首页 > 最新文献

Eye and Brain最新文献

英文 中文
Eye Movement Abnormalities in Glaucoma Patients: A Review. 青光眼患者的眼球运动异常:综述。
IF 4.4 Q1 OPHTHALMOLOGY Pub Date : 2022-09-08 eCollection Date: 2022-01-01 DOI: 10.2147/EB.S361946
Matthew A McDonald, Clark H Stevenson, Hannah M Kersten, Helen V Danesh-Meyer
Abstract Glaucoma is a common condition that relies on careful clinical assessment to diagnose and determine disease progression. There is growing evidence that glaucoma is associated not only with loss of retinal ganglion cells but also with degeneration of cortical and subcortical brain structures associated with vision and eye movements. The effect of glaucoma pathophysiology on eye movements is not well understood. In this review, we examine the evidence surrounding altered eye movements in glaucoma patients compared to healthy controls, with a focus on quantitative eye tracking studies measuring saccades, fixation, and optokinetic nystagmus in a range of visual tasks. The evidence suggests that glaucoma patients have alterations in several eye movement domains. Patients exhibit longer saccade latencies, which worsen with increasing glaucoma severity. Other saccadic abnormalities include lower saccade amplitude and velocity, and difficulty inhibiting reflexive saccades. Fixation is pathologically altered in glaucoma with reduced stability. Optokinetic nystagmus measures have also been shown to be abnormal. Complex visual tasks (eg reading, driving, and navigating obstacles), integrate these eye movements and result in behavioral adaptations. The review concludes with a summary of the evidence and recommendations for future research in this emerging field.
青光眼是一种常见的疾病,需要仔细的临床评估来诊断和确定疾病进展。越来越多的证据表明,青光眼不仅与视网膜神经节细胞的丧失有关,还与与视觉和眼球运动有关的大脑皮层和皮层下结构的退化有关。青光眼病理生理对眼球运动的影响尚不清楚。在这篇综述中,我们研究了与健康对照相比青光眼患者眼球运动改变的证据,重点关注定量眼动追踪研究,测量一系列视觉任务中的扫视、注视和光动性眼球震颤。有证据表明青光眼患者在几个眼球运动域有改变。患者表现出较长的眼跳潜伏期,随着青光眼严重程度的增加而恶化。其他眼跳异常包括较低的眼跳幅度和速度,以及难以抑制反射性眼跳。青光眼的固定发生病理改变,稳定性降低。眼球震颤的光动力学测量也显示出异常。复杂的视觉任务(如阅读、驾驶和穿越障碍物)整合了这些眼球运动并导致行为适应。该综述总结了证据并对这一新兴领域的未来研究提出了建议。
{"title":"Eye Movement Abnormalities in Glaucoma Patients: A Review.","authors":"Matthew A McDonald, Clark H Stevenson, Hannah M Kersten, Helen V Danesh-Meyer","doi":"10.2147/EB.S361946","DOIUrl":"https://doi.org/10.2147/EB.S361946","url":null,"abstract":"Abstract Glaucoma is a common condition that relies on careful clinical assessment to diagnose and determine disease progression. There is growing evidence that glaucoma is associated not only with loss of retinal ganglion cells but also with degeneration of cortical and subcortical brain structures associated with vision and eye movements. The effect of glaucoma pathophysiology on eye movements is not well understood. In this review, we examine the evidence surrounding altered eye movements in glaucoma patients compared to healthy controls, with a focus on quantitative eye tracking studies measuring saccades, fixation, and optokinetic nystagmus in a range of visual tasks. The evidence suggests that glaucoma patients have alterations in several eye movement domains. Patients exhibit longer saccade latencies, which worsen with increasing glaucoma severity. Other saccadic abnormalities include lower saccade amplitude and velocity, and difficulty inhibiting reflexive saccades. Fixation is pathologically altered in glaucoma with reduced stability. Optokinetic nystagmus measures have also been shown to be abnormal. Complex visual tasks (eg reading, driving, and navigating obstacles), integrate these eye movements and result in behavioral adaptations. The review concludes with a summary of the evidence and recommendations for future research in this emerging field.","PeriodicalId":51844,"journal":{"name":"Eye and Brain","volume":" ","pages":"83-114"},"PeriodicalIF":4.4,"publicationDate":"2022-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/89/f6/eb-14-83.PMC9467299.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40359286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Association Between Vision and Brain Cortical Thickness in a Community-Dwelling Elderly Cohort. 在社区居住的老年人队列中视力与大脑皮质厚度的关系。
IF 4.4 Q1 OPHTHALMOLOGY Pub Date : 2022-07-14 eCollection Date: 2022-01-01 DOI: 10.2147/EB.S358384
Chloé Chamard, Jerome J Maller, Nicolas Menjot, Eloi Debourdeau, Virginie Nael, Karen Ritchie, Isabelle Carriere, Vincent Daien

Purpose: Visual impairment is a major cause of disability and impairment of cognitive function in older people. Brain structural changes associated with visual function impairment are not well understood. The objective of this study was to assess the association between visual function and cortical thickness in older adults.

Methods: Participants were selected from the French population-based ESPRIT cohort of 2259 community-dwelling adults ≥65 years old enrolled between 1999 and 2001. We considered visual function and brain MRI images at the 12-year follow-up in participants who were right-handed and free of dementia and/or stroke, randomly selected from the whole cohort. High-resolution structural T1-weighted brain scans acquired with a 3-Tesla scanner. Regional reconstruction and segmentation involved using the FreeSurfer image-analysis suite.

Results: A total of 215 participants were included (mean [SD] age 81.8 [3.7] years; 53.0% women): 30 (14.0%) had central vision loss and 185 (86.0%) normal central vision. Vision loss was associated with thinner cortical thickness in the right insula (within the lateral sulcus of the brain) as compared with the control group (mean thickness 2.38 [0.04] vs 2.50 [0.03] mm, 4.8% thinning, pcorrected= 0.04) after adjustment for age, sex, lifetime depression and cardiovascular disease.

Conclusion: The present study describes a significant thinning of the right insular cortex in older adults with vision loss. The insula subserves a wide variety of functions in humans ranging from sensory and affective processing to high-level cognitive processing. Reduced insula thickness associated with vision loss may increase cognitive burden in the ageing brain.

目的:视力障碍是老年人残疾和认知功能障碍的主要原因。与视觉功能障碍相关的大脑结构变化尚不清楚。本研究的目的是评估老年人视觉功能和皮层厚度之间的关系。方法:参与者从1999年至2001年期间登记的2259名≥65岁的法国人群ESPRIT队列中选择。在12年的随访中,我们考虑了从整个队列中随机选择的右撇子、无痴呆和/或中风的参与者的视觉功能和脑MRI图像。用3特斯拉扫描仪获得的高分辨率t1加权脑部扫描。区域重建和分割涉及使用FreeSurfer图像分析套件。结果:共纳入215名参与者(平均[SD]年龄81.8[3.7]岁;53.0%女性):中心视力丧失30例(14.0%),中心视力正常185例(86.0%)。经年龄、性别、终生抑郁和心血管疾病校正后,与对照组相比,视力丧失与右脑岛(脑外侧沟内)皮层厚度较薄相关(平均厚度2.38 [0.04]vs 2.50 [0.03] mm,厚度减少4.8%,校正前= 0.04)。结论:本研究描述了视力丧失的老年人右岛叶皮层显著变薄。脑岛在人类中具有多种功能,从感觉和情感处理到高级认知处理。脑岛厚度减少与视力丧失有关,可能会增加老化大脑的认知负担。
{"title":"Association Between Vision and Brain Cortical Thickness in a Community-Dwelling Elderly Cohort.","authors":"Chloé Chamard,&nbsp;Jerome J Maller,&nbsp;Nicolas Menjot,&nbsp;Eloi Debourdeau,&nbsp;Virginie Nael,&nbsp;Karen Ritchie,&nbsp;Isabelle Carriere,&nbsp;Vincent Daien","doi":"10.2147/EB.S358384","DOIUrl":"https://doi.org/10.2147/EB.S358384","url":null,"abstract":"<p><strong>Purpose: </strong>Visual impairment is a major cause of disability and impairment of cognitive function in older people. Brain structural changes associated with visual function impairment are not well understood. The objective of this study was to assess the association between visual function and cortical thickness in older adults.</p><p><strong>Methods: </strong>Participants were selected from the French population-based ESPRIT cohort of 2259 community-dwelling adults ≥65 years old enrolled between 1999 and 2001. We considered visual function and brain MRI images at the 12-year follow-up in participants who were right-handed and free of dementia and/or stroke, randomly selected from the whole cohort. High-resolution structural T1-weighted brain scans acquired with a 3-Tesla scanner. Regional reconstruction and segmentation involved using the FreeSurfer image-analysis suite.</p><p><strong>Results: </strong>A total of 215 participants were included (mean [SD] age 81.8 [3.7] years; 53.0% women): 30 (14.0%) had central vision loss and 185 (86.0%) normal central vision. Vision loss was associated with thinner cortical thickness in the right insula (within the lateral sulcus of the brain) as compared with the control group (mean thickness 2.38 [0.04] vs 2.50 [0.03] mm, 4.8% thinning, p<sub>corrected</sub>= 0.04) after adjustment for age, sex, lifetime depression and cardiovascular disease.</p><p><strong>Conclusion: </strong>The present study describes a significant thinning of the right insular cortex in older adults with vision loss. The insula subserves a wide variety of functions in humans ranging from sensory and affective processing to high-level cognitive processing. Reduced insula thickness associated with vision loss may increase cognitive burden in the ageing brain.</p>","PeriodicalId":51844,"journal":{"name":"Eye and Brain","volume":" ","pages":"71-82"},"PeriodicalIF":4.4,"publicationDate":"2022-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/fc/fd/eb-14-71.PMC9292457.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40540555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Does Long-Duration Exposure to Microgravity Lead to Dysregulation of the Brain and Ocular Glymphatic Systems? 长时间暴露在微重力环境下会导致脑和眼淋巴系统失调吗?
IF 4.4 Q1 OPHTHALMOLOGY Pub Date : 2022-05-01 DOI: 10.2147/EB.S354710
P. Wostyn, T. Mader, C. Gibson, M. Nedergaard
Abstract Spaceflight-associated neuro-ocular syndrome (SANS) has been well documented in astronauts both during and after long-duration spaceflight and is characterized by the development of optic disc edema, globe flattening, choroidal folds, and hyperopic refractive error shifts. The exact mechanisms underlying these ophthalmic abnormalities remain unclear. New findings regarding spaceflight-associated alterations in cerebrospinal fluid spaces, specifically perivascular spaces, may shed more light on the pathophysiology of SANS. The preliminary results of a recent brain magnetic resonance imaging study show that perivascular spaces enlarge under prolonged microgravity conditions, and that the amount of fluid in perivascular spaces is linked to SANS. The exact pathophysiological mechanisms underlying enlargement of perivascular spaces in space crews are currently unclear. Here, we speculate that the dilation of perivascular spaces observed in long-duration space travelers may result from impaired cerebral venous outflow and compromised cerebrospinal fluid resorption, leading to obstruction of glymphatic perivenous outflow and increased periarterial cerebrospinal fluid inflow, respectively. Further, we provide a possible explanation for how dilated perivascular spaces can be associated with SANS. Given that enlarged perivascular spaces in space crews may be a marker of altered venous hemodynamics and reduced cerebrospinal fluid outflow, at the level of the optic nerve and eye, these disturbances may contribute to SANS. If confirmed by further studies, brain glymphatic dysfunction in space crews could potentially be considered a risk factor for the development of neurodegenerative diseases, such as Alzheimer’s disease. Furthermore, long-duration exposure to microgravity might contribute to SANS through dysregulation of the ocular glymphatic system. If prolonged spaceflight exposure causes disruption of the glymphatic systems, this might affect the ability to conduct future exploration missions, for example, to Mars. The considerations outlined in the present paper further stress the crucial need to develop effective long-term countermeasures to mitigate SANS-related physiologic changes during long-duration spaceflight.
摘要太空飞行相关的神经眼综合征(SANS)在宇航员长期太空飞行期间和之后都有很好的记录,其特征是视盘水肿、眼球扁平、脉络膜折叠和远视屈光不正移位。这些眼科异常的确切机制尚不清楚。关于太空飞行相关脑脊液空间,特别是血管周围空间改变的新发现,可能会为SANS的病理生理学提供更多的线索。最近一项脑磁共振成像研究的初步结果表明,在长时间的微重力条件下,血管周围空间会扩大,并且血管周围空间中的液体量与SANS有关。太空工作人员血管周围间隙扩大的确切病理生理机制目前尚不清楚。在此,我们推测,在长期太空旅行者中观察到的血管周围空间扩张可能是由于脑静脉流出受损和脑脊液吸收受损,分别导致淋巴管周围静脉流出受阻和动脉周围脑脊液流入增加。此外,我们为扩张的血管周围间隙如何与SANS相关提供了可能的解释。鉴于太空工作人员血管周围空间增大可能是视神经和眼睛水平静脉血流动力学改变和脑脊液流出减少的标志,这些干扰可能导致SANS。如果得到进一步研究的证实,太空工作人员的大脑交感神经功能障碍可能被认为是神经退行性疾病(如阿尔茨海默病)发展的风险因素。此外,长期暴露在微重力环境中可能会导致眼部免疫系统失调,从而导致SANS。如果长时间的太空飞行暴露导致glymphatic系统中断,这可能会影响未来执行探测任务的能力,例如火星探测任务。本文中概述的考虑因素进一步强调,迫切需要制定有效的长期对策,以缓解长期太空飞行中与SANS相关的生理变化。
{"title":"Does Long-Duration Exposure to Microgravity Lead to Dysregulation of the Brain and Ocular Glymphatic Systems?","authors":"P. Wostyn, T. Mader, C. Gibson, M. Nedergaard","doi":"10.2147/EB.S354710","DOIUrl":"https://doi.org/10.2147/EB.S354710","url":null,"abstract":"Abstract Spaceflight-associated neuro-ocular syndrome (SANS) has been well documented in astronauts both during and after long-duration spaceflight and is characterized by the development of optic disc edema, globe flattening, choroidal folds, and hyperopic refractive error shifts. The exact mechanisms underlying these ophthalmic abnormalities remain unclear. New findings regarding spaceflight-associated alterations in cerebrospinal fluid spaces, specifically perivascular spaces, may shed more light on the pathophysiology of SANS. The preliminary results of a recent brain magnetic resonance imaging study show that perivascular spaces enlarge under prolonged microgravity conditions, and that the amount of fluid in perivascular spaces is linked to SANS. The exact pathophysiological mechanisms underlying enlargement of perivascular spaces in space crews are currently unclear. Here, we speculate that the dilation of perivascular spaces observed in long-duration space travelers may result from impaired cerebral venous outflow and compromised cerebrospinal fluid resorption, leading to obstruction of glymphatic perivenous outflow and increased periarterial cerebrospinal fluid inflow, respectively. Further, we provide a possible explanation for how dilated perivascular spaces can be associated with SANS. Given that enlarged perivascular spaces in space crews may be a marker of altered venous hemodynamics and reduced cerebrospinal fluid outflow, at the level of the optic nerve and eye, these disturbances may contribute to SANS. If confirmed by further studies, brain glymphatic dysfunction in space crews could potentially be considered a risk factor for the development of neurodegenerative diseases, such as Alzheimer’s disease. Furthermore, long-duration exposure to microgravity might contribute to SANS through dysregulation of the ocular glymphatic system. If prolonged spaceflight exposure causes disruption of the glymphatic systems, this might affect the ability to conduct future exploration missions, for example, to Mars. The considerations outlined in the present paper further stress the crucial need to develop effective long-term countermeasures to mitigate SANS-related physiologic changes during long-duration spaceflight.","PeriodicalId":51844,"journal":{"name":"Eye and Brain","volume":"14 1","pages":"49 - 58"},"PeriodicalIF":4.4,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43062695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Comparative Evaluation of Two SD-OCT Macular Parameters (GCC, GCL) and RNFL in Chiasmal Compression SD-OCT两种黄斑参数(GCC, GCL)和RNFL在交叉压迫中的比较评价
IF 4.4 Q1 OPHTHALMOLOGY Pub Date : 2022-03-01 DOI: 10.2147/EB.S337333
M. Santorini, T. Ferreira de Moura, S. Barraud, C. Litré, C. Brugniart, A. Denoyer, Z. Djerada, C. Arndt
Purpose To evaluate the relationship between different macular thickness parameters analyzed by SD-OCT and the central visual field (VF) evaluated with automated kinetic perimetry in a cohort of patients with pituitary tumors. Methods Data from patients with pituitary adenoma treated at Reims University Hospital between October 1st, 2017, and May 31st, 2018 were collected. All patients underwent an automated kinetic perimetry and a SD-OCT to map the ganglion cell complex (GCC), the ganglion cell layer (GCL) thickness and the retinal nerve fiber layer (RNFL) using devices from two different manufacturers. Univariate and multivariate analysis were used to evaluate the correlation between the area of central VF in square degrees (deg2) and the SD-OCT parameters (μm). Results Eighty-eight eyes were included in the analysis. All the thickness parameters measured in SD-OCT decreased with the visual field alteration. The best correlation was observed between superior thickness parameters (GCC, GCL) and the inferior central visual field. The most pertinent predictive factors for visual field loss were the inferior central GCL and the nasal RNFL (both AUC=0.775) with a sensitivity respectively of 86% and 70%. Conclusion This study suggests that both GCC, GCL thickness parameters could be reliable predictors of central visual field impairment in patients with pituitary tumors. There was no significative difference between both devices.
目的探讨SD-OCT分析的不同黄斑厚度参数与自动动态视野测量的中心视野(VF)之间的关系。方法收集2017年10月1日至2018年5月31日在兰斯大学医院治疗的垂体腺瘤患者的资料。所有患者都使用两家不同制造商的设备进行了自动动力学视野测量和SD-OCT,以绘制神经节细胞复合物(GCC)、神经节细胞层(GCL)厚度和视网膜神经纤维层(RNFL)。采用单因素和多因素分析评价中央VF面积平方度(deg2)与SD-OCT参数(μm)之间的相关性。结果共纳入88只眼。SD-OCT测得的厚度参数均随视野改变而降低。高厚度参数(GCC、GCL)与低中央视野的相关性最好。视野丧失最相关的预测因素为下中央GCL和鼻腔RNFL (AUC均为0.775),敏感性分别为86%和70%。结论GCC、GCL厚度参数均可作为垂体肿瘤患者中央视野损害的可靠预测指标。两种设备之间无显著差异。
{"title":"Comparative Evaluation of Two SD-OCT Macular Parameters (GCC, GCL) and RNFL in Chiasmal Compression","authors":"M. Santorini, T. Ferreira de Moura, S. Barraud, C. Litré, C. Brugniart, A. Denoyer, Z. Djerada, C. Arndt","doi":"10.2147/EB.S337333","DOIUrl":"https://doi.org/10.2147/EB.S337333","url":null,"abstract":"Purpose To evaluate the relationship between different macular thickness parameters analyzed by SD-OCT and the central visual field (VF) evaluated with automated kinetic perimetry in a cohort of patients with pituitary tumors. Methods Data from patients with pituitary adenoma treated at Reims University Hospital between October 1st, 2017, and May 31st, 2018 were collected. All patients underwent an automated kinetic perimetry and a SD-OCT to map the ganglion cell complex (GCC), the ganglion cell layer (GCL) thickness and the retinal nerve fiber layer (RNFL) using devices from two different manufacturers. Univariate and multivariate analysis were used to evaluate the correlation between the area of central VF in square degrees (deg2) and the SD-OCT parameters (μm). Results Eighty-eight eyes were included in the analysis. All the thickness parameters measured in SD-OCT decreased with the visual field alteration. The best correlation was observed between superior thickness parameters (GCC, GCL) and the inferior central visual field. The most pertinent predictive factors for visual field loss were the inferior central GCL and the nasal RNFL (both AUC=0.775) with a sensitivity respectively of 86% and 70%. Conclusion This study suggests that both GCC, GCL thickness parameters could be reliable predictors of central visual field impairment in patients with pituitary tumors. There was no significative difference between both devices.","PeriodicalId":51844,"journal":{"name":"Eye and Brain","volume":"14 1","pages":"35 - 48"},"PeriodicalIF":4.4,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68359890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Effects of tACS-Like Electrical Stimulation on Correlated Firing of Retinal Ganglion Cells: Part III. tacs样电刺激对视网膜神经节细胞相关放电的影响(三)。
IF 4.4 Q1 OPHTHALMOLOGY Pub Date : 2022-01-12 eCollection Date: 2022-01-01 DOI: 10.2147/EB.S313161
Franklin R Amthor, Christianne E Strang

Purpose: Transcranial alternating current stimulation (tACS) is a stimulation protocol used for learning enhancement and mitigation of cognitive dysfunction. Correlated firing has been postulated to be a meta-code that links neuronal spike responses associated with a single entity and may be an important component of high-level cognitive functions. Thus, changes in the covariance firing structure of CNS neurons such as retinal ganglion cells are one potential mechanism by which tACS can exert its effects.

Materials and methods: We used microelectrode arrays to record light-evoked spike responses of 24 retinal ganglion cells in 7 rabbit eyecup preparations and analyzed the covariance between 30 pairs of neighboring retinal ganglion cells before, during, and after 10-minute application of alternating currents of 1 microampere at 10 or 20 Hz.

Results: tACS stimulation significantly changed the covariance structure of correlated firing in 60% of simultaneously recorded retinal ganglion cells. Application of tACS in the retinal preparation increased cross-covariance in 26% of cell pairs, an effect usually associated with increased light-evoked ganglion cell firing. tACS associated decreases in cross-covariance occurred in 37% of cell pairs. Increased covariance was more common in response to the first, 10-minute application of tACS in isolated retina preparation. Changes in covariance were rare after repeated stimulation, and more likely to result in decreased covariance.

Conclusion: Retinal ganglion cell correlated firing is modulated by 1 microampere tACS currents showing that electrical stimulation can significantly and persistently change the structure of the correlated firing of simultaneously recorded rabbit retinal ganglion cells.

目的:经颅交流电刺激(tACS)是一种用于增强学习和缓解认知功能障碍的刺激方案。相关放电被认为是连接与单一实体相关的神经元脉冲反应的元代码,可能是高级认知功能的重要组成部分。因此,改变视网膜神经节细胞等CNS神经元的协方差放电结构是tACS发挥作用的一个潜在机制。材料和方法:我们使用微电极阵列记录了7种兔眼杯制剂中24个视网膜神经节细胞的光诱发峰反应,并分析了施加10或20 Hz 1微安交流电前、过程中和10分钟后30对相邻视网膜神经节细胞之间的协方差。结果:tACS刺激显著改变了60%同时记录的视网膜神经节细胞相关放电的协方差结构。tACS在视网膜制备中的应用增加了26%的细胞对的交叉协方差,这种效应通常与光诱发神经节细胞放电增加有关。与tACS相关的交叉协方差降低发生在37%的细胞对中。在离体视网膜准备中,第一次10分钟应用tACS时,协方差增加更为常见。反复刺激后,协方差很少发生变化,更有可能导致协方差降低。结论:1微安tACS电流可调节视网膜神经节细胞相关放电,表明电刺激可显著且持续地改变同时记录的兔视网膜神经节细胞相关放电的结构。
{"title":"Effects of tACS-Like Electrical Stimulation on Correlated Firing of Retinal Ganglion Cells: Part III.","authors":"Franklin R Amthor,&nbsp;Christianne E Strang","doi":"10.2147/EB.S313161","DOIUrl":"https://doi.org/10.2147/EB.S313161","url":null,"abstract":"<p><strong>Purpose: </strong>Transcranial alternating current stimulation (tACS) is a stimulation protocol used for learning enhancement and mitigation of cognitive dysfunction. Correlated firing has been postulated to be a meta-code that links neuronal spike responses associated with a single entity and may be an important component of high-level cognitive functions. Thus, changes in the covariance firing structure of CNS neurons such as retinal ganglion cells are one potential mechanism by which tACS can exert its effects.</p><p><strong>Materials and methods: </strong>We used microelectrode arrays to record light-evoked spike responses of 24 retinal ganglion cells in 7 rabbit eyecup preparations and analyzed the covariance between 30 pairs of neighboring retinal ganglion cells before, during, and after 10-minute application of alternating currents of 1 microampere at 10 or 20 Hz.</p><p><strong>Results: </strong>tACS stimulation significantly changed the covariance structure of correlated firing in 60% of simultaneously recorded retinal ganglion cells. Application of tACS in the retinal preparation increased cross-covariance in 26% of cell pairs, an effect usually associated with increased light-evoked ganglion cell firing. tACS associated decreases in cross-covariance occurred in 37% of cell pairs. Increased covariance was more common in response to the first, 10-minute application of tACS in isolated retina preparation. Changes in covariance were rare after repeated stimulation, and more likely to result in decreased covariance.</p><p><strong>Conclusion: </strong>Retinal ganglion cell correlated firing is modulated by 1 microampere tACS currents showing that electrical stimulation can significantly and persistently change the structure of the correlated firing of simultaneously recorded rabbit retinal ganglion cells.</p>","PeriodicalId":51844,"journal":{"name":"Eye and Brain","volume":" ","pages":"1-15"},"PeriodicalIF":4.4,"publicationDate":"2022-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/7f/d2/eb-14-1.PMC8763268.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39947324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Neuroplasticity of the Lateral Geniculate Nucleus in Response to Retinal Gene Therapy in a Group of Patients with RPE65 Mutations. 一组RPE65突变患者视网膜基因治疗对外侧膝状核神经可塑性的影响。
IF 4.4 Q1 OPHTHALMOLOGY Pub Date : 2022-01-01 DOI: 10.2147/EB.S377275
Manzar Ashtari, Mikhail Lipin, Michelle Duong, Gui-Shuang Ying, Yinxi Yu, Albert Maguire, Jean Bennett

Introduction: Previous works on experience-dependent brain plasticity have been limited to the cortical structures, overlooking subcortical visual structures such as the lateral geniculate nucleus (LGN). Animal studies have shown substantial experience dependent plasticity and using fMRI, human studies have demonstrated similar properties in patients with cataract surgery. However, in neither animal nor human studies LGN has not been directly assessed, mainly due to its small size, tissue heterogeneity, low contrast/noise ratio, and low spatial resolution.

Methods: Utilizing a new algorithm that markedly improves the LGN visibility, LGN was evaluated in a group of low vision patients before and after retinal intervention to reinstate vision and normal sighted matched controls.

Results: Between and within groups comparisons showed that patients had significantly smaller left (p< 0.0001) and right (p < 0.00002) LGN volumes at baseline as compared to the one-year follow-up volumes. The same baseline and one year comparison in controls was not significant. Significant positive correlations were observed between the incremental volume increase after gene therapy of the left LGN and the incremental increase in the right (r = 0.71, p < 0.02) and left (r = 0.72, p = 0.018) visual fields. Incremental volume increase of the right LGN also showed a similar positive slope but did not reach significance.

Discussion: These results show that despite significantly less volume at baseline, retinal gene therapy promotes robust expansion and increase in LGN volume. Reinstating vision may have facilitated the establishment of new connections between the retina and the LGN and/or unmasking of the dormant connections. The exact trajectory of the structural changes taking place in LGN is unclear but our data shows that even after years of low vision, the LGN in RPE65 patients has the potential for plasticity and expansion to a nearly normal volume one year after gene therapy administration.

以往关于经验依赖大脑可塑性的研究仅限于皮层结构,忽视了皮层下的视觉结构,如外侧膝状核(LGN)。动物研究已经显示了大量的经验依赖可塑性,使用功能磁共振成像,人类研究已经在白内障手术患者中证明了类似的特性。然而,在动物和人类研究中,LGN都没有被直接评估,主要是由于其体积小、组织异质性、低对比度/噪声比和低空间分辨率。方法:采用一种明显提高LGN可见度的新算法,对一组低视力患者进行视网膜干预恢复视力前后的LGN进行评估,并与正常视力对照进行比较。结果:组间和组内比较显示,基线时患者左侧LGN体积(p< 0.0001)和右侧LGN体积(p< 0.00002)明显小于1年随访时的体积。相同的基线和对照组的一年比较无显著性。左侧LGN基因治疗后体积增量与右侧视野(r = 0.71, p < 0.02)、左侧视野(r = 0.72, p = 0.018)体积增量呈显著正相关。右侧LGN的增量体积增加也呈现类似的正斜率,但没有达到显著性。讨论:这些结果表明,尽管在基线时体积明显减少,视网膜基因治疗促进了LGN的强劲扩张和体积的增加。恢复视力可能有助于在视网膜和LGN之间建立新的连接和/或揭开休眠连接的面纱。LGN发生结构变化的确切轨迹尚不清楚,但我们的数据显示,即使经过多年的低视力,RPE65患者的LGN在接受基因治疗一年后仍具有可塑性和扩大到接近正常体积的潜力。
{"title":"Neuroplasticity of the Lateral Geniculate Nucleus in Response to Retinal Gene Therapy in a Group of Patients with <i>RPE65</i> Mutations.","authors":"Manzar Ashtari,&nbsp;Mikhail Lipin,&nbsp;Michelle Duong,&nbsp;Gui-Shuang Ying,&nbsp;Yinxi Yu,&nbsp;Albert Maguire,&nbsp;Jean Bennett","doi":"10.2147/EB.S377275","DOIUrl":"https://doi.org/10.2147/EB.S377275","url":null,"abstract":"<p><strong>Introduction: </strong>Previous works on experience-dependent brain plasticity have been limited to the cortical structures, overlooking subcortical visual structures such as the lateral geniculate nucleus (LGN). Animal studies have shown substantial experience dependent plasticity and using fMRI, human studies have demonstrated similar properties in patients with cataract surgery. However, in neither animal nor human studies LGN has not been directly assessed, mainly due to its small size, tissue heterogeneity, low contrast/noise ratio, and low spatial resolution.</p><p><strong>Methods: </strong>Utilizing a new algorithm that markedly improves the LGN visibility, LGN was evaluated in a group of low vision patients before and after retinal intervention to reinstate vision and normal sighted matched controls.</p><p><strong>Results: </strong>Between and within groups comparisons showed that patients had significantly smaller left (p< 0.0001) and right (p < 0.00002) LGN volumes at baseline as compared to the one-year follow-up volumes. The same baseline and one year comparison in controls was not significant. Significant positive correlations were observed between the incremental volume increase after gene therapy of the left LGN and the incremental increase in the right (r = 0.71, p < 0.02) and left (r = 0.72, p = 0.018) visual fields. Incremental volume increase of the right LGN also showed a similar positive slope but did not reach significance.</p><p><strong>Discussion: </strong>These results show that despite significantly less volume at baseline, retinal gene therapy promotes robust expansion and increase in LGN volume. Reinstating vision may have facilitated the establishment of new connections between the retina and the LGN and/or unmasking of the dormant connections. The exact trajectory of the structural changes taking place in LGN is unclear but our data shows that even after years of low vision, the LGN in RPE65 patients has the potential for plasticity and expansion to a nearly normal volume one year after gene therapy administration.</p>","PeriodicalId":51844,"journal":{"name":"Eye and Brain","volume":"14 ","pages":"137-147"},"PeriodicalIF":4.4,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/39/70/eb-14-137.PMC9749418.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9489794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Involvement of High Mobility Group Box 1 Protein in Optic Nerve Damage in Diabetes. 高迁移率组1蛋白在糖尿病视神经损伤中的作用
IF 4.4 Q1 OPHTHALMOLOGY Pub Date : 2022-01-01 DOI: 10.2147/EB.S352730
Ghulam Mohammad, Renu A Kowluru

Introduction: Diabetic patients routinely have high levels of high mobility group box 1 (HMGB1) protein in their plasma, vitreous and ocular membranes, which is strongly correlated with subclinical chronic inflammation in the eye. Our previous work has suggested that high HMGB1 in diabetes plays a role in retinal inflammation and angiogenesis, but its role in the optic nerve damage is unclear. Therefore, our goal is to examine the role of HMGB1 in optic nerve damage in diabetes.

Methods: Gene expression of HMGB1 was quantified in the optic nerve from streptozotocin-induced diabetic mice by qRT-PCR, and their protein expressions by Western blot analysis and immunofluorescence staining. Using immunohistochemical technique, expression of reactive astrogliosis (indicator of neuroinflammation) and nerve demyelination/damage were determined by quantifying glial fibrillary acid protein (GFAP) and myelin basic protein (MBP), respectively. The role of HMGB1 in the optic nerve damage and alteration visual pathways was confirmed in mice receiving glycyrrhizin, a HMGB1 inhibitor. Similar parameters were measured in the optic nerve from human donors with diabetes.

Results: Compared to normal mice, diabetic mice exhibited increased levels of HMGB1, higher GFAP expression, and decreased MBP in the optic nerve. Double immunofluorescence microscopy revealed that diabetes induced increased HMGB1 immunoreactivities were significantly colocalized with GFAP in the optic nerve. Glycyrrhizin supplementation effectively reduced HMGB1 and maintained normal axonal myelination and visual conduction. Results from mice optic nerve confirmed the results obtained from human donors with diabetes.

Discussions: Thus, diabetes-induced HMGB1 upregulation promotes optic nerve demyelination and inflammation. The regulation of HMGB1 activation has potential to protect optic nerve damage and the abnormalities of visual pathways in diabetic patients.

导语:糖尿病患者血浆、玻璃体和眼膜中HMGB1蛋白水平普遍偏高,与眼部亚临床慢性炎症密切相关。我们之前的研究表明,糖尿病患者高HMGB1在视网膜炎症和血管生成中起作用,但其在视神经损伤中的作用尚不清楚。因此,我们的目标是研究HMGB1在糖尿病视神经损伤中的作用。方法:采用qRT-PCR法测定链脲霉素诱导的糖尿病小鼠视神经中HMGB1基因的表达,采用Western blot和免疫荧光染色法测定其蛋白表达。采用免疫组化技术,分别定量测定神经胶质原纤维酸蛋白(GFAP)和髓鞘碱性蛋白(MBP),检测反应性星形胶质增生(神经炎症指标)和神经脱髓鞘/损伤的表达。HMGB1抑制剂甘草酸在小鼠视神经损伤和视觉通路改变中的作用得到证实。在糖尿病患者的视神经中也测量了类似的参数。结果:与正常小鼠相比,糖尿病小鼠视神经HMGB1水平升高,GFAP表达升高,MBP降低。双免疫荧光显微镜显示,糖尿病引起的HMGB1免疫反应性升高与GFAP在视神经中明显共定位。补充甘草酸能有效降低HMGB1,维持正常的轴突髓鞘形成和视觉传导。小鼠视神经的结果证实了从糖尿病患者供体获得的结果。讨论:因此,糖尿病诱导的HMGB1上调可促进视神经脱髓鞘和炎症。调节HMGB1激活对糖尿病患者视神经损伤和视觉通路异常具有保护作用。
{"title":"Involvement of High Mobility Group Box 1 Protein in Optic Nerve Damage in Diabetes.","authors":"Ghulam Mohammad,&nbsp;Renu A Kowluru","doi":"10.2147/EB.S352730","DOIUrl":"https://doi.org/10.2147/EB.S352730","url":null,"abstract":"<p><strong>Introduction: </strong>Diabetic patients routinely have high levels of high mobility group box 1 (HMGB1) protein in their plasma, vitreous and ocular membranes, which is strongly correlated with subclinical chronic inflammation in the eye. Our previous work has suggested that high HMGB1 in diabetes plays a role in retinal inflammation and angiogenesis, but its role in the optic nerve damage is unclear. Therefore, our goal is to examine the role of HMGB1 in optic nerve damage in diabetes.</p><p><strong>Methods: </strong>Gene expression of HMGB1 was quantified in the optic nerve from streptozotocin-induced diabetic mice by qRT-PCR, and their protein expressions by Western blot analysis and immunofluorescence staining. Using immunohistochemical technique, expression of reactive astrogliosis (indicator of neuroinflammation) and nerve demyelination/damage were determined by quantifying glial fibrillary acid protein (GFAP) and myelin basic protein (MBP), respectively. The role of HMGB1 in the optic nerve damage and alteration visual pathways was confirmed in mice receiving glycyrrhizin, a HMGB1 inhibitor. Similar parameters were measured in the optic nerve from human donors with diabetes.</p><p><strong>Results: </strong>Compared to normal mice, diabetic mice exhibited increased levels of HMGB1, higher GFAP expression, and decreased MBP in the optic nerve. Double immunofluorescence microscopy revealed that diabetes induced increased HMGB1 immunoreactivities were significantly colocalized with GFAP in the optic nerve. Glycyrrhizin supplementation effectively reduced HMGB1 and maintained normal axonal myelination and visual conduction. Results from mice optic nerve confirmed the results obtained from human donors with diabetes.</p><p><strong>Discussions: </strong>Thus, diabetes-induced HMGB1 upregulation promotes optic nerve demyelination and inflammation. The regulation of HMGB1 activation has potential to protect optic nerve damage and the abnormalities of visual pathways in diabetic patients.</p>","PeriodicalId":51844,"journal":{"name":"Eye and Brain","volume":"14 ","pages":"59-69"},"PeriodicalIF":4.4,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/66/39/eb-14-59.PMC9109986.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9756010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neuro-Ophthalmological Optic Nerve Cupping: An Overview. 神经眼科视神经拔火罐:综述。
IF 4.4 Q1 OPHTHALMOLOGY Pub Date : 2021-12-14 eCollection Date: 2021-01-01 DOI: 10.2147/EB.S272343
Ethan Waisberg, Jonathan A Micieli

Optic nerve cupping or enlargement of the cup-to-disc ratio is widely recognized as a feature of glaucoma, however it may also occur in non-glaucomatous optic neuropathies. The most well-recognized non-glaucomatous optic neuropathies that cause cupping include compressive optic neuropathies, arteritic anterior ischemic optic neuropathies, hereditary optic neuropathies, and optic neuritis. Cupping is thought to consist of two main components: prelaminar and laminar thinning. The former is a shallow form of cupping and related to loss of retinal ganglion cells, whereas the latter involves damage to the lamina cribrosa and peripapillary scleral connective tissue. Differentiating glaucomatous and non-glaucomatous optic nerve cupping remains challenging even for experienced observers. Classically, the optic nerve in non-glaucomatous causes has pallor of the neuroretinal rim, but the optic nerve should not be examined in isolation. The patient's medical history, history of presenting illness, visual function (visual acuity, color vision and visual field testing) and ocular examination also need to be considered. Ancillary testing such as optical coherence tomography of the retinal nerve fiber layer and ganglion cell layer-inner plexiform layer may also be helpful in localizing the disease. In this review, we review the non-glaucomatous causes of cupping and provide an approach to evaluating a patient that presents with an enlarged cup-to-disc ratio.

视神经拔火罐或杯盘比增大被广泛认为是青光眼的一个特征,但它也可能发生在非青光眼视神经病变中。引起拔罐的最常见的非青光眼性视神经病变包括压缩性视神经病变、动脉前缺血性视神经病变、遗传性视神经病变和视神经炎。拔火罐被认为包括两个主要组成部分:层前和层减薄。前者是一种浅层拔火罐,与视网膜神经节细胞的丧失有关,而后者涉及到网层和乳头周围巩膜结缔组织的损伤。鉴别青光眼和非青光眼视神经拔火罐仍然具有挑战性,即使是有经验的观察者。典型地,视神经在非青光眼的原因有神经视网膜边缘苍白,但视神经不应单独检查。还需要考虑患者的病史、病史、视觉功能(视力、色觉和视野测试)和眼部检查。辅助检查如视网膜神经纤维层和神经节细胞层-内丛状层的光学相干断层扫描也可能有助于疾病的定位。在这篇综述中,我们回顾了拔罐的非青光眼原因,并提供了一种评估出现杯盘比增大的患者的方法。
{"title":"Neuro-Ophthalmological Optic Nerve Cupping: An Overview.","authors":"Ethan Waisberg,&nbsp;Jonathan A Micieli","doi":"10.2147/EB.S272343","DOIUrl":"https://doi.org/10.2147/EB.S272343","url":null,"abstract":"<p><p>Optic nerve cupping or enlargement of the cup-to-disc ratio is widely recognized as a feature of glaucoma, however it may also occur in non-glaucomatous optic neuropathies. The most well-recognized non-glaucomatous optic neuropathies that cause cupping include compressive optic neuropathies, arteritic anterior ischemic optic neuropathies, hereditary optic neuropathies, and optic neuritis. Cupping is thought to consist of two main components: prelaminar and laminar thinning. The former is a shallow form of cupping and related to loss of retinal ganglion cells, whereas the latter involves damage to the lamina cribrosa and peripapillary scleral connective tissue. Differentiating glaucomatous and non-glaucomatous optic nerve cupping remains challenging even for experienced observers. Classically, the optic nerve in non-glaucomatous causes has pallor of the neuroretinal rim, but the optic nerve should not be examined in isolation. The patient's medical history, history of presenting illness, visual function (visual acuity, color vision and visual field testing) and ocular examination also need to be considered. Ancillary testing such as optical coherence tomography of the retinal nerve fiber layer and ganglion cell layer-inner plexiform layer may also be helpful in localizing the disease. In this review, we review the non-glaucomatous causes of cupping and provide an approach to evaluating a patient that presents with an enlarged cup-to-disc ratio.</p>","PeriodicalId":51844,"journal":{"name":"Eye and Brain","volume":"13 ","pages":"255-268"},"PeriodicalIF":4.4,"publicationDate":"2021-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/66/ad/eb-13-255.PMC8684388.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39607542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Neuro-Ophthalmic Complications of Vestibular Schwannoma Resection: Current Perspectives. 前庭神经鞘瘤切除术的神经眼科并发症:目前的观点。
IF 4.4 Q1 OPHTHALMOLOGY Pub Date : 2021-10-01 eCollection Date: 2021-01-01 DOI: 10.2147/EB.S272326
Stephanie J Chiu, Simon J Hickman, Irene M Pepper, Jennifer H Y Tan, John Yianni, Joanna M Jefferis

Vestibular schwannomas (VSs), also called acoustic neuromas, are benign intracranial neoplasms of the vestibulocochlear (VIII) cranial nerve. Management options include "wait-and-scan," stereotactic radiosurgery and surgical resection. Due to the proximity of the VIII nerve to the facial (VII) nerve in the cerebello-pontine angle, the VII nerve is particularly vulnerable to the effects of surgical resection. This can result in poor eye closure, lagophthalmos and resultant corneal exposure post VS resection. Additionally, compression from the tumor or resection can cause trigeminal (V) nerve damage and a desensate cornea. The combination of an exposed and desensate cornea puts the eye at risk of serious ocular complications including persistent epithelial defects, corneal ulceration, corneal vascularization, corneal melting and potential perforation. The abducens (VI) nerve can be affected by a large intracranial VS causing raised intracranial pressure (a false localizing sign) or as a result of damage to the VI nerve at the time of resection. Other types of neurogenic strabismus are rare and typically transient. Contralaterally beating nystagmus as a consequence of vestibular dysfunction is common post-operatively. This generally settles to pre-operative levels as central compensation occurs. Ipsilaterally beating nystagmus post-operatively should prompt investigation for post-operative cerebrovascular complications. Papilledema (and subsequent optic atrophy) can occur as a result of a large VS causing raised intracranial pressure. Where papilledema follows surgical resection of a VS, it can indicate that cerebral venous sinus thrombosis has occurred. Poor visual function following VS resection can result as a combination of all these potential complications and is more likely with larger tumors.

前庭神经鞘瘤(VSs),也称为听神经瘤,是前庭耳蜗(VIII)颅神经的良性颅内肿瘤。治疗方案包括“等待扫描”、立体定向放射手术和手术切除。由于VII神经在小脑-桥脑角与面神经(VII)神经接近,因此VII神经特别容易受到手术切除的影响。这可能导致闭眼不良,眼球lagophthalmos和最终角膜暴露后VS切除术。此外,肿瘤压迫或切除可引起三叉神经(V)损伤和角膜致密。暴露和致密的角膜会使眼睛面临严重的眼部并发症的风险,包括持续的上皮缺陷、角膜溃疡、角膜血管化、角膜融化和潜在的穿孔。外展神经(VI)可受到较大的颅内VS的影响,导致颅内压升高(一种错误的定位征象),或由于VI神经在切除时受损。其他类型的神经源性斜视是罕见的,通常是短暂的。对侧跳动性眼球震颤作为前庭功能障碍的后果是常见的术后。随着中枢代偿的发生,这通常会稳定到术前水平。术后同侧跳动性眼球震颤应提示术后脑血管并发症的调查。视神经乳头水肿(以及随后的视神经萎缩)可由于大VS引起颅内压升高而发生。如果手术切除VS后出现乳头水肿,则表明发生了脑静脉窦血栓形成。切除VS后的视觉功能差可能是所有这些潜在并发症的综合结果,更有可能是较大的肿瘤。
{"title":"Neuro-Ophthalmic Complications of Vestibular Schwannoma Resection: Current Perspectives.","authors":"Stephanie J Chiu,&nbsp;Simon J Hickman,&nbsp;Irene M Pepper,&nbsp;Jennifer H Y Tan,&nbsp;John Yianni,&nbsp;Joanna M Jefferis","doi":"10.2147/EB.S272326","DOIUrl":"https://doi.org/10.2147/EB.S272326","url":null,"abstract":"<p><p>Vestibular schwannomas (VSs), also called acoustic neuromas, are benign intracranial neoplasms of the vestibulocochlear (VIII) cranial nerve. Management options include \"wait-and-scan,\" stereotactic radiosurgery and surgical resection. Due to the proximity of the VIII nerve to the facial (VII) nerve in the cerebello-pontine angle, the VII nerve is particularly vulnerable to the effects of surgical resection. This can result in poor eye closure, lagophthalmos and resultant corneal exposure post VS resection. Additionally, compression from the tumor or resection can cause trigeminal (V) nerve damage and a desensate cornea. The combination of an exposed and desensate cornea puts the eye at risk of serious ocular complications including persistent epithelial defects, corneal ulceration, corneal vascularization, corneal melting and potential perforation. The abducens (VI) nerve can be affected by a large intracranial VS causing raised intracranial pressure (a false localizing sign) or as a result of damage to the VI nerve at the time of resection. Other types of neurogenic strabismus are rare and typically transient. Contralaterally beating nystagmus as a consequence of vestibular dysfunction is common post-operatively. This generally settles to pre-operative levels as central compensation occurs. Ipsilaterally beating nystagmus post-operatively should prompt investigation for post-operative cerebrovascular complications. Papilledema (and subsequent optic atrophy) can occur as a result of a large VS causing raised intracranial pressure. Where papilledema follows surgical resection of a VS, it can indicate that cerebral venous sinus thrombosis has occurred. Poor visual function following VS resection can result as a combination of all these potential complications and is more likely with larger tumors.</p>","PeriodicalId":51844,"journal":{"name":"Eye and Brain","volume":"13 ","pages":"241-253"},"PeriodicalIF":4.4,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/eb/24/eb-13-241.PMC8491867.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39495188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Studies Utilizing Current Estimated CSF Pressure Equations Should Not Be Conducted and Published [Letter]. 利用目前估计的脑脊液压力方程的研究不应进行和发表[信]。
IF 4.4 Q1 OPHTHALMOLOGY Pub Date : 2021-09-24 eCollection Date: 2021-01-01 DOI: 10.2147/EB.S338935
David Fleischman, Hanspeter E Killer
1Department of Ophthalmology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; 2Department of Ophthalmology, Kantonsspital Aarau, Aarau, Switzerland Dear editor We took interest in the recent article by Qian Wang and colleagues, “Prevalence of Retinal Vein Occlusions and Estimated Cerebrospinal Fluid Pressure: The Kailuan Eye Study.” We agree with the authors that CSF pressure, in particular the perioptic subarachnoid space pressure, is likely important in the development of many cases of retinal vein occlusions. However, we were troubled by the methodology employed by the study team. While we appreciate the mention of our study that had found that formulae used to predict CSFP derived from clinical data were unable to accurately estimate CSF pressures, we were surprised that this formula was nonetheless used in the current study. Even more troubling is that the reference given for the justification of the formula, “eCSFP [mm Hg] = 0.44 * BMI [kg/m2] + 0.16 * DBP [mm Hg] – 0.18 * Age [years],” does not in fact explain its derivation. The Xie study from Critical Care used patientspecific anatomic measurements derived from MRI data in order to estimate CSFP, an important factor that has been excluded from the current study’s equation. CSF pressure is not static. It varies over time as a function of the production and resorption rate of CSF and body posture. A formula that is derived top down from preexisting data (such as BMI and DBP) is far from representing the complexity of CSF dynamics, including CSF pressure. Neither is CSF pressure and composition homogeneous throughout all CSF-containing spaces. Further, even if it could reflect the appropriate CSF pressure in the lumbar spine region, it is purely speculative to assume that this measurement could be extrapolated to the pressure within the subarachnoid space of the optic nerve. Several studies in patients with papilledema as well as normal tension glaucoma demonstrated “comparted” optic nerve sheaths, a finding that cautions even the assumption that the pressure measured at the lumber site reflects the pressure in the perioptic space. Thus, to assume that all CSF spaces connect via a linear continuum can be quite misleading. In conclusion, we are strongly supportive of research that will further the understanding of the cerebrospinal fluid’s role in ophthalmic disease. However, bad data are worse than no data. We would have expected that the limitations of such a study should have been clearly explained to the reader who may not be familiar with this complex topic, and we discourage the use of unvalidated formulae for CSF and ophthalmic research. Correspondence: David Fleischman Department of Ophthalmology, University of North Carolina at Chapel Hill, 5126 Bioinformatics Bldg #7040, Chapel Hill, NC, 27599-7040, USA Tel +1 919 259-9336 Fax +1 919 966-1908 Email david8fleischman@gmail.com
{"title":"Studies Utilizing Current Estimated CSF Pressure Equations Should Not Be Conducted and Published [Letter].","authors":"David Fleischman,&nbsp;Hanspeter E Killer","doi":"10.2147/EB.S338935","DOIUrl":"https://doi.org/10.2147/EB.S338935","url":null,"abstract":"1Department of Ophthalmology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; 2Department of Ophthalmology, Kantonsspital Aarau, Aarau, Switzerland Dear editor We took interest in the recent article by Qian Wang and colleagues, “Prevalence of Retinal Vein Occlusions and Estimated Cerebrospinal Fluid Pressure: The Kailuan Eye Study.” We agree with the authors that CSF pressure, in particular the perioptic subarachnoid space pressure, is likely important in the development of many cases of retinal vein occlusions. However, we were troubled by the methodology employed by the study team. While we appreciate the mention of our study that had found that formulae used to predict CSFP derived from clinical data were unable to accurately estimate CSF pressures, we were surprised that this formula was nonetheless used in the current study. Even more troubling is that the reference given for the justification of the formula, “eCSFP [mm Hg] = 0.44 * BMI [kg/m2] + 0.16 * DBP [mm Hg] – 0.18 * Age [years],” does not in fact explain its derivation. The Xie study from Critical Care used patientspecific anatomic measurements derived from MRI data in order to estimate CSFP, an important factor that has been excluded from the current study’s equation. CSF pressure is not static. It varies over time as a function of the production and resorption rate of CSF and body posture. A formula that is derived top down from preexisting data (such as BMI and DBP) is far from representing the complexity of CSF dynamics, including CSF pressure. Neither is CSF pressure and composition homogeneous throughout all CSF-containing spaces. Further, even if it could reflect the appropriate CSF pressure in the lumbar spine region, it is purely speculative to assume that this measurement could be extrapolated to the pressure within the subarachnoid space of the optic nerve. Several studies in patients with papilledema as well as normal tension glaucoma demonstrated “comparted” optic nerve sheaths, a finding that cautions even the assumption that the pressure measured at the lumber site reflects the pressure in the perioptic space. Thus, to assume that all CSF spaces connect via a linear continuum can be quite misleading. In conclusion, we are strongly supportive of research that will further the understanding of the cerebrospinal fluid’s role in ophthalmic disease. However, bad data are worse than no data. We would have expected that the limitations of such a study should have been clearly explained to the reader who may not be familiar with this complex topic, and we discourage the use of unvalidated formulae for CSF and ophthalmic research. Correspondence: David Fleischman Department of Ophthalmology, University of North Carolina at Chapel Hill, 5126 Bioinformatics Bldg #7040, Chapel Hill, NC, 27599-7040, USA Tel +1 919 259-9336 Fax +1 919 966-1908 Email david8fleischman@gmail.com","PeriodicalId":51844,"journal":{"name":"Eye and Brain","volume":"13 ","pages":"239-240"},"PeriodicalIF":4.4,"publicationDate":"2021-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/e2/e2/eb-13-239.PMC8478159.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39474085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Eye and Brain
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1