首页 > 最新文献

The Journal of Clinical Investigation最新文献

英文 中文
Neutralizing activity of anti–SARS-CoV-2 hyperimmune immunoglobulins and intravenous immunoglobulins against currently circulating SARS-CoV-2 variants 抗 SARS-CoV-2 超免疫免疫球蛋白和静脉注射免疫球蛋白对目前流行的 SARS-CoV-2 变体的中和活性
Pub Date : 2024-01-01 DOI: 10.1172/jci182919
Lorenza Bellusci, Hana Golding, Surender Khurana
<p><b>To the Editor:</b> Prophylactic or early post-exposure treatments with SARS-CoV-2–specific monoclonal antibodies (mAbs) were useful early in the COVID-19 pandemic. However, the currently circulating SARS-CoV-2 Omicron subvariants (e.g., XBB.1, JN.1 and its derivatives) are resistant to all approved mAb therapies (<span>1</span>). Immunoglobulin products (IGs) manufactured from pooled human plasma are widely used for treatment of patients with several immunodeficiency syndromes. Most IGs are administered intravenously and are called IVIGs.</p><p>Polyclonal hyperimmune anti–SARS-CoV-2 IVIGs (pi-hCoV-2IG) were manufactured in 2021 by fractionation of pooled plasma from COVID-19 convalescent patients with virus neutralization titers of 1:320 or greater against the ancestral WA-1 strain and contain IgG at 10-fold higher concentration than in individual convalescent plasma (CP). Vx-hCoV-2IG was generated from pooled plasma of SARS-CoV-2–vaccinated individuals (2021) (<span>2</span>). Some vaccinated individuals also reported prior SARS-CoV-2 infection. Since 2022, more than 90% of the blood donations in the United States had anti–SARS-CoV-2 antibodies, suggesting prior exposure by vaccination, infections, or both (hybrid immunity) (<span><span></span>3</span>). Therefore, we hypothesized that IVIG lots manufactured from unscreened plasma donors from 2022 onwards may contain anti–SARS-CoV-2 neutralizing antibodies against circulating Omicron subvariants.</p><p>To evaluate therapeutic potential of multiple lots of IVIG, pi-hCoV-2IG, and Vx-hCoV-2IG against circulating Omicron variants (Supplemental Table 1; supplemental material available online with this article; https://doi.org/10.1172/JCI182919DS1), we followed the STROBE reporting guideline (https://www.strobe-statement.org/) for cross-sectional studies. We tested 17 lots of pi-hCoV-2IG prepared from pooled plasma of convalescent individuals infected with SARS-CoV-2 in 2020 and one available Vx-hCoV-2IG lot manufactured from screened pooled plasma with high SARS-CoV-2 neutralization titers of mRNA-vaccinated individuals (hybrid immunity) who reported prior SARS-CoV-2 infection in 2021. Additionally, 20 IVIG preparations manufactured in 2019 from healthy plasma donations (2019-IVIG) before the COVID-19 pandemic, 8 IVIG lots manufactured in 2020 (2020-IVIG), 9 IVIG lots manufactured in 2023 (2023-IVIG), 5 IVIG lots manufactured in 2024 (2024-IVIG), 7 CP from recovered COVID-19 patients in early 2020 (2020-CP), and 8 CP from Omicron vaccine breakthrough infections in 2022 (2022-CP), all collected approximately 30 days after diagnosis, were analyzed for neutralization of SARS-CoV-2 WA-1 and 9 circulating Omicron subvariants (BA.2.86, XBB.1.16, XBB.2.3, EG.5, HV.1, HK.3, JN.1, JN.4, and JD.1.1) in a pseudovirus neutralization assay (PsVNA) (<span>4</span>).</p><p>CP collected from recovered COVID-19 patients in 2020 and 2022 as well post-infection hyperimmunoglobulin lots (pi-hCoV-2IG) show high
致编辑在 COVID-19 大流行的早期,使用 SARS-CoV-2 特异性单克隆抗体 (mAbs) 进行预防性治疗或暴露后早期治疗非常有用。然而,目前流行的 SARS-CoV-2 Omicron 亚变种(如 XBB.1、JN.1 及其衍生物)对所有已获批准的 mAb 疗法都有抗药性(1)。由集合人血浆制成的免疫球蛋白产品(IGs)被广泛用于治疗多种免疫缺陷综合征患者。多克隆超免疫抗 SARS-CoV-2 IVIG(pi-h-CoV-2IG)是 2021 年通过对 COVID-19 康复患者的集合血浆进行分馏制成的,这些患者对祖先 WA-1 株的病毒中和滴度达到或超过 1:320,其所含 IgG 的浓度是单个康复血浆(CP)的 10 倍。Vx-hCoV-2IG 由接种过 SARS-CoV-2 疫苗的个体(2021 人)的血浆汇集而成 (2)。一些接种者也报告先前感染过 SARS-CoV-2。自 2022 年以来,美国 90% 以上的献血者体内都有抗 SARS-CoV-2 抗体,这表明他们之前通过接种疫苗、感染或两者(混合免疫)接触过 SARS-CoV-2 (3)。因此,我们假设从 2022 年起从未经筛查的血浆捐献者中生产的 IVIG 批次可能含有抗 SARS-CoV-2 中和抗体,可对抗循环中的 Omicron 亚变异体。为了评估多个批次的 IVIG、pi-hCoV-2IG 和 Vx-hCoV-2IG 对抗循环中的 Omicron 变异体的治疗潜力(补充表 1;本文在线提供的补充材料;https://doi.org/10.1172/JCI182919DS1),我们遵循了横断面研究的 STROBE 报告指南 (https://www.strobe-statement.org/)。我们检测了从 2020 年感染 SARS-CoV-2 的康复者的集合血浆中制备的 17 批 pi-hCoV-2IG,以及从 2021 年报告先前感染 SARS-CoV-2 的 mRNA 疫苗接种者(混合免疫)的高 SARS-CoV-2 中和滴度筛选集合血浆中制备的一批 Vx-hCoV-2IG。此外,2019 年从 COVID-19 大流行前的健康血浆捐赠中生产了 20 批 IVIG 制剂(2019-IVIG),2020 年生产了 8 批 IVIG 制剂(2020-IVIG),2023 年生产了 9 批 IVIG 制剂(2023-IVIG),2024 年生产了 5 批 IVIG 制剂(2024-IVIG)、对 2020 年初 COVID-19 恢复患者的 7 份 CP(2020-CP)和 2022 年 Omicron 疫苗突破性感染患者的 8 份 CP(2022-CP)(均在诊断后约 30 天采集)进行了 SARS-CoV-2 WA-1 和 9 个循环 Omicron 亚变体的中和分析(BA.2.86、XBB.1.16、XBB.2.3、EG.5、HV.1、HK.3、JN.1、JN.4 和 JD.2020年和2022年从COVID-19康复患者以及感染后超免疫球蛋白批次(pi-h-CoV-2IG)中收集的CP在假病毒中和检测(PsVNA)中显示出针对WA-1的高中和滴度,但针对当前Omicron变种的PsVNA滴度极低或没有(图1)。在 COVID-19 大流行之前生产的 2019-IVIG 批次不含 SARS-CoV-2 中和抗体(图 1)。在 COVID-19 大流行早期生产的 2020-IVIG 批次中含有针对 WA-1 的低滴度抗体,并且没有针对当前 Omicron 亚变体的中和滴度。另一方面,2023-IVIG 和 2024-IVIG 两个批次对 WA-1 的滴度较高(几何平均滴度[GMT]分别为 16,212 和 30,722),反映出血浆捐献者中 SARS-CoV-2 血清流行率较高。更重要的是,尽管献血者曾接触过早期的 Omicron 变种,但这些新近批次的 IVIG 对目前流行的变异株的滴度为弱至中等(补充表 2)。令人惊讶的发现是,2021 年生产的一批 Vx-hCov-2IG 不仅对原始 WA-1 株的滴度最高(GMT:69 551),而且对最近流行的所有 Omicron 亚变异株的中和滴度也很高(GMT 在 401 到 11 416 之间)(图 1)。这一发现可能是由于疫苗接种/感染诱导的交叉反应 B 细胞在生殖中心进行亲和性成熟,从而产生更广泛的高亲和性抗体库,中和新出现的 Omicron 亚变体(5)。图 1 IVIG、康复血浆、pi-hCoV-2IG 和 Vx-hCoV-2IG 对 SARS-CoV-2 WA1/2020 和循环中的 Omicron 亚变体的中和作用。 在 293-ACE2-TMPRSS2 细胞中使用表达 WA1/2020 或 Omicron 亚变体尖峰蛋白的假病毒进行了 SARS-CoV-2 中和试验。SARS-CoV-2 中和滴度分别在流行前的 2019-IVIG (n = 20)、2020-IVIG (n = 8)、2020 恢复期血浆(2020-CP; n = 7)、2022 恢复期血浆(2022-CP;n = 8)、感染后高免疫球蛋白 IVIG(pi-hCoV-2IG;n = 17)、2023-IVIG(n = 9)、2024-IVIG(n = 5)和疫苗接种后高免疫球蛋白 IVIG(Vx-hCoV-2IG;n = 1)制剂。
{"title":"Neutralizing activity of anti–SARS-CoV-2 hyperimmune immunoglobulins and intravenous immunoglobulins against currently circulating SARS-CoV-2 variants","authors":"Lorenza Bellusci, Hana Golding, Surender Khurana","doi":"10.1172/jci182919","DOIUrl":"https://doi.org/10.1172/jci182919","url":null,"abstract":"&lt;p&gt;&lt;b&gt;To the Editor:&lt;/b&gt; Prophylactic or early post-exposure treatments with SARS-CoV-2–specific monoclonal antibodies (mAbs) were useful early in the COVID-19 pandemic. However, the currently circulating SARS-CoV-2 Omicron subvariants (e.g., XBB.1, JN.1 and its derivatives) are resistant to all approved mAb therapies (&lt;span&gt;1&lt;/span&gt;). Immunoglobulin products (IGs) manufactured from pooled human plasma are widely used for treatment of patients with several immunodeficiency syndromes. Most IGs are administered intravenously and are called IVIGs.&lt;/p&gt;\u0000&lt;p&gt;Polyclonal hyperimmune anti–SARS-CoV-2 IVIGs (pi-hCoV-2IG) were manufactured in 2021 by fractionation of pooled plasma from COVID-19 convalescent patients with virus neutralization titers of 1:320 or greater against the ancestral WA-1 strain and contain IgG at 10-fold higher concentration than in individual convalescent plasma (CP). Vx-hCoV-2IG was generated from pooled plasma of SARS-CoV-2–vaccinated individuals (2021) (&lt;span&gt;2&lt;/span&gt;). Some vaccinated individuals also reported prior SARS-CoV-2 infection. Since 2022, more than 90% of the blood donations in the United States had anti–SARS-CoV-2 antibodies, suggesting prior exposure by vaccination, infections, or both (hybrid immunity) (&lt;span&gt;&lt;span&gt;&lt;/span&gt;3&lt;/span&gt;). Therefore, we hypothesized that IVIG lots manufactured from unscreened plasma donors from 2022 onwards may contain anti–SARS-CoV-2 neutralizing antibodies against circulating Omicron subvariants.&lt;/p&gt;\u0000&lt;p&gt;To evaluate therapeutic potential of multiple lots of IVIG, pi-hCoV-2IG, and Vx-hCoV-2IG against circulating Omicron variants (Supplemental Table 1; supplemental material available online with this article; https://doi.org/10.1172/JCI182919DS1), we followed the STROBE reporting guideline (https://www.strobe-statement.org/) for cross-sectional studies. We tested 17 lots of pi-hCoV-2IG prepared from pooled plasma of convalescent individuals infected with SARS-CoV-2 in 2020 and one available Vx-hCoV-2IG lot manufactured from screened pooled plasma with high SARS-CoV-2 neutralization titers of mRNA-vaccinated individuals (hybrid immunity) who reported prior SARS-CoV-2 infection in 2021. Additionally, 20 IVIG preparations manufactured in 2019 from healthy plasma donations (2019-IVIG) before the COVID-19 pandemic, 8 IVIG lots manufactured in 2020 (2020-IVIG), 9 IVIG lots manufactured in 2023 (2023-IVIG), 5 IVIG lots manufactured in 2024 (2024-IVIG), 7 CP from recovered COVID-19 patients in early 2020 (2020-CP), and 8 CP from Omicron vaccine breakthrough infections in 2022 (2022-CP), all collected approximately 30 days after diagnosis, were analyzed for neutralization of SARS-CoV-2 WA-1 and 9 circulating Omicron subvariants (BA.2.86, XBB.1.16, XBB.2.3, EG.5, HV.1, HK.3, JN.1, JN.4, and JD.1.1) in a pseudovirus neutralization assay (PsVNA) (&lt;span&gt;4&lt;/span&gt;).&lt;/p&gt;\u0000&lt;p&gt;CP collected from recovered COVID-19 patients in 2020 and 2022 as well post-infection hyperimmunoglobulin lots (pi-hCoV-2IG) show high ","PeriodicalId":520097,"journal":{"name":"The Journal of Clinical Investigation","volume":"23 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142440505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Immune-related events in individuals with solid tumors on immunotherapy associate with Th17 and Th2 signatures 接受免疫疗法的实体瘤患者发生的免疫相关事件与 Th17 和 Th2 特征有关
Pub Date : 2024-01-01 DOI: 10.1172/jci176567
Chester J. Kao, Soren Charmsaz, Stephanie L. Alden, Madelena Brancati, Howard L. Li, Aanika Balaji, Kabeer Munjal, Kathryn Howe, Sarah Mitchell, James Leatherman, Ervin Griffin, Mari Nakazawa, Hua-Ling Tsai, Ludmila Danilova, Chris Thoburn, Jennifer Gizzi, Nicole E. Gross, Alexei Hernandez, Erin M. Coyne, Sarah M. Shin, Jayalaxmi Suresh Babu, George W. Apostol, Jennifer Durham, Brian J. Christmas, Maximilian F. Konig, Evan J. Lipson, Jarushka Naidoo, Laura C. Cappelli, Aliyah Pabani, Yasser Ged, Marina Baretti, Julie Brahmer, Jean Hoffman-Censits, Tanguy Y. Seiwert, Rachel Garonce-Hediger, Aditi Guha, Sanjay Bansal, Laura Tang, Elizabeth M. Jaffee, G. Scott Chandler, Rajat Mohindra, Won Jin Ho, Mark Yarchoan
BACKGROUND. Immune-related adverse events (irAEs) and their associated morbidity/mortality are a key concern for patients receiving immune checkpoint inhibitors (ICIs). Prospective evaluation of the drivers of irAEs in a diverse pan-tumor cohort is needed to identify patients at greatest risk and to develop rational treatment and interception strategies.
背景。免疫相关不良事件(irAEs)及其相关的发病率/死亡率是接受免疫检查点抑制剂(ICIs)治疗的患者所关心的主要问题。需要对不同泛肿瘤队列中的irAEs驱动因素进行前瞻性评估,以确定风险最大的患者,并制定合理的治疗和干预策略。
{"title":"Immune-related events in individuals with solid tumors on immunotherapy associate with Th17 and Th2 signatures","authors":"Chester J. Kao, Soren Charmsaz, Stephanie L. Alden, Madelena Brancati, Howard L. Li, Aanika Balaji, Kabeer Munjal, Kathryn Howe, Sarah Mitchell, James Leatherman, Ervin Griffin, Mari Nakazawa, Hua-Ling Tsai, Ludmila Danilova, Chris Thoburn, Jennifer Gizzi, Nicole E. Gross, Alexei Hernandez, Erin M. Coyne, Sarah M. Shin, Jayalaxmi Suresh Babu, George W. Apostol, Jennifer Durham, Brian J. Christmas, Maximilian F. Konig, Evan J. Lipson, Jarushka Naidoo, Laura C. Cappelli, Aliyah Pabani, Yasser Ged, Marina Baretti, Julie Brahmer, Jean Hoffman-Censits, Tanguy Y. Seiwert, Rachel Garonce-Hediger, Aditi Guha, Sanjay Bansal, Laura Tang, Elizabeth M. Jaffee, G. Scott Chandler, Rajat Mohindra, Won Jin Ho, Mark Yarchoan","doi":"10.1172/jci176567","DOIUrl":"https://doi.org/10.1172/jci176567","url":null,"abstract":"<b>BACKGROUND. </b>Immune-related adverse events (irAEs) and their associated morbidity/mortality are a key concern for patients receiving immune checkpoint inhibitors (ICIs). Prospective evaluation of the drivers of irAEs in a diverse pan-tumor cohort is needed to identify patients at greatest risk and to develop rational treatment and interception strategies.","PeriodicalId":520097,"journal":{"name":"The Journal of Clinical Investigation","volume":"9 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142440388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
The Journal of Clinical Investigation
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1