Pub Date : 2022-01-24DOI: 10.1007/s10506-021-09307-2
Holger Andreas, Matthias Armgardt, Mario Gunther
We define a formal semantics of conditionals based on normatively ideal worlds. Such worlds are described informally by Armgardt (Gabbay D, Magnani L, Park W, Pietarinen A-V (eds) Natural arguments: a tribute to john woods, College Publications, London, pp 699–708, 2018) to address well-known problems of the counterfactual approach to causation. Drawing on Armgardt’s proposal, we use iterated conditionals in order to analyse causal relations in scenarios of multi-agent interaction. This results in a refined counterfactual approach to causal responsibility in legal contexts, which solves overdetermination problems in an intuitively accessible manner.
{"title":"Counterfactuals for causal responsibility in legal contexts","authors":"Holger Andreas, Matthias Armgardt, Mario Gunther","doi":"10.1007/s10506-021-09307-2","DOIUrl":"10.1007/s10506-021-09307-2","url":null,"abstract":"<div><p>We define a formal semantics of conditionals based on <i>normatively ideal worlds</i>. Such worlds are described informally by Armgardt (Gabbay D, Magnani L, Park W, Pietarinen A-V (eds) Natural arguments: a tribute to john woods, College Publications, London, pp 699–708, 2018) to address well-known problems of the counterfactual approach to causation. Drawing on Armgardt’s proposal, we use iterated conditionals in order to analyse causal relations in scenarios of multi-agent interaction. This results in a refined counterfactual approach to causal responsibility in legal contexts, which solves overdetermination problems in an intuitively accessible manner.</p></div>","PeriodicalId":51336,"journal":{"name":"Artificial Intelligence and Law","volume":"31 1","pages":"115 - 132"},"PeriodicalIF":4.1,"publicationDate":"2022-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43965410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-24DOI: 10.1007/s10506-021-09298-0
Scott McLachlan, Evangelia Kyrimi, Kudakwashe Dube, Norman Fenton, Lisa C. Webley
Modelling that exploits visual elements and information visualisation are important areas that have contributed immensely to understanding and the computerisation advancements in many domains and yet remain unexplored for the benefit of the law and legal practice. This paper investigates the challenge of modelling and expressing structures and processes in legislation and the law by using visual modelling and information visualisation (InfoVis) to assist accessibility of legal knowledge, practice and knowledge formalisation as a basis for legal AI. The paper uses a subset of the well-defined Unified Modelling Language (UML) to visually express the structure and process of the legislation and the law to create visual flow diagrams called lawmaps, which form the basis of further formalisation. A lawmap development methodology is presented and evaluated by creating a set of lawmaps for the practice of conveyancing and the Landlords and Tenants Act 1954 of the United Kingdom. This paper is the first of a new breed of preliminary solutions capable of application across all aspects, from legislation to practice; and capable of accelerating development of legal AI.
{"title":"Lawmaps: enabling legal AI development through visualisation of the implicit structure of legislation and lawyerly process","authors":"Scott McLachlan, Evangelia Kyrimi, Kudakwashe Dube, Norman Fenton, Lisa C. Webley","doi":"10.1007/s10506-021-09298-0","DOIUrl":"10.1007/s10506-021-09298-0","url":null,"abstract":"<div><p>Modelling that exploits visual elements and information visualisation are important areas that have contributed immensely to understanding and the computerisation advancements in many domains and yet remain unexplored for the benefit of the law and legal practice. This paper investigates the challenge of modelling and expressing structures and processes in legislation and the law by using visual modelling and information visualisation (InfoVis) to assist accessibility of legal knowledge, practice and knowledge formalisation as a basis for legal AI. The paper uses a subset of the well-defined Unified Modelling Language (UML) to visually express the structure and process of the legislation and the law to create visual flow diagrams called lawmaps, which form the basis of further formalisation. A lawmap development methodology is presented and evaluated by creating a set of lawmaps for the practice of conveyancing and the Landlords and Tenants Act 1954 of the United Kingdom. This paper is the first of a new breed of preliminary solutions capable of application across all aspects, from legislation to practice; and capable of accelerating development of legal AI.</p></div>","PeriodicalId":51336,"journal":{"name":"Artificial Intelligence and Law","volume":"31 1","pages":"169 - 194"},"PeriodicalIF":4.1,"publicationDate":"2022-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10506-021-09298-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42020567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-15DOI: 10.1007/s10506-022-09308-9
Paulo Henrique Padovan, Clarice Marinho Martins, Chris Reed
Autonomous artificial intelligence (AI) systems can lead to unpredictable behavior causing loss or damage to individuals. Intricate questions must be resolved to establish how courts determine liability. Until recently, understanding the inner workings of “black boxes” has been exceedingly difficult; however, the use of Explainable Artificial Intelligence (XAI) would help simplify the complex problems that can occur with autonomous AI systems. In this context, this article seeks to provide technical explanations that can be given by XAI, and to show how suitable explanations for liability can be reached in court. It provides an analysis of whether existing liability frameworks, in both civil and common law tort systems, with the support of XAI, can address legal concerns related to AI. Lastly, it claims their further development and adoption should allow AI liability cases to be decided under current legal and regulatory rules until new liability regimes for AI are enacted.
{"title":"Black is the new orange: how to determine AI liability","authors":"Paulo Henrique Padovan, Clarice Marinho Martins, Chris Reed","doi":"10.1007/s10506-022-09308-9","DOIUrl":"10.1007/s10506-022-09308-9","url":null,"abstract":"<div><p>Autonomous artificial intelligence (AI) systems can lead to unpredictable behavior causing loss or damage to individuals. Intricate questions must be resolved to establish how courts determine liability. Until recently, understanding the inner workings of “black boxes” has been exceedingly difficult; however, the use of Explainable Artificial Intelligence (XAI) would help simplify the complex problems that can occur with autonomous AI systems. In this context, this article seeks to provide technical explanations that can be given by XAI, and to show how suitable explanations for liability can be reached in court. It provides an analysis of whether existing liability frameworks, in both civil and common law tort systems, with the support of XAI, can address legal concerns related to AI. Lastly, it claims their further development and adoption should allow AI liability cases to be decided under current legal and regulatory rules until new liability regimes for AI are enacted.</p></div>","PeriodicalId":51336,"journal":{"name":"Artificial Intelligence and Law","volume":"31 1","pages":"133 - 167"},"PeriodicalIF":4.1,"publicationDate":"2022-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45838237","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-11-27DOI: 10.1007/s10506-021-09305-4
Diego de Vargas Feijo, Viviane P. Moreira
The standard approach for abstractive text summarization is to use an encoder-decoder architecture. The encoder is responsible for capturing the general meaning from the source text, and the decoder is in charge of generating the final text summary. While this approach can compose summaries that resemble human writing, some may contain unrelated or unfaithful information. This problem is called “hallucination” and it represents a serious issue in legal texts as legal practitioners rely on these summaries when looking for precedents, used to support legal arguments. Another concern is that legal documents tend to be very long and may not be fed entirely to the encoder. We propose our method called LegalSumm for addressing these issues by creating different “views” over the source text, training summarization models to generate independent versions of summaries, and applying entailment module to judge how faithful these candidate summaries are with respect to the source text. We show that the proposed approach can select candidate summaries that improve ROUGE scores in all metrics evaluated.
{"title":"Improving abstractive summarization of legal rulings through textual entailment","authors":"Diego de Vargas Feijo, Viviane P. Moreira","doi":"10.1007/s10506-021-09305-4","DOIUrl":"10.1007/s10506-021-09305-4","url":null,"abstract":"<div><p>The standard approach for abstractive text summarization is to use an encoder-decoder architecture. The encoder is responsible for capturing the general meaning from the source text, and the decoder is in charge of generating the final text summary. While this approach can compose summaries that resemble human writing, some may contain unrelated or unfaithful information. This problem is called “hallucination” and it represents a serious issue in legal texts as legal practitioners rely on these summaries when looking for precedents, used to support legal arguments. Another concern is that legal documents tend to be very long and may not be fed entirely to the encoder. We propose our method called LegalSumm for addressing these issues by creating different “views” over the source text, training summarization models to generate independent versions of summaries, and applying entailment module to judge how faithful these candidate summaries are with respect to the source text. We show that the proposed approach can select candidate summaries that improve ROUGE scores in all metrics evaluated.</p></div>","PeriodicalId":51336,"journal":{"name":"Artificial Intelligence and Law","volume":"31 1","pages":"91 - 113"},"PeriodicalIF":4.1,"publicationDate":"2021-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47866335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-11-13DOI: 10.1007/s10506-021-09304-5
Paheli Bhattacharya, Shounak Paul, Kripabandhu Ghosh, Saptarshi Ghosh, Adam Wyner
The task of rhetorical role labeling is to assign labels (such as Fact, Argument, Final Judgement, etc.) to sentences of a court case document. Rhetorical role labeling is an important problem in the field of Legal Analytics, since it can aid in various downstream tasks as well as enhances the readability of lengthy case documents. The task is challenging as case documents are highly various in structure and the rhetorical labels are often subjective. Previous works for automatic rhetorical role identification (i) mainly used Conditional Random Fields over manually handcrafted features, and (ii) focused on certain law domains only (e.g., Immigration cases, Rent law), and a particular jurisdiction/country (e.g., US, Canada, India). In this work, we improve upon the prior works on rhetorical role identification by proposing novel Deep Learning models for automatically identifying rhetorical roles, which substantially outperform the prior methods. Additionally, we show the effectiveness of the proposed models over documents from five different law domains, and from two different jurisdictions—the Supreme Court of India and the Supreme Court of the UK. Through extensive experiments over different variations of the Deep Learning models, including Transformer models based on BERT and LegalBERT, we show the robustness of the methods for the task. We also perform an extensive inter-annotator study and analyse the agreement of the predictions of the proposed model with the annotations by domain experts. We find that some rhetorical labels are inherently hard/subjective and both law experts and neural models frequently get confused in predicting them correctly.
{"title":"DeepRhole: deep learning for rhetorical role labeling of sentences in legal case documents","authors":"Paheli Bhattacharya, Shounak Paul, Kripabandhu Ghosh, Saptarshi Ghosh, Adam Wyner","doi":"10.1007/s10506-021-09304-5","DOIUrl":"10.1007/s10506-021-09304-5","url":null,"abstract":"<div><p>The task of rhetorical role labeling is to assign labels (such as Fact, Argument, Final Judgement, etc.) to sentences of a court case document. Rhetorical role labeling is an important problem in the field of Legal Analytics, since it can aid in various downstream tasks as well as enhances the readability of lengthy case documents. The task is challenging as case documents are highly various in structure and the rhetorical labels are often subjective. Previous works for automatic rhetorical role identification (i) mainly used Conditional Random Fields over manually handcrafted features, and (ii) focused on certain law domains only (e.g., Immigration cases, Rent law), and a particular jurisdiction/country (e.g., US, Canada, India). In this work, we improve upon the prior works on rhetorical role identification by proposing novel Deep Learning models for automatically identifying rhetorical roles, which substantially outperform the prior methods. Additionally, we show the effectiveness of the proposed models over documents from five different law domains, and from two different jurisdictions—the Supreme Court of India and the Supreme Court of the UK. Through extensive experiments over different variations of the Deep Learning models, including Transformer models based on BERT and LegalBERT, we show the robustness of the methods for the task. We also perform an extensive inter-annotator study and analyse the agreement of the predictions of the proposed model with the annotations by domain experts. We find that some rhetorical labels are inherently hard/subjective and both law experts and neural models frequently get confused in predicting them correctly.</p></div>","PeriodicalId":51336,"journal":{"name":"Artificial Intelligence and Law","volume":"31 1","pages":"53 - 90"},"PeriodicalIF":4.1,"publicationDate":"2021-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44962668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper investigates pricing in laboratory markets when human players interact with an algorithm. We compare the degree of competition when exclusively humans interact to the case of one firm delegating its decisions to an algorithm. We further vary whether participants know about the presence of the algorithm. When one of three firms in a market is an algorithm, we observe significantly higher prices compared to humanonly markets. Firms employing an algorithm earn significantly less profit than their rivals. For four-firm markets, we find no significant differences. (Un)certainty about the actual presence of an algorithm does not significantly affect collusion, although humans seem to perceive algorithms as more disruptive.
{"title":"Human-Algorithm Interaction: Algorithmic Pricing in Hybrid Laboratory Markets","authors":"Hans-Theo Normann, Martin Sternberg","doi":"10.2139/ssrn.3840789","DOIUrl":"https://doi.org/10.2139/ssrn.3840789","url":null,"abstract":"This paper investigates pricing in laboratory markets when human players interact with an algorithm. We compare the degree of competition when exclusively humans interact to the case of one firm delegating its decisions to an algorithm. We further vary whether participants know about the presence of the algorithm. When one of three firms in a market is an algorithm, we observe significantly higher prices compared to humanonly markets. Firms employing an algorithm earn significantly less profit than their rivals. For four-firm markets, we find no significant differences. (Un)certainty about the actual presence of an algorithm does not significantly affect collusion, although humans seem to perceive algorithms as more disruptive.","PeriodicalId":51336,"journal":{"name":"Artificial Intelligence and Law","volume":"67 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2021-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78899557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-10-23DOI: 10.1007/s10506-021-09303-6
Amelia V. Taylor, Eva Mfutso-Bengo
Legal professionals in Malawi rely on a limited number of textbooks, outdated law reports and inadequate library services. Most documents available are in image form, are un-structured, i.e. contain no useful legal meta-data, summaries, keynotes, and do not support a system of citation that is essential to legal research. While advances in document processing and machine learning have benefited many fields, legal research is still only marginally affected. In this interdisciplinary research, the authors build semi-automatic tools for creating a corpus of Malawi criminal law decisions annotated with legal meta-data, case and law citations. We used this corpus to extract legal meta-data, including law and case citations as used in Malawi by employing machine learning tools, spaCy and Gensim LDA. We set the foundation for a new methodology for classifying Malawi criminal case law according to the recently introduced International Classification of Crime for Statistical Purposes (ICCS).
{"title":"Towards a machine understanding of Malawi legal text","authors":"Amelia V. Taylor, Eva Mfutso-Bengo","doi":"10.1007/s10506-021-09303-6","DOIUrl":"10.1007/s10506-021-09303-6","url":null,"abstract":"<div><p>Legal professionals in Malawi rely on a limited number of textbooks, outdated law reports and inadequate library services. Most documents available are in image form, are un-structured, i.e. contain no useful legal meta-data, summaries, keynotes, and do not support a system of citation that is essential to legal research. While advances in document processing and machine learning have benefited many fields, legal research is still only marginally affected. In this interdisciplinary research, the authors build semi-automatic tools for creating a corpus of Malawi criminal law decisions annotated with legal meta-data, case and law citations. We used this corpus to extract legal meta-data, including law and case citations as used in Malawi by employing machine learning tools, spaCy and Gensim LDA. We set the foundation for a new methodology for classifying Malawi criminal case law according to the recently introduced International Classification of Crime for Statistical Purposes (ICCS).</p></div>","PeriodicalId":51336,"journal":{"name":"Artificial Intelligence and Law","volume":"31 1","pages":"1 - 11"},"PeriodicalIF":4.1,"publicationDate":"2021-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45360285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-10-13DOI: 10.1007/s10506-021-09300-9
Mark D. Flood, Oliver R. Goodenough
We show that the fundamental legal structure of a well-written financial contract follows a state-transition logic that can be formalized mathematically as a finite-state machine (specifically, a deterministic finite automaton or DFA). The automaton defines the states that a financial relationship can be in, such as “default,” “delinquency,” “performing,” etc., and it defines an “alphabet” of events that can trigger state transitions, such as “payment arrives,” “due date passes,” etc. The core of a contract describes the rules by which different sequences of events trigger particular sequences of state transitions in the relationship between the counterparties. By conceptualizing and representing the legal structure of a contract in this way, we expose it to a range of powerful tools and results from the theory of computation. These allow, for example, automated reasoning to determine whether a contract is internally coherent and whether it is complete relative to a particular event alphabet. We illustrate the process by representing a simple loan agreement as an automaton.
{"title":"Contract as automaton: representing a simple financial agreement in computational form","authors":"Mark D. Flood, Oliver R. Goodenough","doi":"10.1007/s10506-021-09300-9","DOIUrl":"10.1007/s10506-021-09300-9","url":null,"abstract":"<div><p>We show that the fundamental legal structure of a well-written financial contract follows a state-transition logic that can be formalized mathematically as a finite-state machine (specifically, a deterministic finite automaton or DFA). The automaton defines the states that a financial relationship can be in, such as “default,” “delinquency,” “performing,” etc., and it defines an “alphabet” of events that can trigger state transitions, such as “payment arrives,” “due date passes,” etc. The core of a contract describes the rules by which different sequences of events trigger particular sequences of state transitions in the relationship between the counterparties. By conceptualizing and representing the legal structure of a contract in this way, we expose it to a range of powerful tools and results from the theory of computation. These allow, for example, automated reasoning to determine whether a contract is internally coherent and whether it is complete relative to a particular event alphabet. We illustrate the process by representing a simple loan agreement as an automaton.</p></div>","PeriodicalId":51336,"journal":{"name":"Artificial Intelligence and Law","volume":"30 3","pages":"391 - 416"},"PeriodicalIF":4.1,"publicationDate":"2021-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10506-021-09300-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46590930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper examines the hindrances to Copyright Protection in the digital era. The author is of the view that there are six factors that pose as a challenge and in equal measure presents remedies to mitigate the challenges.
{"title":"Copyright Protection in a Digital Environment: Some Introspection","authors":"J. Kevins","doi":"10.2139/ssrn.3924212","DOIUrl":"https://doi.org/10.2139/ssrn.3924212","url":null,"abstract":"This paper examines the hindrances to Copyright Protection in the digital era. The author is of the view that there are six factors that pose as a challenge and in equal measure presents remedies to mitigate the challenges.","PeriodicalId":51336,"journal":{"name":"Artificial Intelligence and Law","volume":"20 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2021-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74339660","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-09-15DOI: 10.1007/s10506-021-09301-8
Andrea Tagarelli, Andrea Simeri
Modeling law search and retrieval as prediction problems has recently emerged as a predominant approach in law intelligence. Focusing on the law article retrieval task, we present a deep learning framework named LamBERTa, which is designed for civil-law codes, and specifically trained on the Italian civil code. To our knowledge, this is the first study proposing an advanced approach to law article prediction for the Italian legal system based on a BERT (Bidirectional Encoder Representations from Transformers) learning framework, which has recently attracted increased attention among deep learning approaches, showing outstanding effectiveness in several natural language processing and learning tasks. We define LamBERTa models by fine-tuning an Italian pre-trained BERT on the Italian civil code or its portions, for law article retrieval as a classification task. One key aspect of our LamBERTa framework is that we conceived it to address an extreme classification scenario, which is characterized by a high number of classes, the few-shot learning problem, and the lack of test query benchmarks for Italian legal prediction tasks. To solve such issues, we define different methods for the unsupervised labeling of the law articles, which can in principle be applied to any law article code system. We provide insights into the explainability and interpretability of our LamBERTa models, and we present an extensive experimental analysis over query sets of different type, for single-label as well as multi-label evaluation tasks. Empirical evidence has shown the effectiveness of LamBERTa, and also its superiority against widely used deep-learning text classifiers and a few-shot learner conceived for an attribute-aware prediction task.
{"title":"Unsupervised law article mining based on deep pre-trained language representation models with application to the Italian civil code","authors":"Andrea Tagarelli, Andrea Simeri","doi":"10.1007/s10506-021-09301-8","DOIUrl":"10.1007/s10506-021-09301-8","url":null,"abstract":"<div><p>Modeling law search and retrieval as prediction problems has recently emerged as a predominant approach in law intelligence. Focusing on the law article retrieval task, we present a deep learning framework named LamBERTa, which is designed for civil-law codes, and specifically trained on the Italian civil code. To our knowledge, this is the first study proposing an advanced approach to law article prediction for the Italian legal system based on a BERT (Bidirectional Encoder Representations from Transformers) learning framework, which has recently attracted increased attention among deep learning approaches, showing outstanding effectiveness in several natural language processing and learning tasks. We define LamBERTa models by fine-tuning an Italian pre-trained BERT on the Italian civil code or its portions, for law article retrieval as a classification task. One key aspect of our LamBERTa framework is that we conceived it to address an extreme classification scenario, which is characterized by a high number of classes, the few-shot learning problem, and the lack of test query benchmarks for Italian legal prediction tasks. To solve such issues, we define different methods for the unsupervised labeling of the law articles, which can in principle be applied to any law article code system. We provide insights into the explainability and interpretability of our LamBERTa models, and we present an extensive experimental analysis over query sets of different type, for single-label as well as multi-label evaluation tasks. Empirical evidence has shown the effectiveness of LamBERTa, and also its superiority against widely used deep-learning text classifiers and a few-shot learner conceived for an attribute-aware prediction task.</p></div>","PeriodicalId":51336,"journal":{"name":"Artificial Intelligence and Law","volume":"30 3","pages":"417 - 473"},"PeriodicalIF":4.1,"publicationDate":"2021-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10506-021-09301-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42634721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}