首页 > 最新文献

The Journal of Clinical Investigation最新文献

英文 中文
Innate immune cell activation by adjuvant AS01 in human lymph node explants is age-independent. 佐剂 AS01 对人体淋巴结外植体先天性免疫细胞的激活与年龄无关。
Pub Date : 2024-09-24 DOI: 10.1172/jci174144
Vicki V Stylianou,Kirstie M Bertram,Van Anh Vo,Elizabeth B Dunn,Heeva Baharlou,Darcii J Terre,James Elhindi,Elisabeth Elder,James French,Farid Meybodi,Stéphane T Temmerman,Arnaud M Didierlaurent,Margherita Coccia,Kerrie J Sandgren,Anthony L Cunningham
Vaccine adjuvants are thought to work by stimulating innate immunity in the draining lymph node (LN), although this has not been proven in humans. To bridge data obtained in animals to humans, we have developed an in situ human LN explant model to investigate how adjuvants initiate immunity. Slices of explanted LNs were exposed to vaccine adjuvants and revealed responses that were not detectable in LN cell suspensions. We used this model to compare the liposome-based AS01 with its components MPL and QS-21, and TLR ligands. Liposomes were predominantly taken up by subcapsular sinus-lining macrophages, monocytes and dendritic cells. AS01 induced dendritic cell maturation and a strong pro-inflammatory cytokine response in intact LN slices but not in dissociated cell cultures, in contrast to R848. This suggests the onset of the immune response to AS01 requires a coordinated activation of LN cells in time and space. Consistent with the robust immune response observed in older adults with AS01-adjuvanted vaccines, the AS01 response in human LNs was independent of age, unlike R848. This human LN explant model is a valuable tool for studying the mechanism of action of adjuvants in humans and for screening new formulations to streamline vaccine development.
疫苗佐剂被认为是通过刺激引流淋巴结(LN)中的先天性免疫而发挥作用的,但这一点尚未在人体中得到证实。为了将在动物身上获得的数据与人体相联系,我们开发了一种原位人体淋巴结外植体模型,以研究佐剂如何启动免疫。将切除的 LN 切片暴露于疫苗佐剂,结果发现了在 LN 细胞悬浮液中无法检测到的反应。我们利用这一模型比较了基于脂质体的 AS01 及其成分 MPL 和 QS-21 以及 TLR 配体。脂质体主要被帽状窦下巨噬细胞、单核细胞和树突状细胞吸收。在完整的 LN 切片中,AS01 可诱导树突状细胞成熟,并产生强烈的促炎细胞因子反应,但在离体细胞培养物中却没有这种反应,这与 R848 形成鲜明对比。这表明,对 AS01 的免疫反应的发生需要 LN 细胞在时间和空间上的协调激活。与在使用 AS01 佐剂疫苗的老年人中观察到的强大免疫反应一致,AS01 在人类 LN 中的反应与年龄无关,这与 R848 不同。这种人体 LN 外植体模型是研究佐剂在人体中的作用机制以及筛选新配方以简化疫苗开发的重要工具。
{"title":"Innate immune cell activation by adjuvant AS01 in human lymph node explants is age-independent.","authors":"Vicki V Stylianou,Kirstie M Bertram,Van Anh Vo,Elizabeth B Dunn,Heeva Baharlou,Darcii J Terre,James Elhindi,Elisabeth Elder,James French,Farid Meybodi,Stéphane T Temmerman,Arnaud M Didierlaurent,Margherita Coccia,Kerrie J Sandgren,Anthony L Cunningham","doi":"10.1172/jci174144","DOIUrl":"https://doi.org/10.1172/jci174144","url":null,"abstract":"Vaccine adjuvants are thought to work by stimulating innate immunity in the draining lymph node (LN), although this has not been proven in humans. To bridge data obtained in animals to humans, we have developed an in situ human LN explant model to investigate how adjuvants initiate immunity. Slices of explanted LNs were exposed to vaccine adjuvants and revealed responses that were not detectable in LN cell suspensions. We used this model to compare the liposome-based AS01 with its components MPL and QS-21, and TLR ligands. Liposomes were predominantly taken up by subcapsular sinus-lining macrophages, monocytes and dendritic cells. AS01 induced dendritic cell maturation and a strong pro-inflammatory cytokine response in intact LN slices but not in dissociated cell cultures, in contrast to R848. This suggests the onset of the immune response to AS01 requires a coordinated activation of LN cells in time and space. Consistent with the robust immune response observed in older adults with AS01-adjuvanted vaccines, the AS01 response in human LNs was independent of age, unlike R848. This human LN explant model is a valuable tool for studying the mechanism of action of adjuvants in humans and for screening new formulations to streamline vaccine development.","PeriodicalId":520097,"journal":{"name":"The Journal of Clinical Investigation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142321026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pharmacological regeneration of sensory hair cells restores afferent innervation and vestibular function. 药理再生感觉毛细胞可恢复传入神经支配和前庭功能。
Pub Date : 2024-09-24 DOI: 10.1172/jci181201
Hanae Lahlou,Hong Zhu,Wu Zhou,Albert Sb Edge
The sensory cells that transduce the signals for hearing and balance are highly specialized mechanoreceptors called hair cells that reside in the sensory epithelia of the inner ear. Loss of hair cells from toxin exposure and age can cause balance disorders and is essentially irreversible due to the inability of mammalian vestibular organs to regenerate physiologically active hair cells. Here, we show substantial regeneration of hair cells in a mouse model of vestibular damage by treatment with a combination of glycogen synthase kinase 3β and histone deacetylase inhibitors. The drugs stimulated supporting cell proliferation and differentiation into hair cells. The new hair cells were reinnervated by vestibular afferent neurons, rescuing otolith function by restoring head translation-evoked otolith afferent responses and vestibuloocular reflexes. Drugs that regenerate hair cells thus represent a potential therapeutic approach to the treatment of balance disorders.
传递听觉和平衡信号的感觉细胞是高度特化的机械感受器,称为毛细胞,位于内耳的感觉上皮细胞中。由于哺乳动物的前庭器官无法再生具有生理活性的毛细胞,毒素暴露和年龄增长造成的毛细胞损失会导致平衡失调,而且基本上是不可逆的。在这里,我们用糖原合酶激酶 3β 和组蛋白去乙酰化酶抑制剂的组合治疗小鼠前庭损伤模型,结果显示毛细胞大量再生。这些药物刺激支持细胞增殖并分化成毛细胞。新的毛细胞被前庭传入神经元重新支配,通过恢复头部平移诱发的耳石传入反应和前庭反射来挽救耳石功能。因此,再生毛细胞的药物是治疗平衡失调的一种潜在治疗方法。
{"title":"Pharmacological regeneration of sensory hair cells restores afferent innervation and vestibular function.","authors":"Hanae Lahlou,Hong Zhu,Wu Zhou,Albert Sb Edge","doi":"10.1172/jci181201","DOIUrl":"https://doi.org/10.1172/jci181201","url":null,"abstract":"The sensory cells that transduce the signals for hearing and balance are highly specialized mechanoreceptors called hair cells that reside in the sensory epithelia of the inner ear. Loss of hair cells from toxin exposure and age can cause balance disorders and is essentially irreversible due to the inability of mammalian vestibular organs to regenerate physiologically active hair cells. Here, we show substantial regeneration of hair cells in a mouse model of vestibular damage by treatment with a combination of glycogen synthase kinase 3β and histone deacetylase inhibitors. The drugs stimulated supporting cell proliferation and differentiation into hair cells. The new hair cells were reinnervated by vestibular afferent neurons, rescuing otolith function by restoring head translation-evoked otolith afferent responses and vestibuloocular reflexes. Drugs that regenerate hair cells thus represent a potential therapeutic approach to the treatment of balance disorders.","PeriodicalId":520097,"journal":{"name":"The Journal of Clinical Investigation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142321034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Proteogenomic analysis integrated with electronic health records data reveals disease-associated variants in Black Americans. 与电子健康记录数据相结合的蛋白质基因组分析揭示了美国黑人的疾病相关变异。
Pub Date : 2024-09-24 DOI: 10.1172/jci181802
Usman A Tahir,Jacob L Barber,Daniel E Cruz,Meltem Ece Kars,Shuliang Deng,Bjoernar Tuftin,Madeline G Gillman,Mark D Benson,Jeremy M Robbins,Zsu-Zsu Chen,Prashant Rao,Daniel H Katz,Laurie Farrell,Tamar Sofer,Michael E Hall,Lynette Ekunwe,Russell P Tracy,Peter Durda,Kent D Taylor,Yongmei Liu,W Craig Johnson,Xiuqing Guo,Yii-Der Ida Chen,Ani W Manichaikul,Deepti Jain,Thomas J Wang,Alex P Reiner,Pradeep Natarajan,Yuval Itan,Stephen S Rich,Jerome I Rotter,James G Wilson,Laura M Raffield,Robert E Gerszten
BACKGROUNDMost genome wide association studies (GWAS) of plasma proteomics have focused on White individuals of European ancestry, limiting biological insight from other ancestry enriched protein quantitative loci (pQTL).METHODSWe conducted a discovery GWAS of ~3,000 plasma proteins measured by the antibody based Olink platform in 1,054 Black adults from the Jackson Heart Study (JHS), and validated our findings in the Multi-Ethnic Study of Atherosclerosis (MESA). The genetic architecture of identified pQTLs were further explored through fine mapping and admixture association analysis. Finally, using our pQTL findings, we performed a phenome wide association study (PheWAS) across two large multi-ethnic electronic health record (EHR) systems in All of Us and BioMe.RESULTSWe identified 1002 pQTLs for 925 proteins. Fine mapping and admixture analyses suggested allelic heterogeneity of the plasma proteome across diverse populations. We identified associations for variants enriched in African ancestry, many in diseases that lack precise biomarkers, including cis-pQTLs for Cathepsin L (CTSL) and Siglec-9 that were linked with sarcoidosis and non-Hodgkin's lymphoma, respectively. We found concordant associations across clinical diagnoses and laboratory measurements, elucidating disease pathways, including a cis-pQTL associated with circulating CD58, white blood cell count, and multiple sclerosis.CONCLUSIONSOur findings emphasize the value of leveraging diverse populations to enhance biological insights from proteomics GWAS, and we have made this resource readily available as an interactive web portal.
背景大多数血浆蛋白质组学的全基因组关联研究(GWAS)都集中在欧洲血统的白人个体上,从而限制了对其他血统富集蛋白质定量位点(pQTL)的生物学洞察力。方法我们利用基于抗体的 Olink 平台对杰克逊心脏病研究(JHS)中的 1,054 名黑人成年人的约 3,000 种血浆蛋白质进行了发现性 GWAS 测量,并在动脉粥样硬化多种族研究(MESA)中验证了我们的发现。通过精细作图和掺杂关联分析,我们进一步探索了已鉴定 pQTL 的遗传结构。最后,利用我们的 pQTL 发现,我们在 All of Us 和 BioMe 两个大型多种族电子健康记录(EHR)系统中进行了表型组广泛关联研究(PheWAS)。精细图谱和混杂分析表明,不同人群的血浆蛋白质组存在等位基因异质性。我们发现了富含非洲血统的变异体,其中许多与缺乏精确生物标志物的疾病有关,包括分别与肉样瘤病和非霍奇金淋巴瘤有关的酪蛋白酶 L (CTSL) 和 Siglec-9 的顺式-pQTLs。我们在临床诊断和实验室测量中发现了一致的关联,阐明了疾病路径,包括与循环 CD58、白细胞计数和多发性硬化症相关的顺式-pQTL。
{"title":"Proteogenomic analysis integrated with electronic health records data reveals disease-associated variants in Black Americans.","authors":"Usman A Tahir,Jacob L Barber,Daniel E Cruz,Meltem Ece Kars,Shuliang Deng,Bjoernar Tuftin,Madeline G Gillman,Mark D Benson,Jeremy M Robbins,Zsu-Zsu Chen,Prashant Rao,Daniel H Katz,Laurie Farrell,Tamar Sofer,Michael E Hall,Lynette Ekunwe,Russell P Tracy,Peter Durda,Kent D Taylor,Yongmei Liu,W Craig Johnson,Xiuqing Guo,Yii-Der Ida Chen,Ani W Manichaikul,Deepti Jain,Thomas J Wang,Alex P Reiner,Pradeep Natarajan,Yuval Itan,Stephen S Rich,Jerome I Rotter,James G Wilson,Laura M Raffield,Robert E Gerszten","doi":"10.1172/jci181802","DOIUrl":"https://doi.org/10.1172/jci181802","url":null,"abstract":"BACKGROUNDMost genome wide association studies (GWAS) of plasma proteomics have focused on White individuals of European ancestry, limiting biological insight from other ancestry enriched protein quantitative loci (pQTL).METHODSWe conducted a discovery GWAS of ~3,000 plasma proteins measured by the antibody based Olink platform in 1,054 Black adults from the Jackson Heart Study (JHS), and validated our findings in the Multi-Ethnic Study of Atherosclerosis (MESA). The genetic architecture of identified pQTLs were further explored through fine mapping and admixture association analysis. Finally, using our pQTL findings, we performed a phenome wide association study (PheWAS) across two large multi-ethnic electronic health record (EHR) systems in All of Us and BioMe.RESULTSWe identified 1002 pQTLs for 925 proteins. Fine mapping and admixture analyses suggested allelic heterogeneity of the plasma proteome across diverse populations. We identified associations for variants enriched in African ancestry, many in diseases that lack precise biomarkers, including cis-pQTLs for Cathepsin L (CTSL) and Siglec-9 that were linked with sarcoidosis and non-Hodgkin's lymphoma, respectively. We found concordant associations across clinical diagnoses and laboratory measurements, elucidating disease pathways, including a cis-pQTL associated with circulating CD58, white blood cell count, and multiple sclerosis.CONCLUSIONSOur findings emphasize the value of leveraging diverse populations to enhance biological insights from proteomics GWAS, and we have made this resource readily available as an interactive web portal.","PeriodicalId":520097,"journal":{"name":"The Journal of Clinical Investigation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142321024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Long-lived lung megakaryocytes contribute to platelet recovery in thrombocytopenia models. 长寿命肺巨核细胞有助于血小板减少模型中血小板的恢复。
Pub Date : 2024-09-19 DOI: 10.1172/jci181111
Alison C Livada,Kathleen E McGrath,Michael W Malloy,Chen Li,Sara K Ture,Paul D Kingsley,Anne D Koniski,Leah A Vit,Katherine E Nolan,Deanne Mickelsen,Grace E Monette,Preeti Maurya,James Palis,Craig N Morrell
Lung megakaryocytes (Mks) are largely extravascular with an immune phenotype (1). Because bone marrow (BM) Mks are short-lived it has been assumed that extravascular lung Mks are constantly 'seeded' from the BM. To investigate lung Mk origins and how that impacts their functions, we developed methods to specifically label lung Mks using CFSE dye and biotin delivered oropharyngeal. Labeled lung Mks were present for up to four months, while BM Mks had a <1 week lifespan. In a parabiosis model, lung Mks were partially replaced over 1-month from a circulating source. Unlike tissue-resident macrophages, using MDS1-Cre-ERT2 TdTomato mice, we found that lung Mks arise from hematopoietic stem cells. However, studies with FlkSwitch mTmG mice showed that lung Mks are derived from a Flt3-independent lineage that does not go through a multipotent progenitor. CFSE labeling to track lung Mk-derived platelets showed that about 10% of circulating platelets are lung resident Mk-derived at steady state, but in sterile thrombocytopenia this was doubled (about 20%). Lung-derived platelets were similarly increased in a malaria infection model (Plasmodium yoelii) typified by thrombocytopenia. These studies indicate that lung Mks arise from a Flt3-negative BM source, are long-lived, and contribute more platelets during thrombocytopenia.
肺巨核细胞(Mks)在很大程度上是具有免疫表型的血管外细胞(1)。由于骨髓(BM)巨核细胞的寿命很短,人们一直认为肺血管外巨核细胞是不断从BM "播种 "而来的。为了研究肺Mk的起源及其对其功能的影响,我们开发了使用CFSE染料和生物素递送口咽特异性标记肺Mk的方法。被标记的肺Mk可存活长达四个月,而BM Mk的存活期不足一周。在准同种异体移植模型中,肺Mks在1个月的时间内被循环来源部分替代。与组织驻留巨噬细胞不同的是,通过使用 MDS1-Cre-ERT2 TdTomato 小鼠,我们发现肺 Mks 来自造血干细胞。然而,对 FlkSwitch mTmG 小鼠的研究表明,肺 Mks 来源于不依赖 Flt3 的血统,不经过多能祖细胞。用 CFSE 标记追踪肺 Mk 衍生血小板的结果显示,在稳定状态下,约 10% 的循环血小板是肺常驻 Mk 衍生的,但在无菌血小板减少症中,这一比例增加了一倍(约 20%)。在以血小板减少为典型特征的疟疾感染模型(疟原虫)中,肺源性血小板也同样增加。这些研究表明,肺源性 Mk 来源于 Flt3 阴性的 BM,寿命长,在血小板减少时可贡献更多血小板。
{"title":"Long-lived lung megakaryocytes contribute to platelet recovery in thrombocytopenia models.","authors":"Alison C Livada,Kathleen E McGrath,Michael W Malloy,Chen Li,Sara K Ture,Paul D Kingsley,Anne D Koniski,Leah A Vit,Katherine E Nolan,Deanne Mickelsen,Grace E Monette,Preeti Maurya,James Palis,Craig N Morrell","doi":"10.1172/jci181111","DOIUrl":"https://doi.org/10.1172/jci181111","url":null,"abstract":"Lung megakaryocytes (Mks) are largely extravascular with an immune phenotype (1). Because bone marrow (BM) Mks are short-lived it has been assumed that extravascular lung Mks are constantly 'seeded' from the BM. To investigate lung Mk origins and how that impacts their functions, we developed methods to specifically label lung Mks using CFSE dye and biotin delivered oropharyngeal. Labeled lung Mks were present for up to four months, while BM Mks had a <1 week lifespan. In a parabiosis model, lung Mks were partially replaced over 1-month from a circulating source. Unlike tissue-resident macrophages, using MDS1-Cre-ERT2 TdTomato mice, we found that lung Mks arise from hematopoietic stem cells. However, studies with FlkSwitch mTmG mice showed that lung Mks are derived from a Flt3-independent lineage that does not go through a multipotent progenitor. CFSE labeling to track lung Mk-derived platelets showed that about 10% of circulating platelets are lung resident Mk-derived at steady state, but in sterile thrombocytopenia this was doubled (about 20%). Lung-derived platelets were similarly increased in a malaria infection model (Plasmodium yoelii) typified by thrombocytopenia. These studies indicate that lung Mks arise from a Flt3-negative BM source, are long-lived, and contribute more platelets during thrombocytopenia.","PeriodicalId":520097,"journal":{"name":"The Journal of Clinical Investigation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142273500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PAC1 constrains type II inflammation through promotion of CGRP signaling in ILC2s. PAC1 通过促进 ILC2 的 CGRP 信号传导来制约 II 型炎症。
Pub Date : 2024-09-17 DOI: 10.1172/jci180109
Yuan Jin,Bowen Liu,Qiuyu Li,Xiangyan Meng,Xiaowei Tang,Yan Jin,Yuxin Yin
Dysfunction of group II innate lymphoid cells (ILC2s) plays an important role in the development of type II inflammation-related diseases such as asthma and pulmonary fibrosis. Notably, neural signals are increasingly recognized as pivotal regulators of ILC2s. However, how ILC2s intrinsically modulate their responsiveness to these neural signals is still largely unknown. Here, using single-cell RNA sequencing, we found that the immune regulatory molecule PAC1 (phosphatase of activated cells 1) selectively promotes the signaling of neuropeptide CGRP (calcitonin gene-related peptide) in ILC2s through a cell-intrinsic manner. Genetic ablation of PAC1 in ILC2s substantially impaired the inhibitory effect of CGRP on proliferation and IL-13 secretion. PAC1 deficiency significantly exacerbated allergic airway inflammation induced by Alternaria alternata or papain in mice. Moreover, in human circulating ILC2s, the expression level of PAC1 was also significantly negatively correlated with the cell amount and the expression level of IL13. Mechanistically, PAC1 was necessary for ensuring the expression of CGRP-response genes by influencing chromatin accessibility. In summary, our study demonstrated that PAC1 is an important regulator of ILC2 responses and we proposed that PAC1 is a potential target for therapeutic interventions of type II inflammation-related diseases.
第二类先天性淋巴细胞(ILC2s)的功能障碍在哮喘和肺纤维化等第二类炎症相关疾病的发生发展中起着重要作用。值得注意的是,神经信号越来越被认为是 ILC2s 的关键调节因子。然而,ILC2s 如何从本质上调节其对这些神经信号的反应能力在很大程度上仍是未知数。在这里,我们利用单细胞 RNA 测序发现,免疫调节分子 PAC1(活化细胞磷酸酶 1)通过细胞内在方式选择性地促进 ILC2 中神经肽 CGRP(降钙素基因相关肽)的信号转导。遗传性消减 ILC2s 中的 PAC1 会大大削弱 CGRP 对增殖和 IL-13 分泌的抑制作用。PAC1 缺乏会明显加剧交替孢霉或木瓜蛋白酶诱导的小鼠过敏性气道炎症。此外,在人类循环 ILC2 中,PAC1 的表达水平与细胞数量和 IL13 的表达水平也呈显著负相关。从机理上讲,PAC1 是通过影响染色质可及性来确保 CGRP 响应基因表达的必要条件。总之,我们的研究证明了 PAC1 是 ILC2 反应的重要调节因子,并提出 PAC1 是治疗干预 II 型炎症相关疾病的潜在靶点。
{"title":"PAC1 constrains type II inflammation through promotion of CGRP signaling in ILC2s.","authors":"Yuan Jin,Bowen Liu,Qiuyu Li,Xiangyan Meng,Xiaowei Tang,Yan Jin,Yuxin Yin","doi":"10.1172/jci180109","DOIUrl":"https://doi.org/10.1172/jci180109","url":null,"abstract":"Dysfunction of group II innate lymphoid cells (ILC2s) plays an important role in the development of type II inflammation-related diseases such as asthma and pulmonary fibrosis. Notably, neural signals are increasingly recognized as pivotal regulators of ILC2s. However, how ILC2s intrinsically modulate their responsiveness to these neural signals is still largely unknown. Here, using single-cell RNA sequencing, we found that the immune regulatory molecule PAC1 (phosphatase of activated cells 1) selectively promotes the signaling of neuropeptide CGRP (calcitonin gene-related peptide) in ILC2s through a cell-intrinsic manner. Genetic ablation of PAC1 in ILC2s substantially impaired the inhibitory effect of CGRP on proliferation and IL-13 secretion. PAC1 deficiency significantly exacerbated allergic airway inflammation induced by Alternaria alternata or papain in mice. Moreover, in human circulating ILC2s, the expression level of PAC1 was also significantly negatively correlated with the cell amount and the expression level of IL13. Mechanistically, PAC1 was necessary for ensuring the expression of CGRP-response genes by influencing chromatin accessibility. In summary, our study demonstrated that PAC1 is an important regulator of ILC2 responses and we proposed that PAC1 is a potential target for therapeutic interventions of type II inflammation-related diseases.","PeriodicalId":520097,"journal":{"name":"The Journal of Clinical Investigation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142245512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CRISPR-Cas13d targeting suppresses repeat-associated non-AUG translation of C9orf72 hexanucleotide repeat RNA. CRISPR-Cas13d靶向抑制了C9orf72六核苷酸重复RNA的重复相关非AUG翻译。
Pub Date : 2024-09-17 DOI: 10.1172/jci179016
Honghe Liu,Xiao-Feng Zhao,Yu-Ning Lu,Lindsey R Hayes,Jiou Wang
A hexanucleotide GGGGCC repeat expansion in the non-coding region of C9orf72 gene is the most common genetic mutation identified in patients with amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The resulting repeat RNA and dipeptide repeat proteins from non-conventional repeat translation have been recognized as important markers associated with the diseases. CRISPR-Cas13d, a powerful RNA targeting tool, has faced challenges in effectively targeting RNA with stable secondary structures. Here we report that CRISPR-Cas13d can be optimized to specifically target GGGGCC repeat RNA. Our results demonstrate that the CRISPR-Cas13d system can be harnessed to significantly diminish the translation of poly-dipeptides originating from the GGGGCC repeat RNA. This efficacy has been validated in various cell types, including induced pluripotent stem cells and differentiated motor neurons originating from C9orf72-ALS patients, as well as in C9orf72 repeat transgenic mice. These findings demonstrate the application of CRISPR-Cas13d in targeting RNA with intricate higher-order structures and suggest a potential therapeutic approach for ALS and FTD.
C9orf72 基因非编码区的六核苷酸 GGGGCC 重复扩增是肌萎缩侧索硬化症(ALS)和额颞叶痴呆症(FTD)患者最常见的基因突变。非常规重复翻译产生的重复 RNA 和二肽重复蛋白被认为是与这些疾病相关的重要标志物。CRISPR-Cas13d 作为一种强大的 RNA 靶向工具,在有效靶向具有稳定二级结构的 RNA 方面一直面临挑战。在这里,我们报告了CRISPR-Cas13d可以优化为特异性靶向GGGGCC重复RNA。我们的研究结果表明,CRISPR-Cas13d 系统可以显著减少源自 GGGCC 重复 RNA 的多肽的翻译。这一功效已在多种细胞类型中得到验证,包括诱导多能干细胞、源自 C9orf72-ALS 患者的分化运动神经元以及 C9orf72 重复转基因小鼠。这些发现证明了CRISPR-Cas13d在靶向具有复杂高阶结构的RNA方面的应用,并为ALS和FTD提出了一种潜在的治疗方法。
{"title":"CRISPR-Cas13d targeting suppresses repeat-associated non-AUG translation of C9orf72 hexanucleotide repeat RNA.","authors":"Honghe Liu,Xiao-Feng Zhao,Yu-Ning Lu,Lindsey R Hayes,Jiou Wang","doi":"10.1172/jci179016","DOIUrl":"https://doi.org/10.1172/jci179016","url":null,"abstract":"A hexanucleotide GGGGCC repeat expansion in the non-coding region of C9orf72 gene is the most common genetic mutation identified in patients with amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The resulting repeat RNA and dipeptide repeat proteins from non-conventional repeat translation have been recognized as important markers associated with the diseases. CRISPR-Cas13d, a powerful RNA targeting tool, has faced challenges in effectively targeting RNA with stable secondary structures. Here we report that CRISPR-Cas13d can be optimized to specifically target GGGGCC repeat RNA. Our results demonstrate that the CRISPR-Cas13d system can be harnessed to significantly diminish the translation of poly-dipeptides originating from the GGGGCC repeat RNA. This efficacy has been validated in various cell types, including induced pluripotent stem cells and differentiated motor neurons originating from C9orf72-ALS patients, as well as in C9orf72 repeat transgenic mice. These findings demonstrate the application of CRISPR-Cas13d in targeting RNA with intricate higher-order structures and suggest a potential therapeutic approach for ALS and FTD.","PeriodicalId":520097,"journal":{"name":"The Journal of Clinical Investigation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142245511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Natural TCRs targeting KRASG12V display fine specificity and sensitivity to human solid tumors. 靶向 KRASG12V 的天然 TCR 对人类实体瘤具有很好的特异性和敏感性。
Pub Date : 2024-09-17 DOI: 10.1172/jci175790
Adham S Bear,Rebecca B Nadler,Mark H O'Hara,Kelsey L Stanton,Chong Xu,Robert J Saporito,Andrew J Rech,Miren L Baroja,Tatiana Blanchard,Maxwell H Elliott,Michael J Ford,Richard C Jones,Shivang Patel,Andrea L Brennan,Zachary O'Neil,Daniel J Powell,Robert H Vonderheide,Gerald P Linette,Beatriz M Carreno
BACKGROUNDNeoantigens derived from KRASMUT have been described, but the fine antigen specificity of T cell responses directed against these epitopes are poorly understood. Here, we explore KRASMUT immunogenicity and the properties of 4 TCRs specific for KRASG12V restricted to HLA-A3 superfamily of class I alleles.METHODSA phase I clinical vaccine trial targeting KRASMUT was conducted. TCRs targeting KRASG12V restricted to HLA-A*03:01 or HLA-A*11:01 were isolated from vaccinated patients or healthy individuals. A comprehensive analysis of TCR antigen specificity, affinity, cross-reactivity, and CD8 coreceptor dependence was performed. TCR lytic activity was evaluated, and target antigen density was determined by quantitative immunopeptidomics.RESULTSVaccination against KRASMUT resulted in the priming of CD8+ and CD4+ T cell responses. KRASG12V -specific natural (not affinity-enhanced) TCRs exhibited exquisite specificity to mutated protein with no discernable reactivity against KRASWT. TCR-recognition motifs were determined and used to identify and exclude cross-reactivity to non-cognate peptides derived from the human proteome. Both HLA-A*03:01 and HLA-A*11:01 restricted TCR-redirected CD8+ T cells exhibited potent lytic activity against KRASG12V cancers, while only HLA-A*11:01 restricted TCR-T CD4+ T cells exhibited anti-tumor effector functions consistent with partial co-receptor dependence. All KRASG12V-specific TCRs displayed high sensitivity for antigen as demonstrated by their ability to eliminate tumor cell lines expressing low levels of of peptide/HLA (4.4 to 242) complexes per cell.CONCLUSIONThis study identifies KRASG12V-specific TCRs with high therapeutic potential for the development of TCR-T cell therapies.TRIAL REGISTRATIONCLINICALTRIALSgov NCT03592888.FUNDINGAACR SU2C / Lustgarten Foundation, Parker Institute for Cancer Immunotherapy, and NIH (R01 CA204261, P01 CA217805, P30 CA016520).
背景已经描述了源自 KRASMUT 的新抗原,但对针对这些表位的 T 细胞反应的精细抗原特异性却知之甚少。在此,我们探讨了 KRASMUT 的免疫原性以及 4 种特异于 HLA-A3 超家族 I 类等位基因的 KRASG12V 的 TCR 的特性。从接种疫苗的患者或健康人体内分离出了局限于 HLA-A*03:01 或 HLA-A*11:01 的 KRASG12V 靶向 TCR。对 TCR 抗原特异性、亲和性、交叉反应性和 CD8 核心受体依赖性进行了全面分析。结果接种 KRASMUT 疫苗可激发 CD8+ 和 CD4+ T 细胞反应。KRASG12V特异性天然(非亲和力增强)TCR对突变蛋白表现出极好的特异性,而对KRASWT没有明显反应。我们确定了 TCR 的识别基团,并用它来识别和排除与来自人类蛋白质组的非识别肽的交叉反应。HLA-A*03:01和HLA-A*11:01受限的TCR重定向CD8+ T细胞对KRASG12V癌症都表现出了强大的溶解活性,而只有HLA-A*11:01受限的TCR-T CD4+T细胞表现出了抗肿瘤效应功能,这与部分共受体依赖性一致。所有 KRASG12V 特异性 TCR 对抗原的敏感性都很高,这表现在它们能消除每个细胞中表达低水平肽/HLA(4.4 至 242)复合物的肿瘤细胞系。结论这项研究发现了KRASG12V特异性TCR,具有开发TCR-T细胞疗法的巨大治疗潜力。
{"title":"Natural TCRs targeting KRASG12V display fine specificity and sensitivity to human solid tumors.","authors":"Adham S Bear,Rebecca B Nadler,Mark H O'Hara,Kelsey L Stanton,Chong Xu,Robert J Saporito,Andrew J Rech,Miren L Baroja,Tatiana Blanchard,Maxwell H Elliott,Michael J Ford,Richard C Jones,Shivang Patel,Andrea L Brennan,Zachary O'Neil,Daniel J Powell,Robert H Vonderheide,Gerald P Linette,Beatriz M Carreno","doi":"10.1172/jci175790","DOIUrl":"https://doi.org/10.1172/jci175790","url":null,"abstract":"BACKGROUNDNeoantigens derived from KRASMUT have been described, but the fine antigen specificity of T cell responses directed against these epitopes are poorly understood. Here, we explore KRASMUT immunogenicity and the properties of 4 TCRs specific for KRASG12V restricted to HLA-A3 superfamily of class I alleles.METHODSA phase I clinical vaccine trial targeting KRASMUT was conducted. TCRs targeting KRASG12V restricted to HLA-A*03:01 or HLA-A*11:01 were isolated from vaccinated patients or healthy individuals. A comprehensive analysis of TCR antigen specificity, affinity, cross-reactivity, and CD8 coreceptor dependence was performed. TCR lytic activity was evaluated, and target antigen density was determined by quantitative immunopeptidomics.RESULTSVaccination against KRASMUT resulted in the priming of CD8+ and CD4+ T cell responses. KRASG12V -specific natural (not affinity-enhanced) TCRs exhibited exquisite specificity to mutated protein with no discernable reactivity against KRASWT. TCR-recognition motifs were determined and used to identify and exclude cross-reactivity to non-cognate peptides derived from the human proteome. Both HLA-A*03:01 and HLA-A*11:01 restricted TCR-redirected CD8+ T cells exhibited potent lytic activity against KRASG12V cancers, while only HLA-A*11:01 restricted TCR-T CD4+ T cells exhibited anti-tumor effector functions consistent with partial co-receptor dependence. All KRASG12V-specific TCRs displayed high sensitivity for antigen as demonstrated by their ability to eliminate tumor cell lines expressing low levels of of peptide/HLA (4.4 to 242) complexes per cell.CONCLUSIONThis study identifies KRASG12V-specific TCRs with high therapeutic potential for the development of TCR-T cell therapies.TRIAL REGISTRATIONCLINICALTRIALSgov NCT03592888.FUNDINGAACR SU2C / Lustgarten Foundation, Parker Institute for Cancer Immunotherapy, and NIH (R01 CA204261, P01 CA217805, P30 CA016520).","PeriodicalId":520097,"journal":{"name":"The Journal of Clinical Investigation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142245520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Targeting aryl hydrocarbon receptor functionally restores tolerogenic dendritic cells derived from patients with multiple sclerosis. 靶向芳基烃受体可恢复多发性硬化症患者的耐受性树突状细胞功能。
Pub Date : 2024-09-17 DOI: 10.1172/jci178949
Federico Fondelli,Jana Willemyns,Roger Domenech-Garcia,Maria José Mansilla,Gerard Godoy-Tena,Anna G Ferreté-Bonastre,Alex Agúndez-Moreno,Silvia Presas-Rodriguez,Cristina Ramo-Tello,Esteban Ballestar,Eva Martínez-Cáceres
Multiple Sclerosis (MS) is a chronic disease characterized by dysregulated self-reactive immune responses that damage the neurons' myelin sheath, leading to progressive disability. The primary therapeutic option, immunosuppressants, inhibits pathogenic anti-myelin responses but depresses the immune system. Antigen-specific monocyte-derived autologous tolerogenic dendritic cells (tolDCs) offer alternative therapeutic approaches to restore tolerance to auto-antigens without causing generalized immunosuppression. However, immune dysregulation in MS could impact the properties of the monocytes used as starting material for this cell therapy. Here, we characterized CD14+ monocytes, mature dendritic cells (mDCs) and Vitamin-D3-tolDCs (VitD3-tolDCs) from active, treatment-naive MS patients and healthy donors (HD). Using multi-omics, we identified a switch in these cell types towards proinflammatory features characterized by alterations in the AhR and NF-kB pathways. MS patient-derived VitD3-tolDCs showed reduced tolerogenic properties compared to those from HD, which were fully restored through direct AhR agonism and using in vivo or in vitro Dimethyl Fumarate (DMF) supplementation. Additionally, in the experimental autoimmune encephalomyelitis (EAE) mouse model, combined therapy of DMF and VitD3-tolDCs was more efficient than monotherapies in reducing the clinical score of mice. We propose that a combined therapy with DMF and VitD3-tolDCs offers enhanced therapeutic potential in treating MS.
多发性硬化症(MS)是一种慢性疾病,其特点是自我调节失调的免疫反应损害神经元的髓鞘,导致进行性残疾。免疫抑制剂是主要的治疗选择,它能抑制致病性抗髓鞘反应,但会抑制免疫系统。抗原特异性单核细胞衍生的自体耐受性树突状细胞(tolDCs)提供了替代治疗方法,可在不引起全身免疫抑制的情况下恢复对自身抗原的耐受性。然而,多发性硬化症的免疫失调可能会影响作为细胞疗法起始材料的单核细胞的特性。在这里,我们对来自活跃的、未经治疗的多发性硬化症患者和健康供体(HD)的 CD14+ 单核细胞、成熟树突状细胞(mDCs)和维生素-D3-tolDCs(VitD3-tolDCs)进行了鉴定。通过多组学研究,我们确定了这些细胞类型向以 AhR 和 NF-kB 通路的改变为特征的促炎特征的转变。与来自 HD 的 VitD3-tolDCs 相比,MS 患者衍生的 VitD3-tolDCs 显示出较低的耐受性,而通过直接 AhR 激动以及体内或体外富马酸二甲酯(DMF)补充,这些耐受性得到了完全恢复。此外,在实验性自身免疫性脑脊髓炎(EAE)小鼠模型中,DMF和VitD3-tolDCs联合疗法在降低小鼠临床评分方面比单一疗法更有效。我们认为,DMF 和 VitD3-tolDCs 联合疗法在治疗多发性硬化症方面具有更大的治疗潜力。
{"title":"Targeting aryl hydrocarbon receptor functionally restores tolerogenic dendritic cells derived from patients with multiple sclerosis.","authors":"Federico Fondelli,Jana Willemyns,Roger Domenech-Garcia,Maria José Mansilla,Gerard Godoy-Tena,Anna G Ferreté-Bonastre,Alex Agúndez-Moreno,Silvia Presas-Rodriguez,Cristina Ramo-Tello,Esteban Ballestar,Eva Martínez-Cáceres","doi":"10.1172/jci178949","DOIUrl":"https://doi.org/10.1172/jci178949","url":null,"abstract":"Multiple Sclerosis (MS) is a chronic disease characterized by dysregulated self-reactive immune responses that damage the neurons' myelin sheath, leading to progressive disability. The primary therapeutic option, immunosuppressants, inhibits pathogenic anti-myelin responses but depresses the immune system. Antigen-specific monocyte-derived autologous tolerogenic dendritic cells (tolDCs) offer alternative therapeutic approaches to restore tolerance to auto-antigens without causing generalized immunosuppression. However, immune dysregulation in MS could impact the properties of the monocytes used as starting material for this cell therapy. Here, we characterized CD14+ monocytes, mature dendritic cells (mDCs) and Vitamin-D3-tolDCs (VitD3-tolDCs) from active, treatment-naive MS patients and healthy donors (HD). Using multi-omics, we identified a switch in these cell types towards proinflammatory features characterized by alterations in the AhR and NF-kB pathways. MS patient-derived VitD3-tolDCs showed reduced tolerogenic properties compared to those from HD, which were fully restored through direct AhR agonism and using in vivo or in vitro Dimethyl Fumarate (DMF) supplementation. Additionally, in the experimental autoimmune encephalomyelitis (EAE) mouse model, combined therapy of DMF and VitD3-tolDCs was more efficient than monotherapies in reducing the clinical score of mice. We propose that a combined therapy with DMF and VitD3-tolDCs offers enhanced therapeutic potential in treating MS.","PeriodicalId":520097,"journal":{"name":"The Journal of Clinical Investigation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142245184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Uterine cyclin A2 deficient mice as a model of female early pregnancy loss. 子宫细胞周期蛋白 A2 缺陷小鼠作为女性早孕损失的模型。
Pub Date : 2024-09-12 DOI: 10.1172/jci163796
Fatimah Aljubran,Katelyn Schumacher,Amanda Graham,Sumedha Gunewardena,Courtney Marsh,Michael Lydic,Kristin Holoch,Warren B Nothnick
Proper action of the female sex steroids, 17β-estradiol (E2) and progesterone (P4) on endometrium is essential for fertility. Beyond its role in regulating the cell cycle, cyclin A2 (CCNA2) also mediates E2 and P4 signaling in vitro, but a potential role in modulating steroid action for proper endometrial tissue development and function is unknown. To fill this gap in our knowledge, we examined human endometrial tissue from fertile and infertile women for CCNA2 expression and correlated this with pregnancy outcome. Functional assessment of CCNA2 was validated in vivo using a conditional Ccna2 uterine deficient mouse model while in vitro function was assessed using human cell culture models. We found that CCNA2 expression was significantly reduced in endometrial tissue, specifically the stromal cells, from women undergoing in vitro fertilization who failed to achieve pregnancy. Conditional deletion of Ccna2 from mouse uterine tissue resulted in an inability to achieve pregnancy which appears to be due to alterations in the process of decidualization, which was confirmed using in vitro models. From these studies, we conclude that CCNA2 expression during the proliferative/regenerative stage of the menstrual cycle acts as a safeguard allowing for proper steroid responsiveness, decidualization and pregnancy. When CCNA2 expression levels are insufficient there is impaired endometrial responsiveness, aberrant decidualization and loss of pregnancy.
女性性类固醇、17β-雌二醇(E2)和孕酮(P4)对子宫内膜的适当作用对生育至关重要。除了调节细胞周期的作用外,细胞周期蛋白 A2(CCNA2)还在体外介导 E2 和 P4 信号转导,但其在调节类固醇作用以促进子宫内膜组织正常发育和功能方面的潜在作用尚不清楚。为了填补这一知识空白,我们研究了可育和不育妇女的人类子宫内膜组织中 CCNA2 的表达情况,并将其与妊娠结果联系起来。利用条件性 Ccna2 子宫缺陷小鼠模型对 CCNA2 的功能评估进行了体内验证,同时利用人体细胞培养模型对其体外功能进行了评估。我们发现,体外受精失败妇女的子宫内膜组织,特别是基质细胞中,CCNA2的表达明显减少。小鼠子宫组织条件性缺失 Ccna2 导致无法怀孕,这似乎是由于蜕膜化过程发生了改变,体外模型证实了这一点。从这些研究中,我们得出结论,在月经周期的增殖/再生阶段,CCNA2的表达起到了保障作用,使类固醇的反应性、蜕膜化和妊娠得以正常进行。当CCNA2表达水平不足时,子宫内膜的反应能力就会受损、蜕膜化异常并失去妊娠能力。
{"title":"Uterine cyclin A2 deficient mice as a model of female early pregnancy loss.","authors":"Fatimah Aljubran,Katelyn Schumacher,Amanda Graham,Sumedha Gunewardena,Courtney Marsh,Michael Lydic,Kristin Holoch,Warren B Nothnick","doi":"10.1172/jci163796","DOIUrl":"https://doi.org/10.1172/jci163796","url":null,"abstract":"Proper action of the female sex steroids, 17β-estradiol (E2) and progesterone (P4) on endometrium is essential for fertility. Beyond its role in regulating the cell cycle, cyclin A2 (CCNA2) also mediates E2 and P4 signaling in vitro, but a potential role in modulating steroid action for proper endometrial tissue development and function is unknown. To fill this gap in our knowledge, we examined human endometrial tissue from fertile and infertile women for CCNA2 expression and correlated this with pregnancy outcome. Functional assessment of CCNA2 was validated in vivo using a conditional Ccna2 uterine deficient mouse model while in vitro function was assessed using human cell culture models. We found that CCNA2 expression was significantly reduced in endometrial tissue, specifically the stromal cells, from women undergoing in vitro fertilization who failed to achieve pregnancy. Conditional deletion of Ccna2 from mouse uterine tissue resulted in an inability to achieve pregnancy which appears to be due to alterations in the process of decidualization, which was confirmed using in vitro models. From these studies, we conclude that CCNA2 expression during the proliferative/regenerative stage of the menstrual cycle acts as a safeguard allowing for proper steroid responsiveness, decidualization and pregnancy. When CCNA2 expression levels are insufficient there is impaired endometrial responsiveness, aberrant decidualization and loss of pregnancy.","PeriodicalId":520097,"journal":{"name":"The Journal of Clinical Investigation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142231322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A six-year study in a real-world population reveals an increased incidence of dyslipidemia during COVID-19. 一项为期六年的实际人群研究显示,在 COVID-19 期间,血脂异常的发生率有所增加。
Pub Date : 2024-09-12 DOI: 10.1172/jci183777
Valentina Trimarco,Raffaele Izzo,Stanislovas S Jankauskas,Mario Fordellone,Giuseppe Signoriello,Maria Virginia Manzi,Maria Lembo,Paola Gallo,Giovanni Esposito,Roberto Piccinocchi,Francesco Rozza,Carmine Morisco,Pasquale Mone,Gaetano Piccinocchi,Fahimeh Varzideh,Bruno Trimarco,Gaetano Santulli
BACKGROUNDRecent studies conducted in COVID-19 survivors suggest that SARS-CoV-2 infection is associated with an increased risk of dyslipidemia. However, it remains unclear whether this augmented risk is confirmed in the general population and how this phenomenon is impacting the overall burden of cardiometabolic diseases.METHODSTo address these aspects, we conducted a 6-year longitudinal study to examine the broader effects of COVID-19 on dyslipidemia incidence within a real-world population (228,266 subjects) residing in Naples, Southern Italy. The pre-COVID-19 and the COVID-19 groups were balanced for demographic and clinical factors using propensity score matching.RESULTSOur analysis spans over a period of three years during the pandemic (2020-2022), comparing dyslipidemia incidence with pre-pandemic data (2017-2019), with a follow-up time of at least 1,095 days corresponding to 21,349,215 person-years. During the COVID-19 period we detected an increased risk of developing any dyslipidemia when compared with the pre-COVID-19 triennium (OR = 1.29, 95% CI 1.19-1.39). Importantly, these estimates were adjusted for comorbidities by a multivariate analysis.CONCLUSIONSTaken together, our data reveal a notable rise in dyslipidemia incidence amid the COVID-19 pandemic, suggesting to establish specialized clinical monitoring protocols for COVID-19 survivors to mitigate the risk of dyslipidemia development.
背景最近对 COVID-19 幸存者进行的研究表明,SARS-CoV-2 感染与血脂异常风险增加有关。方法为了解决这些问题,我们进行了一项为期 6 年的纵向研究,以考察 COVID-19 对居住在意大利南部那不勒斯的真实人群(228266 名受试者)中血脂异常发生率的广泛影响。结果我们的分析跨越了大流行期间(2020-2022 年)的三年时间,将血脂异常发生率与大流行前的数据(2017-2019 年)进行了比较,随访时间至少为 1,095 天,相当于 21,349,215 人年。在 COVID-19 期间,与 COVID-19 前的三年期相比,我们发现患任何血脂异常的风险都有所增加(OR = 1.29,95% CI 1.19-1.39)。结论综上所述,我们的数据显示,在 COVID-19 大流行期间,血脂异常的发病率显著上升,建议为 COVID-19 的幸存者制定专门的临床监测方案,以降低血脂异常的发病风险。
{"title":"A six-year study in a real-world population reveals an increased incidence of dyslipidemia during COVID-19.","authors":"Valentina Trimarco,Raffaele Izzo,Stanislovas S Jankauskas,Mario Fordellone,Giuseppe Signoriello,Maria Virginia Manzi,Maria Lembo,Paola Gallo,Giovanni Esposito,Roberto Piccinocchi,Francesco Rozza,Carmine Morisco,Pasquale Mone,Gaetano Piccinocchi,Fahimeh Varzideh,Bruno Trimarco,Gaetano Santulli","doi":"10.1172/jci183777","DOIUrl":"https://doi.org/10.1172/jci183777","url":null,"abstract":"BACKGROUNDRecent studies conducted in COVID-19 survivors suggest that SARS-CoV-2 infection is associated with an increased risk of dyslipidemia. However, it remains unclear whether this augmented risk is confirmed in the general population and how this phenomenon is impacting the overall burden of cardiometabolic diseases.METHODSTo address these aspects, we conducted a 6-year longitudinal study to examine the broader effects of COVID-19 on dyslipidemia incidence within a real-world population (228,266 subjects) residing in Naples, Southern Italy. The pre-COVID-19 and the COVID-19 groups were balanced for demographic and clinical factors using propensity score matching.RESULTSOur analysis spans over a period of three years during the pandemic (2020-2022), comparing dyslipidemia incidence with pre-pandemic data (2017-2019), with a follow-up time of at least 1,095 days corresponding to 21,349,215 person-years. During the COVID-19 period we detected an increased risk of developing any dyslipidemia when compared with the pre-COVID-19 triennium (OR = 1.29, 95% CI 1.19-1.39). Importantly, these estimates were adjusted for comorbidities by a multivariate analysis.CONCLUSIONSTaken together, our data reveal a notable rise in dyslipidemia incidence amid the COVID-19 pandemic, suggesting to establish specialized clinical monitoring protocols for COVID-19 survivors to mitigate the risk of dyslipidemia development.","PeriodicalId":520097,"journal":{"name":"The Journal of Clinical Investigation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142231320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
The Journal of Clinical Investigation
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1