Background: Delayed Dark-Adapted vision Recovery (DAR) is a biomarker for Age-related Macular Degeneration (AMD), however its measurement is burdensome for patients and examiners.
Methods: In this study, we developed a portable, wireless and user-friendly system that employs a headset with a smartphone to deliver controlled photo-bleach and monocular pattern reversal stimuli, while using custom electroencephalography (EEG) electrodes and electronics in order to measure Dark-Adapted Visual Evoked Potentials (DAVEP) objectively and separately at the peripheral and central visual field. This is achieved in one comfortable 20-minute session, without requiring subject reporting. DAVEP responses post photo-bleach for up to 15 minutes were measured concurrently from both eyes in 12 AMD-patients, 1 degenerative myopia patient, and 8 controls who had no diagnosed macular vision loss.
Results: Robust positive polarity DAVEP responses were observed at 200-500 ms from stimulus onset to scotopic stimuli that have been seldom reported and analyzed previously. The amplitude recovery of the DAVEP response was significantly delayed in AMD patients as compared to controls. We developed DAVEP1 scores, a simple metric for DAR, which classified 90% of subject eyes correctly, indicating the presence of AMD in at least one eye of all pre-confirmed subjects with this diagnosis.
Conclusion: We developed a user-friendly, portable VEP system and DAVEP1 metric, which show a high potential to identify DAR-deficits in AMD-patients. This novel technology could aid in early diagnosis of AMD.
Purpose: The aim of the study is to examine the association between amblyopia type and the presence of nystagmus on binocular and monocular functions of the fellow (FE) and amblyopic eye (AE).
Methods: We recruited 19 controls and 44 amblyopes (anisometropes=13, strabismic=10, mixed=21). We measured visual, grating, and vernier acuities and high/low spatial frequency (SF) contrast sensitivities in each eye using a staircase method. Stereoacuity was measured with the Titmus fly test. We recorded fixation eye movements (FEM) using high-resolution video-oculography. Subjects were classified as having either no nystagmus (n=18), fusion maldevelopment nystagmus syndrome (FMNS) (n=12), or nystagmus without any structural anomalies that does not meet the criteria for FMNS or infantile nystagmus (n=14).
Results: Analysis of visual function by clinical amblyopia type showed that patients with strabismus/mixed amblyopia (F (2,54)=9.5, p<0.001) were more likely to have poor stereopsis while controlling for AE grating acuity deficit. The FE of patients with anisometropia had greater contrast sensitivity deficits at low (F (2,43)=4.4, p=0.018) and high SF (F (2,42)=10.1, p<0.001). Analysis of visual function by FEM characteristics (low SF: (F (3,43)=4.3, p=0.010) and high SF: (F (3,42)=7.1, p=0.001) showed that the FE of patients with FMNS had worse low and high SF contrast sensitivities, whereas those without FMNS had greater contrast sensitivity deficits only at high SF compared to controls. Patients with FMNS (F (3,54) = 12.9, p<0.001) were more likely to have poor stereopsis while controlling for AE grating acuity deficit compared to patients without FMNS. All amblyopic patients had worse high SF contrast sensitivity of the AE irrespective of type or FEM characteristics (Type = F (2,43)=8.8, p=0.001; FEM characteristics= F (3,43)=5.1, p=0.004).
Conclusion: The presence of FMNS in patients with strabismic/mixed amblyopia is associated with poor/absent stereopsis. FE deficits vary across amblyopia type. Like FEM abnormalities, visual function deficits are seen in the FE of patients with and without nystagmus.
Purpose: To assess the reliability of automated visual field studies with neurological abnormalities and normal reliability indices that were inconsistent with the remainder of the neuro-ophthalmic assessment.
Methods: Retrospective observational study from the clinical practice of a neuro-ophthalmologist at a tertiary referral center.
Results: From 2230 patient charts, ten cases were identified that met the inclusion criteria. In eight of the cases repeat visual field testing had no reproducible abnormality. Four of these cases were concerning for a bitemporal or homonymous hemianopia. None of the patients, including the two cases with a reproducible defect, developed any convincing manifestations of an organic disease related to the visual field defect.
Conclusion: Our findings suggest that even marked neurological abnormalities on reliable automated visual field tests can be false. When the remainder of the neuro-ophthalmic evaluation is inconsistent with the test result, we recommend that clinicians attempt to immediately repeat the visual field study.
Objective: To report on the lipocalin-type prostaglandin D synthase (L-PGDS) concentrations in the cerebrospinal fluid (CSF) of the perioptic and lumbar subarachnoid space (SAS) in patients with radiologically proven optic nerve (ON) sheath compartmentation presenting as normal-tension glaucoma (NTG).
Methods: Retrospective biochemical analysis of CSF in thirteen patients with ON sheath compartmentation presenting as NTG (four females, mean age 70±8 years). CSF was sampled from the SAS of the ON during ON sheath fenestration for ON sheath compartmentation and from the lumbar SAS at the time of lumbar puncture. Nephelometry was used for the quantification of L-PGDS and albumin concentration. Albumin was measured in order to assess the amount of contamination with serum in the CSF samples taken from the ON SAS. Main outcome measures were L-PGDS concentrations in the CSF of the perioptic and lumbar SAS.
Results: Mean L-PGDS concentration was 24±8 mg/L in the lumbar SAS compared to 33±27 mg/L without correction of serum contamination and 45±39 mg/L after correction of serum contamination in the perioptic SAS. The difference between the lumbar and the perioptic SAS was statistically significant (P=0.0047 without correction of serum contamination, P=0.0002 with correction of serum contamination; Mann-Witney U-test).
Conclusion: This study demonstrates a concentration gradient of L-PGDS levels within the CSF with a statistically significant higher concentration in the compartmentalized perioptic SAS compared to that in the lumbar SAS. Biochemical changes in the perioptic SAS might be involved in the pathophysiology in NTG patients with ON sheath compartmentation.
Introduction: Gorlin-Goltz syndrome (GGS) also known as nevoid basal cell carcinoma syndrome (NBCCS) is a complex rare genetic disorder characterized by a wide range of clinical and radiological manifestations. Ophthalmological alterations have always been reported, but no study on the eventual pattern visual evoked potentials (pVEPs) abnormalities has yet been published.
Purpose: The purpose of the study was to evaluate the functionality of the optic pathways in a group of NBCCS patients through pattern reversal VEPs, after a thorough exclusion of subjects with preexisting ocular and optic pathways pathologies.
Methods: Nineteen NBCCS patients (31 eyes) and 20 healthy controls (40 eyes) have been recruited for this study. All subjects underwent an evaluation of the functionality of the optic pathways through pVEPs with small (120'), medium (60'), and large (15') check size stimulation.
Results: NBCCS patients showed a statistically significant alteration in the transmission of the macular pathway function when compared to controls. PVEPs analysis confirmed a reduced amplitude and an increased latency of the P100 component, suggesting an involvement of the visual pathway even in the absence of ocular clinical manifestations.
Conclusion: Visual pathways may have been affected both by a subclinical myelination deficit, determined directly by the genetic alteration, as well as by neurological abnormalities typical of this syndrome. Further studies are warranted.
Purpose: Retinal layer thickness parameters measured by optical coherence tomography (OCT) are emerging biomarkers of neuroaxonal degeneration and inflammation in multiple sclerosis (MS). We aimed to evaluate the value of retinal layer thickness for prediction of disability worsening and relapse in a real-world MS cohort.
Patients and methods: For this longitudinal observational study, we included MS patients with spectral-domain OCT scans available and ≥1 year of clinical follow-up. The value of peripapillary retinal nerve fiber layer (pRNFL), macular ganglion-cell-and-inner-plexiform-layer (GCIPL) and inner nuclear layer (INL) thickness for prediction of disability worsening and relapse during the observation period was tested by multivariate models.
Results: We analyzed 60 MS patients during a mean observation period of 2.9 years (SD 1.8). Lower baseline thickness of GCIPL (cut-off <77µm; HR 4.1, p=0.001) and pRNFL (cut-off ≤88µm; HR 3.1, p=0.019) were associated with an increased risk of disability worsening. Longitudinally, mean thinning rates were -0.8µm/year (SD 1.6) for GCIPL, -0.6µm/year (SD 3.5) for pRNFL. GCIPL thinning ≥1.0µm/year and pRNFL >1.5µm/year is associated with higher likelihood of disability worsening (HR 5.7, p=0.009 and HR 6.8, p=0.003, respectively). INL thickened in patients with relapse by a mean 0.9µm while thinning by 0.3µm in patients without relapse (p=0.04). In multivariate analyses, INL thickening was associated with an increased probability of relapse (OR 17.8, p=0.023).
Conclusion: Cross-sectional and longitudinal measurement of GCIPL and pRNFL thinning is reliable as a biomarker of disability worsening in a real-world setting. Change of INL thickness is a promising marker of relapse, i.e. inflammatory activity.
Dry eye and migraine are common diseases with large societal and economic burdens that have recently been associated in the literature. This review outlines the link between dry eye and migraine, which may have implications for reducing their respective burdens. We highlight possible shared pathophysiology, including peripheral and central sensitization, as the potential link between dry eye and migraine. Finally, therapies targeting similar pathophysiological mechanisms between dry eye and migraine are discussed.
Craniosynostosis, a premature fusion of cranial sutures that can be isolated or syndromic, is a congenital defect with a broad, multisystem clinical spectrum. The visual pathway is prone to derangements in patients with craniosynostosis, particularly in syndromic cases, and there is a risk for permanent vision loss when ocular disease complications are not identified and properly treated early in life. Extensive advancements have been made in our understanding of the etiologies underlying vision loss in craniosynostosis over the last 20 years. Children with craniosynostosis are susceptible to interruptions in visual input arising from strabismus, refractive errors, and corneal damage; any of these aberrations can result in understimulation of the visual cortex during childhood neurodevelopment and permanent amblyopia. Elevated intracranial pressure resulting from abnormal cranial shape or volume can lead to papilledema and, ultimately, optic atrophy and vision loss. A pediatric ophthalmologist is a crucial component of the multidisciplinary care team that should be involved in the care of craniosynostosis patients and consistent ophthalmologic follow-up can help minimize the risk to vision posed by such entities as papilledema and amblyopia. This article aims to review the current understanding of neuro-ophthalmological manifestations in craniosynostosis and explore diagnostic and management considerations for the ophthalmologist taking care of these patients.
Glaucoma, a group of diseases characterized by progressive optic nerve degeneration that results in irreversible blindness, can be considered a neurodegenerative disorder of both the eye and the brain. Increasing evidence from human and animal studies have shown that glaucoma shares some common neurodegenerative pathways with Alzheimer's disease (AD) and other tauopathies, such as chronic traumatic encephalopathy (CTE) and frontotemporal dementia. This hypothesis is based on the focal adhesion pathway hypothesis and the spreading hypothesis of tau. Not only has the Apolipoprotein E (APOE) gene been shown to be associated with AD, but also with primary open angle glaucoma (POAG). This review will highlight the relevant literature in the past 20 years from PubMed that show the pathogenic overlap between POAG and AD. Neurodegenerative pathways that contribute to transsynaptic neurodegeneration in AD and other tauopathies might also be similar to those in glaucomatous neurodegeneration.