While current antivirals primarily target viral proteins, host-directed strategies remain underexplored. Here, we performed a genome-wide CRISPRi screening to identify the host protein, Hepatocyte Growth Factor-Regulated Tyrosine Kinase Substrate (HGS), as essential for the pan-coronaviruses infection both in vitro and in vivo. Mechanistically, HGS directly interacts with the viral membrane (M) protein, facilitating its trafficking to the ER-Golgi intermediate compartment (ERGIC) for virion assembly. Conversely, HGS deficiency caused M retention in the ER, blocking assembly. Leveraging this interaction, we designed M-derived peptides and screened over 5,000 FDA-approved drugs, identifying riboflavin tetrabutyrate (RTB). Both the peptides and RTB bind HGS and disrupt its interaction with the M protein, leading to M retention in the ER and subsequent blockade of virion assembly. These agents demonstrated broad anti-pan-coronavirus activity in vitro and in vivo. Collectively, our findings establish HGS as a druggable host target and identify RTB as a promising broad-spectrum antiviral candidate.
{"title":"Targeting the host factor HGS-viral membrane protein interaction in coronavirus infection.","authors":"Xubing Long,Rongrong Chen,Rong Bai,Buyun Tian,Yu Cao,Kangying Chen,Fuyu Li,Yiliang Wang,Yongjie Tang,Qi Yang,Liping Ma,Fan Wang,Maoge Zhou,Xianjie Qiu,Yongzhi Lu,Jie Zheng,Peng Zhou,Xinwen Chen,Qian Liu,Xuepeng Wei,Yongxia Shi,Yanhong Xue,Jincun Zhao,Wei Ji,Liqiao Hu,Jinsai Shang,Tao Xu,Zonghong Li","doi":"10.1172/jci200225","DOIUrl":"https://doi.org/10.1172/jci200225","url":null,"abstract":"While current antivirals primarily target viral proteins, host-directed strategies remain underexplored. Here, we performed a genome-wide CRISPRi screening to identify the host protein, Hepatocyte Growth Factor-Regulated Tyrosine Kinase Substrate (HGS), as essential for the pan-coronaviruses infection both in vitro and in vivo. Mechanistically, HGS directly interacts with the viral membrane (M) protein, facilitating its trafficking to the ER-Golgi intermediate compartment (ERGIC) for virion assembly. Conversely, HGS deficiency caused M retention in the ER, blocking assembly. Leveraging this interaction, we designed M-derived peptides and screened over 5,000 FDA-approved drugs, identifying riboflavin tetrabutyrate (RTB). Both the peptides and RTB bind HGS and disrupt its interaction with the M protein, leading to M retention in the ER and subsequent blockade of virion assembly. These agents demonstrated broad anti-pan-coronavirus activity in vitro and in vivo. Collectively, our findings establish HGS as a druggable host target and identify RTB as a promising broad-spectrum antiviral candidate.","PeriodicalId":520097,"journal":{"name":"The Journal of Clinical Investigation","volume":"50 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145765491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jennifer Grandis,Hua Li,Benjamin A Harrison,Andrew Lh Webster,Joanna Pucilowska,Austin Nguyen,Jinho Lee,Gordon B Mills,Jovanka Gencel-Augusto,Yan Zeng,Steven R Long,Mi-Ok Kim,Rex H Lee,David I Kutler,Theresa Scognamiglio,Margaret Brandwein-Weber,Mark Urken,Inna Khodos,Elisa de Stanchina,Yu-Chien Lin,Frank X Donovan,Settara C Chandrasekharappa,Moonjung Jung,Mathijs A Sanders,Agata Smogorzewska,Daniel E Johnson
Fanconi anemia (FA) confers a high risk (~700-fold increase) of solid tumor formation, most often head and neck squamous cell carcinoma (HNSCC). FA germline DNA repair defects preclude administration of most chemotherapies and prior hematopoietic stem cell transplantation limits use of immunotherapy. Thus, surgery and judicious delivery of radiation offer the only treatment options, with most patients succumbing to their cancers. A paucity of preclinical models has limited the development of new treatments. Here, we report, to our knowledge, the first patient-derived xenografts (PDXs) of FA-HNSCC and highlight the efficacy of FDA-approved EGFR targeted therapies in tumors with high EGFR/p-EGFR levels and the activity of the FDA-approved Bcl-2 inhibitor venetoclax in a FA-HNSCC PDX overexpressing Bcl-2. These findings support the development of precision medicine approaches for FA-HNSCC.
{"title":"Patient-Derived Xenograft Models of Fanconi Anemia-Associated Head and Neck Cancer Identify Personalized Therapeutic Strategies.","authors":"Jennifer Grandis,Hua Li,Benjamin A Harrison,Andrew Lh Webster,Joanna Pucilowska,Austin Nguyen,Jinho Lee,Gordon B Mills,Jovanka Gencel-Augusto,Yan Zeng,Steven R Long,Mi-Ok Kim,Rex H Lee,David I Kutler,Theresa Scognamiglio,Margaret Brandwein-Weber,Mark Urken,Inna Khodos,Elisa de Stanchina,Yu-Chien Lin,Frank X Donovan,Settara C Chandrasekharappa,Moonjung Jung,Mathijs A Sanders,Agata Smogorzewska,Daniel E Johnson","doi":"10.1172/jci195334","DOIUrl":"https://doi.org/10.1172/jci195334","url":null,"abstract":"Fanconi anemia (FA) confers a high risk (~700-fold increase) of solid tumor formation, most often head and neck squamous cell carcinoma (HNSCC). FA germline DNA repair defects preclude administration of most chemotherapies and prior hematopoietic stem cell transplantation limits use of immunotherapy. Thus, surgery and judicious delivery of radiation offer the only treatment options, with most patients succumbing to their cancers. A paucity of preclinical models has limited the development of new treatments. Here, we report, to our knowledge, the first patient-derived xenografts (PDXs) of FA-HNSCC and highlight the efficacy of FDA-approved EGFR targeted therapies in tumors with high EGFR/p-EGFR levels and the activity of the FDA-approved Bcl-2 inhibitor venetoclax in a FA-HNSCC PDX overexpressing Bcl-2. These findings support the development of precision medicine approaches for FA-HNSCC.","PeriodicalId":520097,"journal":{"name":"The Journal of Clinical Investigation","volume":"41 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145765489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chronic pain etiology involves a shared genetic profile, but its cellular context is poorly defined. In a study published in this issue of the JCI, Toikumo et al. integrated a chronic pain GWAS meta-analysis (n >1.2 million) with single-cell omics data from human brain and dorsal root ganglia. Genetic risk was predominantly enriched in central glutamatergic neurons, particularly those in the prefrontal cortex, hippocampus, and amygdala. In the periphery, the C-fiber nociceptor subtype hPEP.TRPV1/A1.2 was highlighted. Implicated genes converged on involvement in synaptic function and neuron projection development. This work identifies specific central and peripheral cell types that define the genetic architecture of chronic pain, providing a foundation for targeted translational research.
{"title":"A high-resolution genomic roadmap for chronic pain converges on glutamatergic neurons and C-fibers.","authors":"Erick J Rodríguez-Palma,Rajesh Khanna","doi":"10.1172/jci200554","DOIUrl":"https://doi.org/10.1172/jci200554","url":null,"abstract":"Chronic pain etiology involves a shared genetic profile, but its cellular context is poorly defined. In a study published in this issue of the JCI, Toikumo et al. integrated a chronic pain GWAS meta-analysis (n >1.2 million) with single-cell omics data from human brain and dorsal root ganglia. Genetic risk was predominantly enriched in central glutamatergic neurons, particularly those in the prefrontal cortex, hippocampus, and amygdala. In the periphery, the C-fiber nociceptor subtype hPEP.TRPV1/A1.2 was highlighted. Implicated genes converged on involvement in synaptic function and neuron projection development. This work identifies specific central and peripheral cell types that define the genetic architecture of chronic pain, providing a foundation for targeted translational research.","PeriodicalId":520097,"journal":{"name":"The Journal of Clinical Investigation","volume":"3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145752630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mitochondrial metabolism orchestrates T cell functions, yet the role of specific mitochondrial components in distinct T cell subsets remains poorly understood. Here, we explored the role of mitochondrial complex II (MC II), the only complex from the electron transport chain (ETC) that plays a role in both ETC and metabolism, in regulating T cell functions. Surprisingly, MC II exerts divergent effects on CD4+ and CD8+ T cell activation and function. Using T cell-specific MC II subunit, succinate dehydrogenase A-deficient (SDHA-deficient) mice, we integrated single-cell RNA-seq and metabolic profiling, with in vitro and in vivo T cell functional assays to illuminate these differences. SDHA deficiency induced metabolic changes and remodeled gene expression exclusively in activated T cells. In CD4+ T cells, SDHA loss dampened both oxidative phosphorylation (OXPHOS) and glycolysis, impaired cytokine production, proliferation, and reduced CD4+ T cell-mediated graft-versus-host disease after allogeneic stem cell transplantation (SCT). In contrast, SDHA deficiency in CD8+ T cells reduced OXPHOS but paradoxically upregulated glycolysis and demonstrated enhanced cytotoxic functions in vitro and in vivo. This metabolic reprogramming endowed SDHA-KO CD8+ T cells with superior in vivo antitumor efficacy after immune checkpoint inhibitor therapy and allogeneic SCT. These findings reveal MC II as a bifurcation point for metabolic and functional specialization in CD4+ and CD8+ T cells.
{"title":"Mitochondrial complex II orchestrates divergent effects in CD4+ and CD8+ T cells.","authors":"Keisuke Seike,Shih-Chun A Chu,Yuichi Sumii,Takashi Ikeda,Meng-Chih Wu,Laure Maneix,Dongchang Zhao,Yaping Sun,Marcin Cieslik,Pavan Reddy","doi":"10.1172/jci194134","DOIUrl":"https://doi.org/10.1172/jci194134","url":null,"abstract":"Mitochondrial metabolism orchestrates T cell functions, yet the role of specific mitochondrial components in distinct T cell subsets remains poorly understood. Here, we explored the role of mitochondrial complex II (MC II), the only complex from the electron transport chain (ETC) that plays a role in both ETC and metabolism, in regulating T cell functions. Surprisingly, MC II exerts divergent effects on CD4+ and CD8+ T cell activation and function. Using T cell-specific MC II subunit, succinate dehydrogenase A-deficient (SDHA-deficient) mice, we integrated single-cell RNA-seq and metabolic profiling, with in vitro and in vivo T cell functional assays to illuminate these differences. SDHA deficiency induced metabolic changes and remodeled gene expression exclusively in activated T cells. In CD4+ T cells, SDHA loss dampened both oxidative phosphorylation (OXPHOS) and glycolysis, impaired cytokine production, proliferation, and reduced CD4+ T cell-mediated graft-versus-host disease after allogeneic stem cell transplantation (SCT). In contrast, SDHA deficiency in CD8+ T cells reduced OXPHOS but paradoxically upregulated glycolysis and demonstrated enhanced cytotoxic functions in vitro and in vivo. This metabolic reprogramming endowed SDHA-KO CD8+ T cells with superior in vivo antitumor efficacy after immune checkpoint inhibitor therapy and allogeneic SCT. These findings reveal MC II as a bifurcation point for metabolic and functional specialization in CD4+ and CD8+ T cells.","PeriodicalId":520097,"journal":{"name":"The Journal of Clinical Investigation","volume":"27 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145752631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lingling Miao,David Milewski,Amy Coxon,Tara Gelb,Khalid A Garman,Jadon Porch,Arushi Khanna,Loren Collado,Natasha T Hill,Kenneth Daily,Serena Vilasi,Danielle Reed,Tiffany Alexander,Gabriel J Starrett,Maharshi Chakraborty,Young Song,Rachel Choi,Vineela Gangalapudi,Josiah Seaman,Andrew Morton,Klaus J Busam,Christopher R Vakoc,Daniel J Urban,Min Shen,Matthew D Hall,Richard Sallari,Javed Khan,Berkley E Gryder,Isaac Brownell
Over 15% of cancers worldwide are caused by viruses. Merkel cell polyomavirus (MCPyV) is the most recently discovered human oncovirus and is the only polyomavirus that drives malignant tumors in humans. Here, we show that MCPyV+ Merkel cell carcinoma is defined by neuroendocrine-lineage core regulatory (CR) transcription factors (TFs) (ATOH1, INSM1, ISL1, LHX3, POU4F3, and SOX2) that were essential for tumor survival and that co-bound chromatin with the viral small T antigen at super enhancers. Moreover, MCPyV integration sites were enriched at these neuroendocrine super enhancers. We further discovered that the MCPyV noncoding control region contained a homeodomain binding motif absent in other polyomaviruses that bound ISL1 and LHX3 and depended on them for T antigen expression. To therapeutically target the CR factors, we used histone deacetylase (HDAC) inhibitors to collapse the chromatin architecture and induce topological blurring of superenhancer loops, abrogating core TF expression and halting tumor growth. To our knowledge, our study presents the first example of oncogenic cross-regulation between viral and human epigenomic circuitry to generate interlocking and essential transcriptional feedback circuits that explain why MCPyV causes neuroendocrine cancer and represent a tumor dependency that can be targeted therapeutically.
{"title":"Interlocking host and viral cis-regulatory networks drive Merkel cell carcinoma.","authors":"Lingling Miao,David Milewski,Amy Coxon,Tara Gelb,Khalid A Garman,Jadon Porch,Arushi Khanna,Loren Collado,Natasha T Hill,Kenneth Daily,Serena Vilasi,Danielle Reed,Tiffany Alexander,Gabriel J Starrett,Maharshi Chakraborty,Young Song,Rachel Choi,Vineela Gangalapudi,Josiah Seaman,Andrew Morton,Klaus J Busam,Christopher R Vakoc,Daniel J Urban,Min Shen,Matthew D Hall,Richard Sallari,Javed Khan,Berkley E Gryder,Isaac Brownell","doi":"10.1172/jci188924","DOIUrl":"https://doi.org/10.1172/jci188924","url":null,"abstract":"Over 15% of cancers worldwide are caused by viruses. Merkel cell polyomavirus (MCPyV) is the most recently discovered human oncovirus and is the only polyomavirus that drives malignant tumors in humans. Here, we show that MCPyV+ Merkel cell carcinoma is defined by neuroendocrine-lineage core regulatory (CR) transcription factors (TFs) (ATOH1, INSM1, ISL1, LHX3, POU4F3, and SOX2) that were essential for tumor survival and that co-bound chromatin with the viral small T antigen at super enhancers. Moreover, MCPyV integration sites were enriched at these neuroendocrine super enhancers. We further discovered that the MCPyV noncoding control region contained a homeodomain binding motif absent in other polyomaviruses that bound ISL1 and LHX3 and depended on them for T antigen expression. To therapeutically target the CR factors, we used histone deacetylase (HDAC) inhibitors to collapse the chromatin architecture and induce topological blurring of superenhancer loops, abrogating core TF expression and halting tumor growth. To our knowledge, our study presents the first example of oncogenic cross-regulation between viral and human epigenomic circuitry to generate interlocking and essential transcriptional feedback circuits that explain why MCPyV causes neuroendocrine cancer and represent a tumor dependency that can be targeted therapeutically.","PeriodicalId":520097,"journal":{"name":"The Journal of Clinical Investigation","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145752619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Approximately 80% of Merkel cell carcinoma (MCC) cases are caused by Merkel cell polyomavirus (MCV), driven by its T antigen oncogene. Why MCV drives MCC, a skin cancer that displays the neuroendocrine Merkel cell phenotype, remains unclear. In this issue of the JCI, Miao et al. demonstrated that MCC tumor survival requires neuroendocrine-lineage transcription factors, which are recruited to superenhancers (SEs) with the viral small T antigen oncoprotein to promote the neuroendocrine Merkel cell lineage of the cancer. Surprisingly, SEs mapped near the MCV integration site in MCC, and two SE-associated neuroendocrine transcription factors drove viral T antigen gene expression. MCV oncogene and neuroendocrine transcriptional network interactions rendered this viral tumorigenesis dependent on the Merkel cell lineage. Together with reports from other groups, the findings explain why MCV-associated cancer is specifically linked to the Merkel cell phenotype and identify epigenetic strategies targeting of lineage-dependent oncogene circuitry to treat virus-positive MCC.
{"title":"Tumor virus-induced lineage survival circuit drives Merkel cell carcinogenesis.","authors":"Masahiro Shuda","doi":"10.1172/jci200581","DOIUrl":"https://doi.org/10.1172/jci200581","url":null,"abstract":"Approximately 80% of Merkel cell carcinoma (MCC) cases are caused by Merkel cell polyomavirus (MCV), driven by its T antigen oncogene. Why MCV drives MCC, a skin cancer that displays the neuroendocrine Merkel cell phenotype, remains unclear. In this issue of the JCI, Miao et al. demonstrated that MCC tumor survival requires neuroendocrine-lineage transcription factors, which are recruited to superenhancers (SEs) with the viral small T antigen oncoprotein to promote the neuroendocrine Merkel cell lineage of the cancer. Surprisingly, SEs mapped near the MCV integration site in MCC, and two SE-associated neuroendocrine transcription factors drove viral T antigen gene expression. MCV oncogene and neuroendocrine transcriptional network interactions rendered this viral tumorigenesis dependent on the Merkel cell lineage. Together with reports from other groups, the findings explain why MCV-associated cancer is specifically linked to the Merkel cell phenotype and identify epigenetic strategies targeting of lineage-dependent oncogene circuitry to treat virus-positive MCC.","PeriodicalId":520097,"journal":{"name":"The Journal of Clinical Investigation","volume":"14 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145752622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Studies of amyloid-β (Aβ) in Alzheimer's disease pathology have revealed the peptide's complex roles in synaptic function. The study by Siddu et al. in this issue clarifies the contexts in which Aβ peptides may be synaptogenic or synaptotoxic. This commentary integrates the study's major findings with the salient findings of others that, over recent years, have redefined Aβ from a troublesome waste product into a physiological agent of the innate immune response and a modulator of synaptic homeostasis. Convergent evidence demonstrates how free, nonaggregated Aβ supports synaptic structure and activity, whereas oligomeric assemblies enact an adaptive brake on excitatory drive that can become maladaptive with age and inflammation. This redefined perspective on Aβ function emphasizes an evolutionarily conserved feedback loop linking neuronal activity, amyloid generation, and synaptic tuning that protects energy balance under stress but, when dysregulated, promotes proteostatic failure, persistent neuroinflammation, and network dysfunction characteristic of Alzheimer's disease.
{"title":"From synaptic guardian to neurodegenerative culprit: rewiring the amyloid-β feedback loop in Alzheimer's disease.","authors":"Joachim Herz","doi":"10.1172/jci200393","DOIUrl":"https://doi.org/10.1172/jci200393","url":null,"abstract":"Studies of amyloid-β (Aβ) in Alzheimer's disease pathology have revealed the peptide's complex roles in synaptic function. The study by Siddu et al. in this issue clarifies the contexts in which Aβ peptides may be synaptogenic or synaptotoxic. This commentary integrates the study's major findings with the salient findings of others that, over recent years, have redefined Aβ from a troublesome waste product into a physiological agent of the innate immune response and a modulator of synaptic homeostasis. Convergent evidence demonstrates how free, nonaggregated Aβ supports synaptic structure and activity, whereas oligomeric assemblies enact an adaptive brake on excitatory drive that can become maladaptive with age and inflammation. This redefined perspective on Aβ function emphasizes an evolutionarily conserved feedback loop linking neuronal activity, amyloid generation, and synaptic tuning that protects energy balance under stress but, when dysregulated, promotes proteostatic failure, persistent neuroinflammation, and network dysfunction characteristic of Alzheimer's disease.","PeriodicalId":520097,"journal":{"name":"The Journal of Clinical Investigation","volume":"16 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145752624","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Triple-negative breast cancer (TNBC), being both aggressive and highly lethal, poses a major clinical challenge in terms of treatment. Its heterogeneity and lack of hormone receptors or HER2 expression further restrict the availability of targeted therapy. Breast cancer stem cells (BCSCs), known to fuel TNBC malignancy, are now being exploited as a vulnerability for TNBC treatment. Here, we dissected the transcriptome of BCSCs and identified kinesin family member 20A (KIF20A) as a key regulator of BCSC survival and TNBC tumorigenesis. Genetic depletion or pharmacological inhibition of KIF20A impairs BCSC viability and tumor initiation and development in vitro and in vivo. Mechanistically, KIF20A supports BCSC stemness through modulation of mitochondrial oxidative phosphorylation, which is repressed by SMARCA4, a component of the SWI/SNF chromatin remodeling complex. Therapeutically, KIF20A inhibition sensitizes TNBC xenografts to standard-of-care chemotherapy. Our study highlights the importance of targeting KIF20A to exploit BCSC vulnerabilities in TNBC.
{"title":"Targeting kinesin family member 20A sensitizes stem-like triple-negative breast cancer cells to standard chemotherapy.","authors":"Yayoi Adachi,Weilong Chen,Cheng Zhang,Tao Wang,Nina Gildor,Rachel Shi,Haoyong Fu,Masashi Takeda,Qian Liang,Fangzhou Zhao,Hongyi Liu,Jun Fang,Jin Zhou,Hongwei Yao,Lianxin Hu,Shina Li,Lei Guo,Lin Xu,Ling Xie,Xian Chen,Chengheng Liao,Qing Zhang","doi":"10.1172/jci182394","DOIUrl":"https://doi.org/10.1172/jci182394","url":null,"abstract":"Triple-negative breast cancer (TNBC), being both aggressive and highly lethal, poses a major clinical challenge in terms of treatment. Its heterogeneity and lack of hormone receptors or HER2 expression further restrict the availability of targeted therapy. Breast cancer stem cells (BCSCs), known to fuel TNBC malignancy, are now being exploited as a vulnerability for TNBC treatment. Here, we dissected the transcriptome of BCSCs and identified kinesin family member 20A (KIF20A) as a key regulator of BCSC survival and TNBC tumorigenesis. Genetic depletion or pharmacological inhibition of KIF20A impairs BCSC viability and tumor initiation and development in vitro and in vivo. Mechanistically, KIF20A supports BCSC stemness through modulation of mitochondrial oxidative phosphorylation, which is repressed by SMARCA4, a component of the SWI/SNF chromatin remodeling complex. Therapeutically, KIF20A inhibition sensitizes TNBC xenografts to standard-of-care chemotherapy. Our study highlights the importance of targeting KIF20A to exploit BCSC vulnerabilities in TNBC.","PeriodicalId":520097,"journal":{"name":"The Journal of Clinical Investigation","volume":"746 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145752660","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The metabolic microenvironment plays important roles in tumorigenesis, but how leukemia-initiating cells (LICs) response to the acidic BM niche remains largely unknown. Here, we show that acid-sensing ion channel 3 (ASIC3) dramatically delays leukemogenesis. Asic3 deletion results in a remarkably enhanced self-renewal, reduced differentiation, and 9-fold greater number of murine acute myeloid LICs. We developed an ultrasensitive, ratiometric, genetically encoded fluorescent pH sensor (pHluorin3) and demonstrated that LICs prefer localizing in the endosteal niche with a neutral pH range of 7.34-7.42, but not in the vascular niche with a lower pH range of 6.89-7.22. Unexpectedly, acid-ASIC3 signaling inhibits both murine and human LIC activities in a noncanonical manner by interacting with the N-terminal of STIM1 to reduce calcium-mediated CAMK1-CREB-MEIS1-LDHA levels, without inducing cation currents. This study reveals a pathway in suppression of leukemogenesis in the acidic BM niche and provides insight into targeting LICs or other cancer stem cells through pH-dependent ASICs.
{"title":"Nonionotropic action of an acid-sensing ion channel inhibits leukemogenesis in the acidic bone marrow niche.","authors":"Hao Gu,Lietao Weng,Chiqi Chen,Xiaoxin Hao,Rongkun Tao,Xin Qi,Xiaoyun Lai,Ligen Liu,Tinghua Zhang,Yiming Jiang,Jin Wang,Wei-Guang Li,Zhuo Yu,Li Xie,Yaping Zhang,Xiaoxiao He,Ye Yu,Yi Yang,Dehua Wu,Yuzheng Zhao,Tian-Le Xu,Guo-Qiang Chen,Junke Zheng","doi":"10.1172/jci189051","DOIUrl":"https://doi.org/10.1172/jci189051","url":null,"abstract":"The metabolic microenvironment plays important roles in tumorigenesis, but how leukemia-initiating cells (LICs) response to the acidic BM niche remains largely unknown. Here, we show that acid-sensing ion channel 3 (ASIC3) dramatically delays leukemogenesis. Asic3 deletion results in a remarkably enhanced self-renewal, reduced differentiation, and 9-fold greater number of murine acute myeloid LICs. We developed an ultrasensitive, ratiometric, genetically encoded fluorescent pH sensor (pHluorin3) and demonstrated that LICs prefer localizing in the endosteal niche with a neutral pH range of 7.34-7.42, but not in the vascular niche with a lower pH range of 6.89-7.22. Unexpectedly, acid-ASIC3 signaling inhibits both murine and human LIC activities in a noncanonical manner by interacting with the N-terminal of STIM1 to reduce calcium-mediated CAMK1-CREB-MEIS1-LDHA levels, without inducing cation currents. This study reveals a pathway in suppression of leukemogenesis in the acidic BM niche and provides insight into targeting LICs or other cancer stem cells through pH-dependent ASICs.","PeriodicalId":520097,"journal":{"name":"The Journal of Clinical Investigation","volume":"112 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145752632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}