Multidrug-resistant tuberculosis (MDR TB) is caused by Mycobacterium tuberculosis that is resistant to at least isoniazid and rifampin, the two most effective of the four first-line TB drugs (the other two drugs being ethambutol and pyrazinamide). MDR TB includes the subcategory of extensively drug-resistant TB (XDR TB), which is MDR TB with additional resistance to any fluoroquinolone and to at least one of three injectable anti-TB drugs (i.e., kanamycin, capreomycin, or amikacin). MDR TB is difficult to cure, requiring 18-24 months of treatment after sputum culture conversion with a regimen that consists of four to six medications with toxic side effects, and carries a mortality risk greater than that of drug-susceptible TB. Bedaquiline fumarate (Sirturo or bedaquiline) is an oral diarylquinoline. On December 28, 2012, on the basis of data from two Phase IIb trials (i.e., well-controlled trials to evaluate the efficacy and safety of drugs in patients with a disease or condition to be treated, diagnosed, or prevented), the Food and Drug Administration (FDA) approved use of bedaquiline under the provisions of the accelerated approval regulations for "serious or life-threatening illnesses" (21CFR314.500) (Cox EM. FDA accelerated approval letter to Janssen Research and Development. Available at http://www.accessdata.fda.gov/drugsatfda_docs/appletter/2012/204384Orig1s000ltr.pdf). This report provides provisional CDC guidelines for FDA-approved and unapproved, or off-label, uses of bedaquiline in certain populations, such as children, pregnant women, or persons with extrapulmonary MDR TB who were not included in the clinical trials for the drug. CDC's Division of TB Elimination developed these guidelines on the basis of expert opinion informed by data from systematic reviews and literature searches. This approach is different from the statutory standards that FDA uses when approving drugs and drug labeling. These guidelines are intended for health-care professionals who might use bedaquiline for the treatment of MDR TB for indicated and off-label uses. Aspects of these guidelines are not identical to current FDA-approved labeling for bedaquiline. Bedaquiline should be used with clinical expert consultation as part of combination therapy (minimum four-drug treatment regimen) and administered by direct observation to adults aged ≥18 years with a diagnosis of pulmonary MDR TB (Food and Drug Administration. SIRTURO [bedaquiline] tablets label. Available at http://www.accessdata.fda.gov/drugsatfda_docs/label/2012/204384s000lbl.pdf). Use of the drug also can be considered for individual patients in other categories (e.g., persons with extrapulmonary TB, children, pregnant women, or persons with HIV or other comorbid conditions) when treatment options are limited. However, further study is required before routine use of bedaquiline can be recommended in these populations. A registry for persons treated with bedaquiline is being implemented by Janssen
{"title":"Provisional CDC guidelines for the use and safety monitoring of bedaquiline fumarate (Sirturo) for the treatment of multidrug-resistant tuberculosis.","authors":"","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Multidrug-resistant tuberculosis (MDR TB) is caused by Mycobacterium tuberculosis that is resistant to at least isoniazid and rifampin, the two most effective of the four first-line TB drugs (the other two drugs being ethambutol and pyrazinamide). MDR TB includes the subcategory of extensively drug-resistant TB (XDR TB), which is MDR TB with additional resistance to any fluoroquinolone and to at least one of three injectable anti-TB drugs (i.e., kanamycin, capreomycin, or amikacin). MDR TB is difficult to cure, requiring 18-24 months of treatment after sputum culture conversion with a regimen that consists of four to six medications with toxic side effects, and carries a mortality risk greater than that of drug-susceptible TB. Bedaquiline fumarate (Sirturo or bedaquiline) is an oral diarylquinoline. On December 28, 2012, on the basis of data from two Phase IIb trials (i.e., well-controlled trials to evaluate the efficacy and safety of drugs in patients with a disease or condition to be treated, diagnosed, or prevented), the Food and Drug Administration (FDA) approved use of bedaquiline under the provisions of the accelerated approval regulations for \"serious or life-threatening illnesses\" (21CFR314.500) (Cox EM. FDA accelerated approval letter to Janssen Research and Development. Available at http://www.accessdata.fda.gov/drugsatfda_docs/appletter/2012/204384Orig1s000ltr.pdf). This report provides provisional CDC guidelines for FDA-approved and unapproved, or off-label, uses of bedaquiline in certain populations, such as children, pregnant women, or persons with extrapulmonary MDR TB who were not included in the clinical trials for the drug. CDC's Division of TB Elimination developed these guidelines on the basis of expert opinion informed by data from systematic reviews and literature searches. This approach is different from the statutory standards that FDA uses when approving drugs and drug labeling. These guidelines are intended for health-care professionals who might use bedaquiline for the treatment of MDR TB for indicated and off-label uses. Aspects of these guidelines are not identical to current FDA-approved labeling for bedaquiline. Bedaquiline should be used with clinical expert consultation as part of combination therapy (minimum four-drug treatment regimen) and administered by direct observation to adults aged ≥18 years with a diagnosis of pulmonary MDR TB (Food and Drug Administration. SIRTURO [bedaquiline] tablets label. Available at http://www.accessdata.fda.gov/drugsatfda_docs/label/2012/204384s000lbl.pdf). Use of the drug also can be considered for individual patients in other categories (e.g., persons with extrapulmonary TB, children, pregnant women, or persons with HIV or other comorbid conditions) when treatment options are limited. However, further study is required before routine use of bedaquiline can be recommended in these populations. A registry for persons treated with bedaquiline is being implemented by Janssen ","PeriodicalId":51328,"journal":{"name":"Mmwr Recommendations and Reports","volume":"62 RR-09","pages":"1-12"},"PeriodicalIF":33.7,"publicationDate":"2013-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40263708","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This report augments guidelines published in 1990 for investigating clusters of health events (CDC. Guidelines for investigating clusters of health events. MMWR 1990;39[No. RR-11]). The 1990 Guidelines considered any noninfectious disease cluster, injuries, birth defects, and previously unrecognized syndromes or illnesses. These new guidelines focus on cancer clusters. State and local health departments can use these guidelines to develop a systematic approach to responding to community concerns regarding cancer clusters. The guidelines are intended to apply to situations in which a health department responds to an inquiry about a suspected cancer cluster in a residential or community setting only. Occupational or medical treatment-related clusters are not included in this report. Since 1990, many improvements have occurred in data resources, investigative techniques, and analytic/statistical methods, and much has been learned from both large- and small-scale cancer cluster investigations. These improvements and lessons have informed these updated guidelines. These guidelines utilize a four-step approach (initial response, assessment, major feasibility study, and etiologic investigation) as a tool for managing a reported cluster. Even if a cancer cluster is identified, there is no guarantee that a common cause or an environmental contaminant will be implicated. Identification of a common cause or an implicated contaminant might be an expected outcome for the concerned community. Therefore, during all parts of an inquiry, responders should be transparent, communicate clearly, and explain their decisions to the community.
{"title":"Investigating suspected cancer clusters and responding to community concerns: guidelines from CDC and the Council of State and Territorial Epidemiologists.","authors":"","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>This report augments guidelines published in 1990 for investigating clusters of health events (CDC. Guidelines for investigating clusters of health events. MMWR 1990;39[No. RR-11]). The 1990 Guidelines considered any noninfectious disease cluster, injuries, birth defects, and previously unrecognized syndromes or illnesses. These new guidelines focus on cancer clusters. State and local health departments can use these guidelines to develop a systematic approach to responding to community concerns regarding cancer clusters. The guidelines are intended to apply to situations in which a health department responds to an inquiry about a suspected cancer cluster in a residential or community setting only. Occupational or medical treatment-related clusters are not included in this report. Since 1990, many improvements have occurred in data resources, investigative techniques, and analytic/statistical methods, and much has been learned from both large- and small-scale cancer cluster investigations. These improvements and lessons have informed these updated guidelines. These guidelines utilize a four-step approach (initial response, assessment, major feasibility study, and etiologic investigation) as a tool for managing a reported cluster. Even if a cancer cluster is identified, there is no guarantee that a common cause or an environmental contaminant will be implicated. Identification of a common cause or an implicated contaminant might be an expected outcome for the concerned community. Therefore, during all parts of an inquiry, responders should be transparent, communicate clearly, and explain their decisions to the community.</p>","PeriodicalId":51328,"journal":{"name":"Mmwr Recommendations and Reports","volume":"62 RR-08","pages":"1-24"},"PeriodicalIF":33.7,"publicationDate":"2013-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31759771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This report updates the 2012 recommendations by CDC's Advisory Committee on Immunization Practices (ACIP) regarding the use of influenza vaccines for the prevention and control of seasonal influenza (CDC. Prevention and control of influenza with vaccines: recommendations of the Advisory Committee on Immunization Practices [ACIP]. MMWR 2012;61:613-8). Routine annual influenza vaccination is recommended for all persons aged ≥ 6 months. For the 2013-14 influenza season, it is expected that trivalent live attenuated influenza vaccine (LAIV3) will be replaced by a quadrivalent LAIV formulation (LAIV4). Inactivated influenza vaccines (IIVs) will be available in both trivalent (IIV3) and quadrivalent (IIV4) formulations. Vaccine virus strains included in the 2013-14 U.S. trivalent influenza vaccines will be an A/California/7/2009 (H1N1)-like virus, an H3N2 virus antigenically like the cell-propagated prototype virus A/Victoria/361/2011, and a B/Massachusetts/2/2012-like virus. Quadrivalent vaccines will include an additional influenza B virus strain, a B/Brisbane/60/2008-like virus, intended to ensure that both influenza B virus antigenic lineages (Victoria and Yamagata) are included in the vaccine. This report describes recently approved vaccines, including LAIV4, IIV4, trivalent cell culture-based inactivated influenza vaccine (ccIIV3), and trivalent recombinant influenza vaccine (RIV3). No preferential recommendation is made for one influenza vaccine product over another for persons for whom more than one product is otherwise appropriate. This information is intended for vaccination providers, immunization program personnel, and public health personnel. These recommendations and other information are available at CDC's influenza website (http://www.cdc.gov/flu); any updates also will be found at this website. Vaccination and health-care providers should check the CDC influenza website periodically for additional information.
{"title":"Prevention and control of seasonal influenza with vaccines. Recommendations of the Advisory Committee on Immunization Practices--United States, 2013-2014.","authors":"","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>This report updates the 2012 recommendations by CDC's Advisory Committee on Immunization Practices (ACIP) regarding the use of influenza vaccines for the prevention and control of seasonal influenza (CDC. Prevention and control of influenza with vaccines: recommendations of the Advisory Committee on Immunization Practices [ACIP]. MMWR 2012;61:613-8). Routine annual influenza vaccination is recommended for all persons aged ≥ 6 months. For the 2013-14 influenza season, it is expected that trivalent live attenuated influenza vaccine (LAIV3) will be replaced by a quadrivalent LAIV formulation (LAIV4). Inactivated influenza vaccines (IIVs) will be available in both trivalent (IIV3) and quadrivalent (IIV4) formulations. Vaccine virus strains included in the 2013-14 U.S. trivalent influenza vaccines will be an A/California/7/2009 (H1N1)-like virus, an H3N2 virus antigenically like the cell-propagated prototype virus A/Victoria/361/2011, and a B/Massachusetts/2/2012-like virus. Quadrivalent vaccines will include an additional influenza B virus strain, a B/Brisbane/60/2008-like virus, intended to ensure that both influenza B virus antigenic lineages (Victoria and Yamagata) are included in the vaccine. This report describes recently approved vaccines, including LAIV4, IIV4, trivalent cell culture-based inactivated influenza vaccine (ccIIV3), and trivalent recombinant influenza vaccine (RIV3). No preferential recommendation is made for one influenza vaccine product over another for persons for whom more than one product is otherwise appropriate. This information is intended for vaccination providers, immunization program personnel, and public health personnel. These recommendations and other information are available at CDC's influenza website (http://www.cdc.gov/flu); any updates also will be found at this website. Vaccination and health-care providers should check the CDC influenza website periodically for additional information.</p>","PeriodicalId":51328,"journal":{"name":"Mmwr Recommendations and Reports","volume":"62 RR-07","pages":"1-43"},"PeriodicalIF":33.7,"publicationDate":"2013-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31742681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The CDC and National Institutes of Health (NIH) Biosafety in Microbiological and Biomedical Laboratories (BMBL) manual describes biosafety recommendations for work involving highly pathogenic avian influenza (HPAI) (US Department of Health and Human Services [HHS], CDC. Biosafety in microbiological and biomedical laboratories, 5th ed. Atlanta, GA: CDC; 2009. HHS publication no. [CDC] 21-1112. Available at http://www.cdc.gov/biosafety/publications/bmbl5). The U.S. Department of Agriculture Guidelines for Avian Influenza Viruses builds on the BMBL manual and provides additional biosafety and biocontainment guidelines for laboratories working with HPAI (US Department of Agriculture, Animal and Plant Health Inspection Service, Agricultural Select Agent Program. Guidelines for avian influenza viruses. Washington, DC: US Department of Agriculture; 2011. Available at http://www.selectagents.gov/Guidelines_for_Avian_Influenza_Viruses.html). The recommendations in this report, which are intended for laboratories in the United States, outline the essential baseline biosafety measures for working with the subset of influenza viruses that contain a hemagglutinin (HA) from the HPAI influenza A/goose/Guangdong/1/96 lineage, including reassortant influenza viruses created in a laboratory setting. All H5N1 influenza virus clades known to infect humans to date have been derived from this lineage (WHO/OIE/FAO H5N1 Evolution Working Group. Continued evolution of highly pathogenic avian influenza A [H5N1]: updated nomenclature. Influenza Other Respir Viruses 2012;6:1-5). In 2009, the NIH Guidelines for Research Involving Recombinant or Synthetic Nucleic Acid Molecules were amended to include specific biosafety and biocontainment recommendations for laboratories working with Recombinant Risk Group 3 influenza viruses, including HPAI H5N1 influenza viruses within the Goose/Guangdong/1/96-like H5 lineage. In February 2013, the NIH guidelines were further revised to provide additional biosafety containment enhancements and practices for research with HPAI H5N1 viruses that are transmissible among mammals by respiratory droplets (i.e., mammalian-transmissible HPAI H5N1) (National Institutes of Health, Office of Biotechnology Activities. NIH guidelines for research involving recombinant or synthetic nucleic acid molecules. Appendix G-II-C-5: biosafety level 3 enhanced for research involving risk group 3 influenza viruses. Bethesda, MD: National Institutes of Health; 2013. Available at http://oba.od.nih.gov/rdna/nih_guidelines_oba.html). The recent revisions to the NIH guidelines focus on a smaller subset of viruses but are applicable and consistent with the recommendations in this report. The biosafety recommendations in this report were developed by CDC with advice from the Intragovernmental Select Agents and Toxins Technical Advisory Committee, which is a panel composed of federal government subject-matter experts, and from public input received in response to the
{"title":"Biosafety Recommendations for Work with Influenza Viruses Containing a Hemagglutinin from the A/goose/Guangdong/1/96 Lineage.","authors":"Denise Gangadharan, Jacinta Smith, Robbin Weyant","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>The CDC and National Institutes of Health (NIH) Biosafety in Microbiological and Biomedical Laboratories (BMBL) manual describes biosafety recommendations for work involving highly pathogenic avian influenza (HPAI) (US Department of Health and Human Services [HHS], CDC. Biosafety in microbiological and biomedical laboratories, 5th ed. Atlanta, GA: CDC; 2009. HHS publication no. [CDC] 21-1112. Available at http://www.cdc.gov/biosafety/publications/bmbl5). The U.S. Department of Agriculture Guidelines for Avian Influenza Viruses builds on the BMBL manual and provides additional biosafety and biocontainment guidelines for laboratories working with HPAI (US Department of Agriculture, Animal and Plant Health Inspection Service, Agricultural Select Agent Program. Guidelines for avian influenza viruses. Washington, DC: US Department of Agriculture; 2011. Available at http://www.selectagents.gov/Guidelines_for_Avian_Influenza_Viruses.html). The recommendations in this report, which are intended for laboratories in the United States, outline the essential baseline biosafety measures for working with the subset of influenza viruses that contain a hemagglutinin (HA) from the HPAI influenza A/goose/Guangdong/1/96 lineage, including reassortant influenza viruses created in a laboratory setting. All H5N1 influenza virus clades known to infect humans to date have been derived from this lineage (WHO/OIE/FAO H5N1 Evolution Working Group. Continued evolution of highly pathogenic avian influenza A [H5N1]: updated nomenclature. Influenza Other Respir Viruses 2012;6:1-5). In 2009, the NIH Guidelines for Research Involving Recombinant or Synthetic Nucleic Acid Molecules were amended to include specific biosafety and biocontainment recommendations for laboratories working with Recombinant Risk Group 3 influenza viruses, including HPAI H5N1 influenza viruses within the Goose/Guangdong/1/96-like H5 lineage. In February 2013, the NIH guidelines were further revised to provide additional biosafety containment enhancements and practices for research with HPAI H5N1 viruses that are transmissible among mammals by respiratory droplets (i.e., mammalian-transmissible HPAI H5N1) (National Institutes of Health, Office of Biotechnology Activities. NIH guidelines for research involving recombinant or synthetic nucleic acid molecules. Appendix G-II-C-5: biosafety level 3 enhanced for research involving risk group 3 influenza viruses. Bethesda, MD: National Institutes of Health; 2013. Available at http://oba.od.nih.gov/rdna/nih_guidelines_oba.html). The recent revisions to the NIH guidelines focus on a smaller subset of viruses but are applicable and consistent with the recommendations in this report. The biosafety recommendations in this report were developed by CDC with advice from the Intragovernmental Select Agents and Toxins Technical Advisory Committee, which is a panel composed of federal government subject-matter experts, and from public input received in response to the","PeriodicalId":51328,"journal":{"name":"Mmwr Recommendations and Reports","volume":"62 RR-06","pages":"1-7"},"PeriodicalIF":33.7,"publicationDate":"2013-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31536701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The U. S. Selected Practice Recommendations for Contraceptive Use 2013 (U.S. SPR), comprises recommendations that address a select group of common, yet sometimes controversial or complex, issues regarding initiation and use of specific contraceptive methods. These recommendations are a companion document to the previously published CDC recommendations U.S. Medical Eligibility Criteria for Contraceptive Use, 2010 (U.S. MEC). U.S. MEC describes who can use various methods of contraception, whereas this report describes how contraceptive methods can be used. CDC based these U.S. SPR guidelines on the global family planning guidance provided by the World Health Organization (WHO). Although many of the recommendations are the same as those provided by WHO, they have been adapted to be more specific to U.S. practices or have been modified because of new evidence. In addition, four new topics are addressed, including the effectiveness of female sterilization, extended use of combined hormonal methods and bleeding problems, starting regular contraception after use of emergency contraception, and determining when contraception is no longer needed. The recommendations in this report are intended to serve as a source of clinical guidance for health-care providers; health-care providers should always consider the individual clinical circumstances of each person seeking family planning services. This report is not intended to be a substitute for professional medical advice for individual patients. Persons should seek advice from their health-care providers when considering family planning options.
{"title":"U.S. Selected Practice Recommendations for Contraceptive Use, 2013: adapted from the World Health Organization selected practice recommendations for contraceptive use, 2nd edition.","authors":"","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>The U. S. Selected Practice Recommendations for Contraceptive Use 2013 (U.S. SPR), comprises recommendations that address a select group of common, yet sometimes controversial or complex, issues regarding initiation and use of specific contraceptive methods. These recommendations are a companion document to the previously published CDC recommendations U.S. Medical Eligibility Criteria for Contraceptive Use, 2010 (U.S. MEC). U.S. MEC describes who can use various methods of contraception, whereas this report describes how contraceptive methods can be used. CDC based these U.S. SPR guidelines on the global family planning guidance provided by the World Health Organization (WHO). Although many of the recommendations are the same as those provided by WHO, they have been adapted to be more specific to U.S. practices or have been modified because of new evidence. In addition, four new topics are addressed, including the effectiveness of female sterilization, extended use of combined hormonal methods and bleeding problems, starting regular contraception after use of emergency contraception, and determining when contraception is no longer needed. The recommendations in this report are intended to serve as a source of clinical guidance for health-care providers; health-care providers should always consider the individual clinical circumstances of each person seeking family planning services. This report is not intended to be a substitute for professional medical advice for individual patients. Persons should seek advice from their health-care providers when considering family planning options.</p>","PeriodicalId":51328,"journal":{"name":"Mmwr Recommendations and Reports","volume":"62 RR-05","pages":"1-60"},"PeriodicalIF":33.7,"publicationDate":"2013-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31520105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Huong Q McLean, Amy Parker Fiebelkorn, Jonathan L Temte, Gregory S Wallace
This report is a compendium of all current recommendations for the prevention of measles, rubella, congenital rubella syndrome (CRS), and mumps. The report presents the recent revisions adopted by the Advisory Committee on Immunization Practices (ACIP) on October 24, 2012, and also summarizes all existing ACIP recommendations that have been published previously during 1998-2011 (CDC. Measles, mumps, and rubella--vaccine use and strategies for elimination of measles, rubella, and congenital rubella syndrome and control of mumps: recommendations of the Advisory Committee on Immunization Practices [ACIP]. MMWR 1998;47[No. RR-8]; CDC. Revised ACIP recommendation for avoiding pregnancy after receiving a rubellacontaining vaccine. MMWR 2001;50:1117; CDC. Updated recommendations of the Advisory Committee on Immunization Practices [ACIP] for the control and elimination of mumps. MMWR 2006;55:629-30; and, CDC. Immunization of healthcare personnel: recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR 2011;60[No. RR-7]). Currently, ACIP recommends 2 doses of MMR vaccine routinely for children with the first dose administered at age 12 through 15 months and the second dose administered at age 4 through 6 years before school entry. Two doses are recommended for adults at high risk for exposure and transmission (e.g., students attending colleges or other post-high school educational institutions, healthcare personnel, and international travelers) and 1 dose for other adults aged ≥18 years. For prevention of rubella, 1 dose of MMR vaccine is recommended for persons aged ≥12 months. At the October 24, 2012 meeting, ACIP adopted the following revisions, which are published here for the first time. These included: • For acceptable evidence of immunity, removing documentation of physician diagnosed disease as an acceptable criterion for evidence of immunity for measles and mumps, and including laboratory confirmation of disease as a criterion for acceptable evidence of immunity for measles, rubella, and mumps. • For persons with human immunodeficiency virus (HIV) infection, expanding recommendations for vaccination to all persons aged ≥12 months with HIV infection who do not have evidence of current severe immunosuppression; recommending revaccination of persons with perinatal HIV infection who were vaccinated before establishment of effective antiretroviral therapy (ART) with 2 appropriately spaced doses of MMR vaccine once effective ART has been established; and changing the recommended timing of the 2 doses of MMR vaccine for HIV-infected persons to age 12 through 15 months and 4 through 6 years. • For measles postexposure prophylaxis, expanding recommendations for use of immune globulin administered intramuscularly (IGIM) to include infants aged birth to 6 months exposed to measles; increasing the recommended dose of IGIM for immunocompetent persons; and recommending use of immune globulin administered intravenously (IGIV) for
{"title":"Prevention of measles, rubella, congenital rubella syndrome, and mumps, 2013: summary recommendations of the Advisory Committee on Immunization Practices (ACIP).","authors":"Huong Q McLean, Amy Parker Fiebelkorn, Jonathan L Temte, Gregory S Wallace","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>This report is a compendium of all current recommendations for the prevention of measles, rubella, congenital rubella syndrome (CRS), and mumps. The report presents the recent revisions adopted by the Advisory Committee on Immunization Practices (ACIP) on October 24, 2012, and also summarizes all existing ACIP recommendations that have been published previously during 1998-2011 (CDC. Measles, mumps, and rubella--vaccine use and strategies for elimination of measles, rubella, and congenital rubella syndrome and control of mumps: recommendations of the Advisory Committee on Immunization Practices [ACIP]. MMWR 1998;47[No. RR-8]; CDC. Revised ACIP recommendation for avoiding pregnancy after receiving a rubellacontaining vaccine. MMWR 2001;50:1117; CDC. Updated recommendations of the Advisory Committee on Immunization Practices [ACIP] for the control and elimination of mumps. MMWR 2006;55:629-30; and, CDC. Immunization of healthcare personnel: recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR 2011;60[No. RR-7]). Currently, ACIP recommends 2 doses of MMR vaccine routinely for children with the first dose administered at age 12 through 15 months and the second dose administered at age 4 through 6 years before school entry. Two doses are recommended for adults at high risk for exposure and transmission (e.g., students attending colleges or other post-high school educational institutions, healthcare personnel, and international travelers) and 1 dose for other adults aged ≥18 years. For prevention of rubella, 1 dose of MMR vaccine is recommended for persons aged ≥12 months. At the October 24, 2012 meeting, ACIP adopted the following revisions, which are published here for the first time. These included: • For acceptable evidence of immunity, removing documentation of physician diagnosed disease as an acceptable criterion for evidence of immunity for measles and mumps, and including laboratory confirmation of disease as a criterion for acceptable evidence of immunity for measles, rubella, and mumps. • For persons with human immunodeficiency virus (HIV) infection, expanding recommendations for vaccination to all persons aged ≥12 months with HIV infection who do not have evidence of current severe immunosuppression; recommending revaccination of persons with perinatal HIV infection who were vaccinated before establishment of effective antiretroviral therapy (ART) with 2 appropriately spaced doses of MMR vaccine once effective ART has been established; and changing the recommended timing of the 2 doses of MMR vaccine for HIV-infected persons to age 12 through 15 months and 4 through 6 years. • For measles postexposure prophylaxis, expanding recommendations for use of immune globulin administered intramuscularly (IGIM) to include infants aged birth to 6 months exposed to measles; increasing the recommended dose of IGIM for immunocompetent persons; and recommending use of immune globulin administered intravenously (IGIV) for ","PeriodicalId":51328,"journal":{"name":"Mmwr Recommendations and Reports","volume":"62 RR-04","pages":"1-34"},"PeriodicalIF":33.7,"publicationDate":"2013-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31501529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2013-05-28DOI: 10.1093/OBO/9780199756797-0076
D. Sleet, D. Viano, A. Dellinger
{"title":"Motor vehicle injury prevention.","authors":"D. Sleet, D. Viano, A. Dellinger","doi":"10.1093/OBO/9780199756797-0076","DOIUrl":"https://doi.org/10.1093/OBO/9780199756797-0076","url":null,"abstract":"","PeriodicalId":51328,"journal":{"name":"Mmwr Recommendations and Reports","volume":"70 2","pages":"1-4"},"PeriodicalIF":33.7,"publicationDate":"2013-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72455860","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alicia Anderson, Henk Bijlmer, Pierre-Edouard Fournier, Stephen Graves, Joshua Hartzell, Gilbert J Kersh, Gijs Limonard, Thomas J Marrie, Robert F Massung, Jennifer H McQuiston, William L Nicholson, Christopher D Paddock, Daniel J Sexton
Q fever, a zoonotic disease caused by the bacterium Coxiella burnetii, can cause acute or chronic illness in humans. Transmission occurs primarily through inhalation of aerosols from contaminated soil or animal waste. No licensed vaccine is available in the United States. Because many human infections result in nonspecific or benign constitutional symptoms, establishing a diagnosis of Q fever often is challenging for clinicians. This report provides the first national recommendations issued by CDC for Q fever recognition, clinical and laboratory diagnosis, treatment, management, and reporting for health-care personnel and public health professionals. The guidelines address treatment of acute and chronic phases of Q fever illness in children, adults, and pregnant women, as well as management of occupational exposures. These recommendations will be reviewed approximately every 5 years and updated to include new published evidence.
{"title":"Diagnosis and management of Q fever--United States, 2013: recommendations from CDC and the Q Fever Working Group.","authors":"Alicia Anderson, Henk Bijlmer, Pierre-Edouard Fournier, Stephen Graves, Joshua Hartzell, Gilbert J Kersh, Gijs Limonard, Thomas J Marrie, Robert F Massung, Jennifer H McQuiston, William L Nicholson, Christopher D Paddock, Daniel J Sexton","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Q fever, a zoonotic disease caused by the bacterium Coxiella burnetii, can cause acute or chronic illness in humans. Transmission occurs primarily through inhalation of aerosols from contaminated soil or animal waste. No licensed vaccine is available in the United States. Because many human infections result in nonspecific or benign constitutional symptoms, establishing a diagnosis of Q fever often is challenging for clinicians. This report provides the first national recommendations issued by CDC for Q fever recognition, clinical and laboratory diagnosis, treatment, management, and reporting for health-care personnel and public health professionals. The guidelines address treatment of acute and chronic phases of Q fever illness in children, adults, and pregnant women, as well as management of occupational exposures. These recommendations will be reviewed approximately every 5 years and updated to include new published evidence.</p>","PeriodicalId":51328,"journal":{"name":"Mmwr Recommendations and Reports","volume":"62 RR-03","pages":"1-30"},"PeriodicalIF":33.7,"publicationDate":"2013-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40230715","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Amanda C Cohn, Jessica R MacNeil, Thomas A Clark, Ismael R Ortega-Sanchez, Elizabeth Z Briere, H Cody Meissner, Carol J Baker, Nancy E Messonnier
Meningococcal disease describes the spectrum of infections caused by Neisseria meningiditis, including meningitdis, bacteremia, and bacteremic pneumonia. Two quadrivalent meningococcal polysaccharide-protein conjugate vaccines that provide protection against meningococcal serogroups A, C, W, and Y (MenACWY-D [Menactra, manufactured by Sanofi Pasteur, Inc., Swiftwater, Pennsylvania] and MenACWY-CRM [Menveo, manufactured by Novartis Vaccines, Cambridge, Massachusetts]) are licensed in the United States for use among persons aged 2 through 55 years. MenACWY-D also is licensed for use among infants and toddlers aged 9 through 23 months. Quadrivalent meningococcal polysaccharide vaccine (MPSV4 [Menommune, manufactured by sanofi pasteur, Inc., Swiftwater, Pennsylvania]) is the only vaccine licensed for use among persons aged ≥56 years. A bivalent meningococcal polysaccharide protein conjugate vaccine that provides protection against meningococcal serogroups C and Y along with Haemophilus influenzae type b (Hib) (Hib-MenCY-TT [MenHibrix, manufactured by GlaxoSmithKline Biologicals, Rixensart, Belgium]) is licensed for use in children aged 6 weeks through 18 months. This report compiles and summarizes all recommendations from CDC's Advisory Committee on Immunization Practices (ACIP) regarding prevention and control of meningococcal disease in the United States, specifically the changes in the recommendations published since 2005 (CDC. Prevention and control of meningococcal disease: recommendations of the Advisory Committee on Immunization Practices [ACIP]. MMWR 2005;54 [No. RR-7]). As a comprehensive summary of previously published recommendations, this report does not contain any new recommendations; it is intended for use by clinicians as a resource. ACIP recommends routine vaccination with a quadrivalent meningococcal conjugate vaccine (MenACWY) for adolescents aged 11 or 12 years, with a booster dose at age 16 years. ACIP also recommends routine vaccination for persons at increased risk for meningococcal disease (i.e., persons who have persistent complement component deficiencies, persons who have anatomic or functional asplenia, microbiologists who routinely are exposed to isolates of N. meningitidis, military recruits, and persons who travel to or reside in areas in which meningococcal disease is hyperendemic or epidemic). Guidelines for antimicrobial chemoprophylaxis and for evaluation and management of suspected outbreaks of meningococcal disease also are provided.
{"title":"Prevention and control of meningococcal disease: recommendations of the Advisory Committee on Immunization Practices (ACIP).","authors":"Amanda C Cohn, Jessica R MacNeil, Thomas A Clark, Ismael R Ortega-Sanchez, Elizabeth Z Briere, H Cody Meissner, Carol J Baker, Nancy E Messonnier","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Meningococcal disease describes the spectrum of infections caused by Neisseria meningiditis, including meningitdis, bacteremia, and bacteremic pneumonia. Two quadrivalent meningococcal polysaccharide-protein conjugate vaccines that provide protection against meningococcal serogroups A, C, W, and Y (MenACWY-D [Menactra, manufactured by Sanofi Pasteur, Inc., Swiftwater, Pennsylvania] and MenACWY-CRM [Menveo, manufactured by Novartis Vaccines, Cambridge, Massachusetts]) are licensed in the United States for use among persons aged 2 through 55 years. MenACWY-D also is licensed for use among infants and toddlers aged 9 through 23 months. Quadrivalent meningococcal polysaccharide vaccine (MPSV4 [Menommune, manufactured by sanofi pasteur, Inc., Swiftwater, Pennsylvania]) is the only vaccine licensed for use among persons aged ≥56 years. A bivalent meningococcal polysaccharide protein conjugate vaccine that provides protection against meningococcal serogroups C and Y along with Haemophilus influenzae type b (Hib) (Hib-MenCY-TT [MenHibrix, manufactured by GlaxoSmithKline Biologicals, Rixensart, Belgium]) is licensed for use in children aged 6 weeks through 18 months. This report compiles and summarizes all recommendations from CDC's Advisory Committee on Immunization Practices (ACIP) regarding prevention and control of meningococcal disease in the United States, specifically the changes in the recommendations published since 2005 (CDC. Prevention and control of meningococcal disease: recommendations of the Advisory Committee on Immunization Practices [ACIP]. MMWR 2005;54 [No. RR-7]). As a comprehensive summary of previously published recommendations, this report does not contain any new recommendations; it is intended for use by clinicians as a resource. ACIP recommends routine vaccination with a quadrivalent meningococcal conjugate vaccine (MenACWY) for adolescents aged 11 or 12 years, with a booster dose at age 16 years. ACIP also recommends routine vaccination for persons at increased risk for meningococcal disease (i.e., persons who have persistent complement component deficiencies, persons who have anatomic or functional asplenia, microbiologists who routinely are exposed to isolates of N. meningitidis, military recruits, and persons who travel to or reside in areas in which meningococcal disease is hyperendemic or epidemic). Guidelines for antimicrobial chemoprophylaxis and for evaluation and management of suspected outbreaks of meningococcal disease also are provided.</p>","PeriodicalId":51328,"journal":{"name":"Mmwr Recommendations and Reports","volume":"62 RR-2","pages":"1-28"},"PeriodicalIF":33.7,"publicationDate":"2013-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31324305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nancy D Brener, Laura Kann, Shari Shanklin, Steve Kinchen, Danice K Eaton, Joseph Hawkins, Katherine H Flint
Priority health-risk behaviors (i.e., interrelated and preventable behaviors that contribute to the leading causes of morbidity and mortality among youths and adults) often are established during childhood and adolescence and extend into adulthood. The Youth Risk Behavior Surveillance System (YRBSS), established in 1991, monitors six categories of priority health-risk behaviors among youths and young adults: 1) behaviors that contribute to unintentional injuries and violence; 2) sexual behaviors that contribute to human immunodeficiency virus (HIV) infection, other sexually transmitted diseases, and unintended pregnancy; 3) tobacco use; 4) alcohol and other drug use; 5) unhealthy dietary behaviors; and 6) physical inactivity. In addition, YRBSS monitors the prevalence of obesity and asthma among this population. YRBSS data are obtained from multiple sources including a national school-based survey conducted by CDC as well as schoolbased state, territorial, tribal, and large urban school district surveys conducted by education and health agencies. These surveys have been conducted biennially since 1991 and include representative samples of students in grades 9-12. In 2004, a description of the YRBSS methodology was published (CDC. Methodology of the Youth Risk Behavior Surveillance System. MMWR 2004;53 [No RR-12]). Since 2004, improvements have been made to YRBSS, including increases in coverage and expanded technical assistance.This report describes these changes and updates earlier descriptions of the system, including questionnaire content; operational procedures; sampling, weighting, and response rates; data-collection protocols; data-processing procedures; reports and publications; and data quality. This report also includes results of methods studies that systematically examined how different survey procedures affect prevalence estimates. YRBSS continues to evolve to meet the needs of CDC and other data users through the ongoing revision of the questionnaire, the addition of new populations, and the development of innovative methods for data collection.
{"title":"Methodology of the Youth Risk Behavior Surveillance System--2013.","authors":"Nancy D Brener, Laura Kann, Shari Shanklin, Steve Kinchen, Danice K Eaton, Joseph Hawkins, Katherine H Flint","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Priority health-risk behaviors (i.e., interrelated and preventable behaviors that contribute to the leading causes of morbidity and mortality among youths and adults) often are established during childhood and adolescence and extend into adulthood. The Youth Risk Behavior Surveillance System (YRBSS), established in 1991, monitors six categories of priority health-risk behaviors among youths and young adults: 1) behaviors that contribute to unintentional injuries and violence; 2) sexual behaviors that contribute to human immunodeficiency virus (HIV) infection, other sexually transmitted diseases, and unintended pregnancy; 3) tobacco use; 4) alcohol and other drug use; 5) unhealthy dietary behaviors; and 6) physical inactivity. In addition, YRBSS monitors the prevalence of obesity and asthma among this population. YRBSS data are obtained from multiple sources including a national school-based survey conducted by CDC as well as schoolbased state, territorial, tribal, and large urban school district surveys conducted by education and health agencies. These surveys have been conducted biennially since 1991 and include representative samples of students in grades 9-12. In 2004, a description of the YRBSS methodology was published (CDC. Methodology of the Youth Risk Behavior Surveillance System. MMWR 2004;53 [No RR-12]). Since 2004, improvements have been made to YRBSS, including increases in coverage and expanded technical assistance.This report describes these changes and updates earlier descriptions of the system, including questionnaire content; operational procedures; sampling, weighting, and response rates; data-collection protocols; data-processing procedures; reports and publications; and data quality. This report also includes results of methods studies that systematically examined how different survey procedures affect prevalence estimates. YRBSS continues to evolve to meet the needs of CDC and other data users through the ongoing revision of the questionnaire, the addition of new populations, and the development of innovative methods for data collection.</p>","PeriodicalId":51328,"journal":{"name":"Mmwr Recommendations and Reports","volume":"62 RR-1","pages":"1-20"},"PeriodicalIF":33.7,"publicationDate":"2013-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31270077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}