In recent years, with the development of sensor technologies, communication platforms, cyber-physical systems, storage technologies, internet applications and controller infrastructures, the way has been opened to produce competitive products with high quality and low cost. In turning, which is one of the important processes of machining, chatter vibrations are among the biggest problems affecting product quality, productivity and cost. There are many techniques proposed to reduce chatter vibrations for which the exact cause cannot be determined. In this study, an active vibration control based on the Sliding Mode Control (SMC) has been implemented in order to reduce and eliminate chatter vibration, which is undesirable for the turning process. In this context, three-axis acceleration data were collected from the cutting tool during the turning of Ti6Al4V. Finite Impulse Response (FIR) filtering, Fast Fourier Transform (FFT) analysis and integral process were carried out in order to use the raw acceleration data collected over the system in control. The system is modeled mathematically and an active control block diagram is created. It is observed that chattering decreased significantly after the application of active vibration control. The surface quality formed by the amplitude of the graph obtained after active control has been compared and verified with the data obtained from the actual manufacturing result.
{"title":"IDENTIFICATION OF CHATTER VIBRATIONS AND ACTIVE VIBRATION CONTROL BY USING THE SLIDING MODE CONTROLLER ON DRY TURNING OF TITANIUM ALLOY (TI6AL4V)","authors":"M. Guvenc, H. H. Bilgic, S. Mistikoglu","doi":"10.22190/fume210728067g","DOIUrl":"https://doi.org/10.22190/fume210728067g","url":null,"abstract":"In recent years, with the development of sensor technologies, communication platforms, cyber-physical systems, storage technologies, internet applications and controller infrastructures, the way has been opened to produce competitive products with high quality and low cost. In turning, which is one of the important processes of machining, chatter vibrations are among the biggest problems affecting product quality, productivity and cost. There are many techniques proposed to reduce chatter vibrations for which the exact cause cannot be determined. In this study, an active vibration control based on the Sliding Mode Control (SMC) has been implemented in order to reduce and eliminate chatter vibration, which is undesirable for the turning process. In this context, three-axis acceleration data were collected from the cutting tool during the turning of Ti6Al4V. Finite Impulse Response (FIR) filtering, Fast Fourier Transform (FFT) analysis and integral process were carried out in order to use the raw acceleration data collected over the system in control. The system is modeled mathematically and an active control block diagram is created. It is observed that chattering decreased significantly after the application of active vibration control. The surface quality formed by the amplitude of the graph obtained after active control has been compared and verified with the data obtained from the actual manufacturing result.","PeriodicalId":51338,"journal":{"name":"Facta Universitatis-Series Mechanical Engineering","volume":"130 1","pages":""},"PeriodicalIF":7.9,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80425091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
To accurately solve the fracture parameters of enamel, we have established computational nonhomogeneous enamel models and constructed the fracture element of enamel dumb nodes, based on the enamel mineral concentration, nonhomogeneous mechanical properties, and virtual crack closure technique. Through the commercial finite element software ABAQUS and the fracture element of the enamel dumb nodes, we have established the user subroutines UMAT and UEL, which enabled solving of the energy release rates of the nonhomogeneous enamel structure with cracks. The stress intensity factors of central cracks, three-point bend and compact stretched enamels, and double-edge notched stretched enamels are determined. By comparing them with analytical solutions, we have proved that the fracture element of the enamel dumb nodes is highly accurate, simple, and convenient. In addition, the cracks can be other elements rather than singular or special elements; they show versatility and other advantages. The stress intensity factor of the dental enamel can be solved more realistically. Thus, a new numerical method for prevention and treatment of dental diseases is provided.
{"title":"FRACTURE PARAMETERS EVALUATION FOR THE CRACKED NONHOMOGENEOUS ENAMEL BASED ON THE FINITE ELEMENT METHOD AND VIRTUAL CRACK CLOSURE TECHNIQUE","authors":"Y. Cai, Liming Zhou, Ming Li","doi":"10.22190/fume210619072c","DOIUrl":"https://doi.org/10.22190/fume210619072c","url":null,"abstract":"To accurately solve the fracture parameters of enamel, we have established computational nonhomogeneous enamel models and constructed the fracture element of enamel dumb nodes, based on the enamel mineral concentration, nonhomogeneous mechanical properties, and virtual crack closure technique. Through the commercial finite element software ABAQUS and the fracture element of the enamel dumb nodes, we have established the user subroutines UMAT and UEL, which enabled solving of the energy release rates of the nonhomogeneous enamel structure with cracks. The stress intensity factors of central cracks, three-point bend and compact stretched enamels, and double-edge notched stretched enamels are determined. By comparing them with analytical solutions, we have proved that the fracture element of the enamel dumb nodes is highly accurate, simple, and convenient. In addition, the cracks can be other elements rather than singular or special elements; they show versatility and other advantages. The stress intensity factor of the dental enamel can be solved more realistically. Thus, a new numerical method for prevention and treatment of dental diseases is provided.","PeriodicalId":51338,"journal":{"name":"Facta Universitatis-Series Mechanical Engineering","volume":"52 1","pages":""},"PeriodicalIF":7.9,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81644167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A nonlinear vibration system, over a span of convincing periodic motion, might break out abruptly a catastrophic instability, but the lack of a theoretical tool has obscured the prediction of the outbreak. This paper deploys the amplitude-frequency formulation for nonlinear oscillators to reveal the critically important mechanism of the pseudo-periodic motion, and finds the quadratic nonlinear force contributes to the pull-down phenomenon in each cycle of the periodic motion, when the force reaches a threshold value, the pull-down instability occurs. A criterion for prediction of the pull-down instability is proposed and verified numerically.
{"title":"PULL-DOWN INSTABILITY OF THE QUADRATIC NONLINEAR OSCILLATORS","authors":"Ji-Huan He, Qian Yang, Chun-Hui He, Abdulrahman Alsolami","doi":"10.22190/fume230114007h","DOIUrl":"https://doi.org/10.22190/fume230114007h","url":null,"abstract":"A nonlinear vibration system, over a span of convincing periodic motion, might break out abruptly a catastrophic instability, but the lack of a theoretical tool has obscured the prediction of the outbreak. This paper deploys the amplitude-frequency formulation for nonlinear oscillators to reveal the critically important mechanism of the pseudo-periodic motion, and finds the quadratic nonlinear force contributes to the pull-down phenomenon in each cycle of the periodic motion, when the force reaches a threshold value, the pull-down instability occurs. A criterion for prediction of the pull-down instability is proposed and verified numerically.","PeriodicalId":51338,"journal":{"name":"Facta Universitatis-Series Mechanical Engineering","volume":"28 1","pages":""},"PeriodicalIF":7.9,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88420833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In the present work, surface/interface energy effects for pull-in instability analysis on dimensionless natural frequency (DNF) and nonlinear dynamics response (NDR) of piezoelectric nanosensor (PENS) subjected to nonlinear electrostatic excitation and harmonic force are studied using Gurtin–Murdoch (GM) surface/interface energy approach. To achieve this purpose, the Hamilton’s approach, assumed mode and Lagrange–Euler’s theories and also arc-length continuation and complex averaging methods are used to investigate influences of surface/interface parameters of PENS such as Lame’s constants, residual stress, piezoelectric constants and mass density for analysis of pull-in instability voltage.
{"title":"NONLINEAR VIBRATION RESPONSE OF PIEZOELECTRIC NANOSENSOR: INFLUENCES OF SURFACE/INTERFACE EFFECTS","authors":"Sayyid H. Hashemi Kachapi","doi":"10.22190/fume210612064k","DOIUrl":"https://doi.org/10.22190/fume210612064k","url":null,"abstract":"In the present work, surface/interface energy effects for pull-in instability analysis on dimensionless natural frequency (DNF) and nonlinear dynamics response (NDR) of piezoelectric nanosensor (PENS) subjected to nonlinear electrostatic excitation and harmonic force are studied using Gurtin–Murdoch (GM) surface/interface energy approach. To achieve this purpose, the Hamilton’s approach, assumed mode and Lagrange–Euler’s theories and also arc-length continuation and complex averaging methods are used to investigate influences of surface/interface parameters of PENS such as Lame’s constants, residual stress, piezoelectric constants and mass density for analysis of pull-in instability voltage.","PeriodicalId":51338,"journal":{"name":"Facta Universitatis-Series Mechanical Engineering","volume":"2 1","pages":""},"PeriodicalIF":7.9,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87328074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fenghe Wu, H. Lian, Guobin Pei, Baosu Guo, Zhaohua Wang
Lattice structure is more and more widely used in engineering by replacing solid structure. But its mechanical performances are constrained by the external shape if the unit cells are directly filled in the design domain, and the traditional topology optimization methods are difficult to give the explicitly mechanical guidance for the distribution of internal unit cells. In this paper, a novel design and optimization method of variable-density lattice structure is proposed in order to simultaneously optimize the external shape and the internal unit cells. First of all, the envelope model of any given structure should be established, and the load paths need to be visualized by the theory of load path. Then, the design criteria of external shape are established based on the principle of smoother load paths in the structure. An index of load flow capacity is defined to indicate the load paths density and to control the density distribution of unit cells, and a detailed optimization strategy is given. Finally, three examples of a cantilever plate, an L-shaped bracket and a classical three-point bending beam are used to verify the method. The results show that the models designed by the proposed method have better mechanical performances, lower material usage and less printing time.
{"title":"DESIGN AND OPTIMIZATION OF THE VARIABLE-DENSITY LATTICE STRUCTURE BASED ON LOAD PATHS","authors":"Fenghe Wu, H. Lian, Guobin Pei, Baosu Guo, Zhaohua Wang","doi":"10.22190/fume220108017w","DOIUrl":"https://doi.org/10.22190/fume220108017w","url":null,"abstract":"Lattice structure is more and more widely used in engineering by replacing solid structure. But its mechanical performances are constrained by the external shape if the unit cells are directly filled in the design domain, and the traditional topology optimization methods are difficult to give the explicitly mechanical guidance for the distribution of internal unit cells. In this paper, a novel design and optimization method of variable-density lattice structure is proposed in order to simultaneously optimize the external shape and the internal unit cells. First of all, the envelope model of any given structure should be established, and the load paths need to be visualized by the theory of load path. Then, the design criteria of external shape are established based on the principle of smoother load paths in the structure. An index of load flow capacity is defined to indicate the load paths density and to control the density distribution of unit cells, and a detailed optimization strategy is given. Finally, three examples of a cantilever plate, an L-shaped bracket and a classical three-point bending beam are used to verify the method. The results show that the models designed by the proposed method have better mechanical performances, lower material usage and less printing time.","PeriodicalId":51338,"journal":{"name":"Facta Universitatis-Series Mechanical Engineering","volume":"7 1","pages":""},"PeriodicalIF":7.9,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78831799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper presents the results of an investigation conducted on wire electric discharge machining (wire-EDM) of miniature ratchet gears. Effects of three important process parameters spark duration, ‘Ton’, spark-off-duration ‘Toff’, and wire tension ‘WT’ on surface quality, i.e., mean roughness depth ‘Rz’ and productivity, i.e., material erosion speed ‘MES’, have been investigated by conducting seventeen experimental trials. Both Ton and Toff have been identified as the significant parameters. Further, an optimization of wire-EDM parameters resulted in simultaneously best compromise values of Rz 5.30 µm and MES 6.75 mm/min and is achieved the following cutting regime: Ton 1.5 µs, Toff 42.5 µs, and WT 1500 g. At the end, surface quality study has been conducted to evaluate the tribological fitness of the miniature ratchet gear machined at optimum combination of wire-EDM parameter values. It was investigated that the generation of uniform and shallow craters on the flank surfaces of ratchet gear machined at optimum values of parameters, imparted smoother bearing area curve and lower coefficient of friction. The profile and flank surface of the ratchet gear also found free from cracks, burrs, and dirt.
{"title":"AN INVESTIGATION ON MEAN ROUGHNESS DEPTH AND MATERIAL EROSION SPEED DURING MANUFACTURING OF STAINLESS-STEEL MINIATURE RATCHET GEARS BY WIRE-EDM","authors":"S. K. Chaubey, K. Gupta, M. Madić","doi":"10.22190/fume221220012c","DOIUrl":"https://doi.org/10.22190/fume221220012c","url":null,"abstract":"This paper presents the results of an investigation conducted on wire electric discharge machining (wire-EDM) of miniature ratchet gears. Effects of three important process parameters spark duration, ‘Ton’, spark-off-duration ‘Toff’, and wire tension ‘WT’ on surface quality, i.e., mean roughness depth ‘Rz’ and productivity, i.e., material erosion speed ‘MES’, have been investigated by conducting seventeen experimental trials. Both Ton and Toff have been identified as the significant parameters. Further, an optimization of wire-EDM parameters resulted in simultaneously best compromise values of Rz 5.30 µm and MES 6.75 mm/min and is achieved the following cutting regime: Ton 1.5 µs, Toff 42.5 µs, and WT 1500 g. At the end, surface quality study has been conducted to evaluate the tribological fitness of the miniature ratchet gear machined at optimum combination of wire-EDM parameter values. It was investigated that the generation of uniform and shallow craters on the flank surfaces of ratchet gear machined at optimum values of parameters, imparted smoother bearing area curve and lower coefficient of friction. The profile and flank surface of the ratchet gear also found free from cracks, burrs, and dirt.","PeriodicalId":51338,"journal":{"name":"Facta Universitatis-Series Mechanical Engineering","volume":"70 1","pages":""},"PeriodicalIF":7.9,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86188545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wenhao Zhou, Dongliang Yu, Yifan Wang, Junlin Shi, B. Gan
In order to study the correlation mechanism between the flow characteristics and the fluid-induced force under the compound whirl motion in the centrifugal pump, the RNG k-ε model is selected in this paper to simulate a low specific speed centrifugal pump with impeller eccentricity based on the N-S equation. The changes of fluid-induced force with impeller eccentricity and the unsteady flow characteristics of the internal flow field of centrifugal pump under different flow conditions and rotation speeds are investigated, and the relationship between the fluid-induced force of the impeller and the internal flow field characteristics is discussed. The results show that the trend of fluid-induced force and the pressure coefficient is similar. When the rotation speed changes and when the flow is similar, the pressure coefficient under different rotation speeds almost coincides. With the increase of impeller speed and impeller eccentricity, the dynamic and static interferences between the impeller and the volute tongue are more significant, the uneven distribution of the pressure around the impeller makes the internal flow of centrifugal pump more disordered and increases the fluid-induced force near the volute tongue. The research results can provide important reference value for accurately grasping the internal flow excitation principle of the centrifugal pump.
{"title":"RESEARCH ON THE FLUID-INDUCED EXCITATION CHARACTERISTICS OF THE CENTRIFUGAL PUMP CONSIDERING THE COMPOUND WHIRL EFFECT","authors":"Wenhao Zhou, Dongliang Yu, Yifan Wang, Junlin Shi, B. Gan","doi":"10.22190/fume210528065z","DOIUrl":"https://doi.org/10.22190/fume210528065z","url":null,"abstract":"In order to study the correlation mechanism between the flow characteristics and the fluid-induced force under the compound whirl motion in the centrifugal pump, the RNG k-ε model is selected in this paper to simulate a low specific speed centrifugal pump with impeller eccentricity based on the N-S equation. The changes of fluid-induced force with impeller eccentricity and the unsteady flow characteristics of the internal flow field of centrifugal pump under different flow conditions and rotation speeds are investigated, and the relationship between the fluid-induced force of the impeller and the internal flow field characteristics is discussed. The results show that the trend of fluid-induced force and the pressure coefficient is similar. When the rotation speed changes and when the flow is similar, the pressure coefficient under different rotation speeds almost coincides. With the increase of impeller speed and impeller eccentricity, the dynamic and static interferences between the impeller and the volute tongue are more significant, the uneven distribution of the pressure around the impeller makes the internal flow of centrifugal pump more disordered and increases the fluid-induced force near the volute tongue. The research results can provide important reference value for accurately grasping the internal flow excitation principle of the centrifugal pump.","PeriodicalId":51338,"journal":{"name":"Facta Universitatis-Series Mechanical Engineering","volume":"351 1","pages":""},"PeriodicalIF":7.9,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80033657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper presents a research focused on dance contents, specific dance programs and preschool children motor fitness. The main goal of this paper was to collect and analyze studies that as an experimental treatment had the contents of dance activities and their impact on the preschool children motor fitness. The necessary literature and papers were collected through the following databases: Google Scholar, PubMed, SCI index and the available professional literature at the Faculty of Sport and Physical Education in Niš, as well as other available literature. The following keywords were used: influence, effects, preschool age, preschoolers, exercise, dance, dance activities, motor skills, motor skills and their adequate translation into English. Twelve papers that met the set criteria were selected for the final analysis. The following conclusion was drawn: there is a positive impact of dance contents on the preschool children motor fitness, therefore, they can be recommended for use as the adequate contents of the PE curricula in preschool institutions.
{"title":"THE INFLUENCE OF DANCE CONTENTS ON THE PRESCHOOLERS MOTOR FITNESS AND THEIR POSSIBLE APPLICATION IN PRESCHOOL INSTITUTIONS CURRICULUM","authors":"Nenad Đorđević, Predrag Stojković, Romina Herodek, Xhelal Mustafa, Slavoljub Uzunović","doi":"10.22190/futlte230531031d","DOIUrl":"https://doi.org/10.22190/futlte230531031d","url":null,"abstract":"This paper presents a research focused on dance contents, specific dance programs and preschool children motor fitness. The main goal of this paper was to collect and analyze studies that as an experimental treatment had the contents of dance activities and their impact on the preschool children motor fitness. The necessary literature and papers were collected through the following databases: Google Scholar, PubMed, SCI index and the available professional literature at the Faculty of Sport and Physical Education in Niš, as well as other available literature. The following keywords were used: influence, effects, preschool age, preschoolers, exercise, dance, dance activities, motor skills, motor skills and their adequate translation into English. Twelve papers that met the set criteria were selected for the final analysis. The following conclusion was drawn: there is a positive impact of dance contents on the preschool children motor fitness, therefore, they can be recommended for use as the adequate contents of the PE curricula in preschool institutions.","PeriodicalId":51338,"journal":{"name":"Facta Universitatis-Series Mechanical Engineering","volume":"18 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135999472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-29DOI: 10.22190/fuacr230324004s
Goran Stančić, Ivan Krstić, Saša S. Nikolić, Ivana Kostić
In this paper a new method for design of the first order differentiator is presented. The proposed differentiator consists of two parallel branches, i.e. direct path and IIR all-pass filter. The described design method allows one to obtain solution with minimum mean relative error at the desired region by controlling the ratio of phase response extremes. A small relative magnitude error, as well as a low phase error, at low frequencies is condition for good time domain behaviour. The obtained differentiator can be realized by means of only two multipliers, hence being a good choice for real time applications. The proposed solution provides a lower magnitude error than several known differentiators with similar phase error.
{"title":"DESIGN OF FIRST ORDER DIFFERENTIATOR WITH PARALLEL ALL-PASS STRUCTURE","authors":"Goran Stančić, Ivan Krstić, Saša S. Nikolić, Ivana Kostić","doi":"10.22190/fuacr230324004s","DOIUrl":"https://doi.org/10.22190/fuacr230324004s","url":null,"abstract":"In this paper a new method for design of the first order differentiator is presented. The proposed differentiator consists of two parallel branches, i.e. direct path and IIR all-pass filter. The described design method allows one to obtain solution with minimum mean relative error at the desired region by controlling the ratio of phase response extremes. A small relative magnitude error, as well as a low phase error, at low frequencies is condition for good time domain behaviour. The obtained differentiator can be realized by means of only two multipliers, hence being a good choice for real time applications. The proposed solution provides a lower magnitude error than several known differentiators with similar phase error.","PeriodicalId":51338,"journal":{"name":"Facta Universitatis-Series Mechanical Engineering","volume":"34 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134920308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-29DOI: 10.22190/fuacr230322002d
Aleksandar Dimitrijević
The enormous volumes of geospatial data and the need to process and distribute them cry out for a unified framework that enables their efficient storage, analysis, and a high degree of interoperability. Discrete global grid systems provide such a framework by hierarchically tessellating cells to seamlessly partition and address the globe. Since they are usually based on a regular polyhedron, they partition the entire world into as many discrete data sets as the given polyhedron has sides. In this paper, we try to reduce the number of partitions to two, which is a minimum if we want to obtain spatially convex partitions without interruptions. Two approaches are presented, based on an adjusted spherical cube and an equidistant cylindrical projection. The distortions resulting from the application of these projections are compared and guidelines are presented to improve the quality of their implementation by reducing the distortion of the continental plates and making a better mapping to the WGS84 ellipsoid.
{"title":"TWO-PARTITION DISCRETE GLOBAL GRID SYSTEMS - A COMPARISON OF APPROACHES BASED ON ADJUSTED SPHERICAL CUBE AND CYLINDRICAL EQUIDISTANT PROJECTION","authors":"Aleksandar Dimitrijević","doi":"10.22190/fuacr230322002d","DOIUrl":"https://doi.org/10.22190/fuacr230322002d","url":null,"abstract":"The enormous volumes of geospatial data and the need to process and distribute them cry out for a unified framework that enables their efficient storage, analysis, and a high degree of interoperability. Discrete global grid systems provide such a framework by hierarchically tessellating cells to seamlessly partition and address the globe. Since they are usually based on a regular polyhedron, they partition the entire world into as many discrete data sets as the given polyhedron has sides. In this paper, we try to reduce the number of partitions to two, which is a minimum if we want to obtain spatially convex partitions without interruptions. Two approaches are presented, based on an adjusted spherical cube and an equidistant cylindrical projection. The distortions resulting from the application of these projections are compared and guidelines are presented to improve the quality of their implementation by reducing the distortion of the continental plates and making a better mapping to the WGS84 ellipsoid.","PeriodicalId":51338,"journal":{"name":"Facta Universitatis-Series Mechanical Engineering","volume":"40 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134920311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}