aged 1--5 years. Historically, children in low-income families served by public assistance programs have been considered to be at greater risk for EBLLs than other children. However, evidence indicates that children in low-income families are experiencing decreases in BLLs, suggesting that the EBLL disparity between Medicaid-eligible children and non--Medicaid-eligible children is diminishing. In response to these findings, the CDC Advisory Committee on Childhood Lead Poisoning Prevention is updating recommendations for blood lead screening among children eligible for Medicaid by providing recommendations for improving BLL screening and information for health-care providers, state officials, and others interested in lead-related services for Medicaid-eligible children. Because state and local officials are more familiar than federal agencies with local risk for EBLLs, CDC recommends that these officials have the flexibility to develop blood lead screening strategies that reflect local risk for EBLLs. Rather than provide universal screening to all Medicaid children, which was previously recommended, state and local officials should target screening toward specific groups of children in their area at higher risk for EBLLs. This report presents the updated CDC recommendations and provides strategies to 1) improve screening rates of children at risk for EBLLs, 2) develop surveillance strategies that are not solely dependent on BLL testing, and 3) assist states with evaluation of screening plans.</p>","PeriodicalId":51328,"journal":{"name":"Mmwr Recommendations and Reports","volume":"58 RR-9","pages":"1-11"},"PeriodicalIF":33.7,"publicationDate":"2009-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40018562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anthony E Fiore, David K Shay, Karen Broder, John K Iskander, Timothy M Uyeki, Gina Mootrey, Joseph S Bresee, Nancy J Cox
This report updates the 2008 recommendations by CDC's Advisory Committee on Immunization Practices (ACIP) regarding the use of influenza vaccine for the prevention and control of seasonal influenza (CDC. Prevention and control of influenza: recommendations of the Advisory Committee on Immunization Practices [ACIP]. MMWR 2008;57[No. RR-7]). Information on vaccination issues related to the recently identified novel influenza A H1N1 virus will be published later in 2009. The 2009 seasonal influenza recommendations include new and updated information. Highlights of the 2009 recommendations include 1) a recommendation that annual vaccination be administered to all children aged 6 months-18 years for the 2009-10 influenza season; 2) a recommendation that vaccines containing the 2009-10 trivalent vaccine virus strains A/Brisbane/59/2007 (H1N1)-like, A/Brisbane/10/2007 (H3N2)-like, and B/Brisbane/60/2008-like antigens be used; and 3) a notice that recommendations for influenza diagnosis and antiviral use will be published before the start of the 2009-10 influenza season. Vaccination efforts should begin as soon as vaccine is available and continue through the influenza season. Approximately 83% of the United States population is specifically recommended for annual vaccination against seasonal influenza; however, <40% of the U.S. population received the 2008-09 influenza vaccine. These recommendations also include a summary of safety data for U.S. licensed influenza vaccines. These recommendations and other information are available at CDC's influenza website (http://www.cdc.gov/flu); any updates or supplements that might be required during the 2009-10 influenza season also can be found at this website. Vaccination and health-care providers should be alert to announcements of recommendation updates and should check the CDC influenza website periodically for additional information.
{"title":"Prevention and control of seasonal influenza with vaccines: recommendations of the Advisory Committee on Immunization Practices (ACIP), 2009.","authors":"Anthony E Fiore, David K Shay, Karen Broder, John K Iskander, Timothy M Uyeki, Gina Mootrey, Joseph S Bresee, Nancy J Cox","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>This report updates the 2008 recommendations by CDC's Advisory Committee on Immunization Practices (ACIP) regarding the use of influenza vaccine for the prevention and control of seasonal influenza (CDC. Prevention and control of influenza: recommendations of the Advisory Committee on Immunization Practices [ACIP]. MMWR 2008;57[No. RR-7]). Information on vaccination issues related to the recently identified novel influenza A H1N1 virus will be published later in 2009. The 2009 seasonal influenza recommendations include new and updated information. Highlights of the 2009 recommendations include 1) a recommendation that annual vaccination be administered to all children aged 6 months-18 years for the 2009-10 influenza season; 2) a recommendation that vaccines containing the 2009-10 trivalent vaccine virus strains A/Brisbane/59/2007 (H1N1)-like, A/Brisbane/10/2007 (H3N2)-like, and B/Brisbane/60/2008-like antigens be used; and 3) a notice that recommendations for influenza diagnosis and antiviral use will be published before the start of the 2009-10 influenza season. Vaccination efforts should begin as soon as vaccine is available and continue through the influenza season. Approximately 83% of the United States population is specifically recommended for annual vaccination against seasonal influenza; however, <40% of the U.S. population received the 2008-09 influenza vaccine. These recommendations also include a summary of safety data for U.S. licensed influenza vaccines. These recommendations and other information are available at CDC's influenza website (http://www.cdc.gov/flu); any updates or supplements that might be required during the 2009-10 influenza season also can be found at this website. Vaccination and health-care providers should be alert to announcements of recommendation updates and should check the CDC influenza website periodically for additional information.</p>","PeriodicalId":51328,"journal":{"name":"Mmwr Recommendations and Reports","volume":"58 RR-8","pages":"1-52"},"PeriodicalIF":33.7,"publicationDate":"2009-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40001053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}