Malignant tumors with TP53 mutations exhibit poor therapeutic outcomes and high recurrence rates. T cell receptor (TCR)-based T cell therapy shows great promise for targeting intracellular cancer neoantigens. However, the immunogenic potential of TP53 hotspot mutations remain poorly characterized. Here, we identify a immunogenic neoantigen derived from the recurrent TP53R248Q mutation, presented by the prevalent Human Leukocyte Antigen (HLA)-A*11:01 allele. Additionally, we isolated a TP53R248Q reactive TCR that specifically recognize the TP53R248Q mutation without any discernable cross-activity to cognate wild-type TP53 or other TP53 mutants at the same codon position. Functional characterization revealed that TP53R248Q TCR-T cells exhibited selectively cytotoxicity against tumor cells expressing both TP53R248Q mutation and HLA-A*11:01 in vitro. Importantly, the adoptive transfer of TP53R248Q TCR-T cells exhibited significant anti-tumor activity in a clinically relevant patient-derived xenograft (PDX) model engrafted with TP53R248Q/HLA-A*11:01 positive human tumor tissues. Collectively, our study validates the immunogenicity of the TP53R248Q hotspot mutation and provides a TCR with high therapeutic potential for the development of T cell therapies targeting TP53R248Q/HLA-A*11:01 positive cancers.
{"title":"T cell receptor-engineered T cells targeting the TP53R248Q neoantigen elicit antitumor effects in human cancer models.","authors":"Lianghua Shen,Ziyu Chen,Jian Xu,Qiaomei He,Changmeng Zhang,Xiao Zhou,Xiaodan Ding,Jinan Fang,Fanlin Li,Ming Jiao,Yuqin Yang,Baoxia Dong,Liping Wan,Xueying Ding,Yan Zheng,Jingyi Zhou,Chijian Zuo,Tian Min,Ming Zhu,Bin Ma,Yuhua Wan,Qiufang Guo,Hua Zhang,Jian Hua,Pengran Wang,Qi Li,Jiang Long,Xianmin Song,Yan Zhang","doi":"10.1172/jci196613","DOIUrl":"https://doi.org/10.1172/jci196613","url":null,"abstract":"Malignant tumors with TP53 mutations exhibit poor therapeutic outcomes and high recurrence rates. T cell receptor (TCR)-based T cell therapy shows great promise for targeting intracellular cancer neoantigens. However, the immunogenic potential of TP53 hotspot mutations remain poorly characterized. Here, we identify a immunogenic neoantigen derived from the recurrent TP53R248Q mutation, presented by the prevalent Human Leukocyte Antigen (HLA)-A*11:01 allele. Additionally, we isolated a TP53R248Q reactive TCR that specifically recognize the TP53R248Q mutation without any discernable cross-activity to cognate wild-type TP53 or other TP53 mutants at the same codon position. Functional characterization revealed that TP53R248Q TCR-T cells exhibited selectively cytotoxicity against tumor cells expressing both TP53R248Q mutation and HLA-A*11:01 in vitro. Importantly, the adoptive transfer of TP53R248Q TCR-T cells exhibited significant anti-tumor activity in a clinically relevant patient-derived xenograft (PDX) model engrafted with TP53R248Q/HLA-A*11:01 positive human tumor tissues. Collectively, our study validates the immunogenicity of the TP53R248Q hotspot mutation and provides a TCR with high therapeutic potential for the development of T cell therapies targeting TP53R248Q/HLA-A*11:01 positive cancers.","PeriodicalId":520097,"journal":{"name":"The Journal of Clinical Investigation","volume":"12 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2026-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145961598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vessels encapsulating tumor clusters (VETC), a distinct vascular pattern in hepatocellular carcinoma (HCC), facilitates non-invasive metastasis in whole cluster. The interaction between VETC and tumor microenvironment requires exploration. Here, we found that compared to human Non-VETC-HCCs, VETC-tumors exhibited more PD1+CD8+ T cells and Tregs, especially TNFRSF4+Tregs and Ki67+Tregs which showed increased immunosuppressive and proliferative activity. Such immunosuppressive status was also detected in tumor emboli of VETC-HCCs, and Treg density in emboli was positively associated with metastatic cell proliferation. VETC-HCCs revealed abundance correlation, closer spatial proximity, and stronger immunosuppressive ligand-receptor interactions between TNFRSF4+Tregs/Ki67+Tregs and PD1+CD8+ T cells. Depleting Tregs in mice reduced PD1+CD8+ T cells in primary lesions, tumor emboli and metastatic foci of VETC-allografts, and attenuated allograft metastasis. TGF-β1 levels were upregulated in endothelial cells of VETC-HCCs and associated with TNFRSF4+Tregs/Ki67+Tregs enrichment. Disrupting VETC formation decreased endothelial TGF-β1 expression, and reduced TNFRSF4+Tregs/Ki67+Tregs, PD1+CD8+ T cells, Treg/CD8+ T cells ratio. Collectively, VETC may enhance Tregs' activity via TGF-β1, while Tregs promote and sustain CD8+ T cell exhaustion through immune inhibitory ligand-receptor interaction, thereby shaping immunosuppressive microenvironment and enabling tumor cluster to carry such niche to disseminate. These findings disclose mechanisms of tumor immune microenvironment formation and provide rationales for precision medicine.
{"title":"Vessels encapsulating tumor clusters promote non-invasive metastasis of hepatocellular carcinoma by shaping an immunosuppressive microenvironment.","authors":"Bi-Yu Huang,Zheng-Qi Mi,Xiao-Yu Zhang,Yu-Chen Ji,Meng-Zhi Wu,Zi-Feng Cheng,Chen Xie,Shuai He,Jing Zhu,Jian-Hong Fang,Chong Wu,Bin-Kui Li,Yun-Fei Yuan,Limin Zheng,Shi-Mei Zhuang","doi":"10.1172/jci193758","DOIUrl":"https://doi.org/10.1172/jci193758","url":null,"abstract":"Vessels encapsulating tumor clusters (VETC), a distinct vascular pattern in hepatocellular carcinoma (HCC), facilitates non-invasive metastasis in whole cluster. The interaction between VETC and tumor microenvironment requires exploration. Here, we found that compared to human Non-VETC-HCCs, VETC-tumors exhibited more PD1+CD8+ T cells and Tregs, especially TNFRSF4+Tregs and Ki67+Tregs which showed increased immunosuppressive and proliferative activity. Such immunosuppressive status was also detected in tumor emboli of VETC-HCCs, and Treg density in emboli was positively associated with metastatic cell proliferation. VETC-HCCs revealed abundance correlation, closer spatial proximity, and stronger immunosuppressive ligand-receptor interactions between TNFRSF4+Tregs/Ki67+Tregs and PD1+CD8+ T cells. Depleting Tregs in mice reduced PD1+CD8+ T cells in primary lesions, tumor emboli and metastatic foci of VETC-allografts, and attenuated allograft metastasis. TGF-β1 levels were upregulated in endothelial cells of VETC-HCCs and associated with TNFRSF4+Tregs/Ki67+Tregs enrichment. Disrupting VETC formation decreased endothelial TGF-β1 expression, and reduced TNFRSF4+Tregs/Ki67+Tregs, PD1+CD8+ T cells, Treg/CD8+ T cells ratio. Collectively, VETC may enhance Tregs' activity via TGF-β1, while Tregs promote and sustain CD8+ T cell exhaustion through immune inhibitory ligand-receptor interaction, thereby shaping immunosuppressive microenvironment and enabling tumor cluster to carry such niche to disseminate. These findings disclose mechanisms of tumor immune microenvironment formation and provide rationales for precision medicine.","PeriodicalId":520097,"journal":{"name":"The Journal of Clinical Investigation","volume":"84 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2026-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145907575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Azaj Ahmed,Pooja Yadav,Melissa Jensen,Katharine Geasland,Jagadish S Swamy,Douglas R Spitz,E Dale Abel,Diana Jalal,Sanjana Dayal
Recent studies suggest that prediabetes is an independent risk factor for cardiovascular thrombotic events. However, the mechanisms that may promote platelet activation and thrombosis in prediabetes remain elusive. To determine mechanisms linking prediabetes and thrombosis as a function of age, we recruited prediabetic and normoglycemic Veterans in young and middle-age groups. Compared to normoglycemic subjects, platelets from those with prediabetes exhibited increased activation, mitochondrial-oxidant load, mitochondrial-membrane hyperpolarization, and greater thrombus formation ex vivo regardless of age. Preincubation of platelets with mitochondria targeted antioxidants such as superoxide dismutase (SOD) mimetic or Mito quinol (MitoQ), rescued this prothrombotic phenotype. These phenotypes were recapitulated in C57BL6/J mice exhibiting early onset of glucose intolerance when fed high fat (HF) diet for two weeks. Treatment of HF-fed mice with a SOD-mimetic or MitoQ, or genetic overexpression of catalase within mitochondria, not only lowered mitochondrial-oxidants, hyperpolarization, Ca2+ levels and platelet activation, but also protected against increased potential for carotid and pulmonary thrombosis. We also observed a bidirectional regulation of platelet activation by Ca2+ and mitochondrial oxidants. These findings support the idea that mitochondrial-oxidant dependent platelet activation induces a prothrombotic state in clinical prediabetes and preclinical models of short-term glucose intolerance and can be reversed by mitochondria-targeted antioxidants.
{"title":"Mitochondrial Oxidants Promote Platelet Activation and Thrombotic Susceptibility in Prediabetes.","authors":"Azaj Ahmed,Pooja Yadav,Melissa Jensen,Katharine Geasland,Jagadish S Swamy,Douglas R Spitz,E Dale Abel,Diana Jalal,Sanjana Dayal","doi":"10.1172/jci195662","DOIUrl":"https://doi.org/10.1172/jci195662","url":null,"abstract":"Recent studies suggest that prediabetes is an independent risk factor for cardiovascular thrombotic events. However, the mechanisms that may promote platelet activation and thrombosis in prediabetes remain elusive. To determine mechanisms linking prediabetes and thrombosis as a function of age, we recruited prediabetic and normoglycemic Veterans in young and middle-age groups. Compared to normoglycemic subjects, platelets from those with prediabetes exhibited increased activation, mitochondrial-oxidant load, mitochondrial-membrane hyperpolarization, and greater thrombus formation ex vivo regardless of age. Preincubation of platelets with mitochondria targeted antioxidants such as superoxide dismutase (SOD) mimetic or Mito quinol (MitoQ), rescued this prothrombotic phenotype. These phenotypes were recapitulated in C57BL6/J mice exhibiting early onset of glucose intolerance when fed high fat (HF) diet for two weeks. Treatment of HF-fed mice with a SOD-mimetic or MitoQ, or genetic overexpression of catalase within mitochondria, not only lowered mitochondrial-oxidants, hyperpolarization, Ca2+ levels and platelet activation, but also protected against increased potential for carotid and pulmonary thrombosis. We also observed a bidirectional regulation of platelet activation by Ca2+ and mitochondrial oxidants. These findings support the idea that mitochondrial-oxidant dependent platelet activation induces a prothrombotic state in clinical prediabetes and preclinical models of short-term glucose intolerance and can be reversed by mitochondria-targeted antioxidants.","PeriodicalId":520097,"journal":{"name":"The Journal of Clinical Investigation","volume":"16 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145813509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
John A Wildenthal,Margaret A Olsen,Hung D Tran,John I Robinson,Terence M Myckatyn,David K Warren,Keith E Brandt,Marissa M Tenenbaum,Joani M Christensen,Thomas H Tung,Justin M Sacks,Rachel A Anolik,Katelin B Nickel,Hideji Fujiwara,Peter J Mucha,Jeffrey P Henderson
BACKGROUNDInfection is an important complication of implanted devices and prosthetics. Identifying infections sufficiently early to salvage implants and avoid reconstructive failure is a persistent medical challenge.METHODSTwo female cohorts >21 years undergoing breast implant reconstruction were recruited. Seroma fluid (82 breasts, 70 patients) was collected upon implant removal for infectious or non-infectious causes. Post-implantation drain fluid (100 samples, 44 breasts, 32 patients) was collected at routine visits prior to implant removal. A liquid-chromatography/mass spectrometry-based metabolomic approach was used to identify infection correlates.RESULTSIn seroma fluid specimens, infection was associated with a diverse set of small molecules including acetylated polyamines, defensins, glucosyl-sphingosine, and several peptide-like features (all P<0.001, diagnostic areas under the receiver operating curve 0.82-0.93). Notably, a subset of these markers were significantly elevated (p<0.05) in post-implantation drain fluid before recorded infection symptoms and diagnosis. Pseudomonas aeruginosa and its specialized exometabolites in drain specimens were also associated with subsequent P. aeruginosa infections.CONCLUSIONTissue fluid from infected patients has a distinctive metabolome reflecting human and bacterial physiologic processes that often precede clinical diagnoses. A diagnostic based on these findings has potential to improve patient outcomes through early recognition of infection.TRIAL REGISTRATIONNot applicable.FUNDINGWork was supported by U54CK000609 from the CDC and an unencumbered research gift to TMM from Sientra. Metabolomic approaches were supported by RO1DK125860 and RO1DK111930 to JPH. The contents are solely the responsibility of the authors and do not necessarily represent the official views of CDC.
{"title":"Small molecule correlates of infection precede infection diagnosis in breast implant reconstruction patients.","authors":"John A Wildenthal,Margaret A Olsen,Hung D Tran,John I Robinson,Terence M Myckatyn,David K Warren,Keith E Brandt,Marissa M Tenenbaum,Joani M Christensen,Thomas H Tung,Justin M Sacks,Rachel A Anolik,Katelin B Nickel,Hideji Fujiwara,Peter J Mucha,Jeffrey P Henderson","doi":"10.1172/jci192104","DOIUrl":"https://doi.org/10.1172/jci192104","url":null,"abstract":"BACKGROUNDInfection is an important complication of implanted devices and prosthetics. Identifying infections sufficiently early to salvage implants and avoid reconstructive failure is a persistent medical challenge.METHODSTwo female cohorts >21 years undergoing breast implant reconstruction were recruited. Seroma fluid (82 breasts, 70 patients) was collected upon implant removal for infectious or non-infectious causes. Post-implantation drain fluid (100 samples, 44 breasts, 32 patients) was collected at routine visits prior to implant removal. A liquid-chromatography/mass spectrometry-based metabolomic approach was used to identify infection correlates.RESULTSIn seroma fluid specimens, infection was associated with a diverse set of small molecules including acetylated polyamines, defensins, glucosyl-sphingosine, and several peptide-like features (all P<0.001, diagnostic areas under the receiver operating curve 0.82-0.93). Notably, a subset of these markers were significantly elevated (p<0.05) in post-implantation drain fluid before recorded infection symptoms and diagnosis. Pseudomonas aeruginosa and its specialized exometabolites in drain specimens were also associated with subsequent P. aeruginosa infections.CONCLUSIONTissue fluid from infected patients has a distinctive metabolome reflecting human and bacterial physiologic processes that often precede clinical diagnoses. A diagnostic based on these findings has potential to improve patient outcomes through early recognition of infection.TRIAL REGISTRATIONNot applicable.FUNDINGWork was supported by U54CK000609 from the CDC and an unencumbered research gift to TMM from Sientra. Metabolomic approaches were supported by RO1DK125860 and RO1DK111930 to JPH. The contents are solely the responsibility of the authors and do not necessarily represent the official views of CDC.","PeriodicalId":520097,"journal":{"name":"The Journal of Clinical Investigation","volume":"22 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145813510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Montserrat Puigdelloses Vallcorba,Nishant Soni,Seung-Won Choi,Kavita Rawat,Tanvi Joshi,Sam Friedman,Alice Buonfiglioli,Angelo Angione,Zhihong Chen,Gonzalo Piñero,Gabrielle Price,Mehek Dedhia,Raina Roche,Emir Radkevich,Anne M Bowcock,Deepti Bhatt,Winfried Edelmann,Robert M Samstein,Timothy E Richardson,Nadejda M Tsankova,Alexander M Tsankov,Ranjit S Bindra,Raul Rabadan,Juan C Vasquez,Dolores Hambardzumyan
Mutations in DNA mismatch repair (MMR) pathway genes (MSH2, MSH6, MLH1, and PMS2) are linked to acquired resistance to temozolomide (TMZ) and high tumor mutation burden (TMB) in high-grade gliomas (HGG), including glioblastoma (GBM). However, the specific roles of individual MMR genes in the initiation, progression, TMB, microsatellite instability (MSI), and resistance to TMZ in glioma remain unclear. Here, we developed de novo mouse models of germline and somatic MMR-deficient (MMRd) HGG. Surprisingly, loss of Msh2 or Msh6 does not lead to high TMB, MSI, nor confer response to anti-PD-1 in GBM. Similarly, human GBM shows discordance between MMR gene mutations and TMB/MSI.Germline MMRd leads to promoted progression from low-grade to HGG and reduced survival compared to MMR-proficient (MMRp) tumor-bearing mice. This effect is not tumor cell intrinsic but is associated with MMRd in the tumor immune microenvironment, driving immunosuppressive myeloid programs, reduced lymphoid infiltration, and CD8+ T cell exhaustion. Both MMR-reduced (MMRr) and MMRd GBM are resistant to temozolomide (TMZ), unlike MMRp tumors. Our study shows that KL-50, a imidazotetrazine-based DNA targeting agent inducing MMR-independent cross-link-mediated cytotoxicity, was effective against germline and somatic MMRr/MMRd GBM, offering a potential therapy for TMZ-resistant HGG with MMR alterations.
{"title":"Mismatch repair deficiency drives malignant progression and alters the tumor immune microenvironment in glioblastoma models.","authors":"Montserrat Puigdelloses Vallcorba,Nishant Soni,Seung-Won Choi,Kavita Rawat,Tanvi Joshi,Sam Friedman,Alice Buonfiglioli,Angelo Angione,Zhihong Chen,Gonzalo Piñero,Gabrielle Price,Mehek Dedhia,Raina Roche,Emir Radkevich,Anne M Bowcock,Deepti Bhatt,Winfried Edelmann,Robert M Samstein,Timothy E Richardson,Nadejda M Tsankova,Alexander M Tsankov,Ranjit S Bindra,Raul Rabadan,Juan C Vasquez,Dolores Hambardzumyan","doi":"10.1172/jci195189","DOIUrl":"https://doi.org/10.1172/jci195189","url":null,"abstract":"Mutations in DNA mismatch repair (MMR) pathway genes (MSH2, MSH6, MLH1, and PMS2) are linked to acquired resistance to temozolomide (TMZ) and high tumor mutation burden (TMB) in high-grade gliomas (HGG), including glioblastoma (GBM). However, the specific roles of individual MMR genes in the initiation, progression, TMB, microsatellite instability (MSI), and resistance to TMZ in glioma remain unclear. Here, we developed de novo mouse models of germline and somatic MMR-deficient (MMRd) HGG. Surprisingly, loss of Msh2 or Msh6 does not lead to high TMB, MSI, nor confer response to anti-PD-1 in GBM. Similarly, human GBM shows discordance between MMR gene mutations and TMB/MSI.Germline MMRd leads to promoted progression from low-grade to HGG and reduced survival compared to MMR-proficient (MMRp) tumor-bearing mice. This effect is not tumor cell intrinsic but is associated with MMRd in the tumor immune microenvironment, driving immunosuppressive myeloid programs, reduced lymphoid infiltration, and CD8+ T cell exhaustion. Both MMR-reduced (MMRr) and MMRd GBM are resistant to temozolomide (TMZ), unlike MMRp tumors. Our study shows that KL-50, a imidazotetrazine-based DNA targeting agent inducing MMR-independent cross-link-mediated cytotoxicity, was effective against germline and somatic MMRr/MMRd GBM, offering a potential therapy for TMZ-resistant HGG with MMR alterations.","PeriodicalId":520097,"journal":{"name":"The Journal of Clinical Investigation","volume":"13 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145813512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hannah E Christie,Sneha Mohan,Aoife M Egan,Federica Boscolo,Chiara Dalla Man,Scott M Thompson,Michael Jundt,Chad J Fleming,James C Andrews,Kent R Bailey,Michael D Jensen,K Sree Nair,Adrian Vella
BACKGROUNDAmino acid (AA) concentrations are increased in prediabetes and diabetes. Since AA stimulate glucagon secretion which should then increase hepatic AA catabolism, it has been hypothesized that hepatic resistance (associated with hepatic fat content) to glucagon's actions on AA metabolism leads to hyperglucagonemia and hyperglycemia.METHODSTo test this hypothesis, we therefore studied lean and obese individuals, the latter group with and without hepatic steatosis as defined by Proton Density Fat Fraction (PDFF) > 5%. After an overnight fast, femoral vein, femoral artery, and hepatic vein catheters were placed. [3-3H] glucose and L-[1-13C,15N]-leucine were used to measure glucose turnover and leucine oxidation respectively. During a hyperglycemic clamp, an amino acid mixture was infused together with insulin and glucagon (1.5 ng/kg/min 0 - 120 min; 3.0 ng/kg/min 120 - 240 min). Tracer-based measurement of hepatic leucine oxidation in response to rising glucagon concentrations and splanchnic balance (measured using arterio-venous differences across the liver), of the other AA were the main outcomes measured.RESULTSThe presence of hepatic steatosis did not alter hepatic glucose metabolism and leucine oxidation in response to insulin and rising concentrations of glucagon. Splanchnic balance of a few amino acids, and related metabolites differed amongst the groups. However, across-group differences of AA splanchnic balance in response to glucagon were unaffected by the presence of hepatic steatosis.CONCLUSIONThe action of glucagon on hepatic amino acid metabolism is unaffected by hepatic steatosis in humans.TRIAL REGISTRATIONThis study was registered at Clinical Trials.Gov: NCT05500586.FUNDINGThis work was funding by the NIH.
{"title":"Hepatic steatosis in humans is associated with preserved glucagon action on amino acid metabolism.","authors":"Hannah E Christie,Sneha Mohan,Aoife M Egan,Federica Boscolo,Chiara Dalla Man,Scott M Thompson,Michael Jundt,Chad J Fleming,James C Andrews,Kent R Bailey,Michael D Jensen,K Sree Nair,Adrian Vella","doi":"10.1172/jci200913","DOIUrl":"https://doi.org/10.1172/jci200913","url":null,"abstract":"BACKGROUNDAmino acid (AA) concentrations are increased in prediabetes and diabetes. Since AA stimulate glucagon secretion which should then increase hepatic AA catabolism, it has been hypothesized that hepatic resistance (associated with hepatic fat content) to glucagon's actions on AA metabolism leads to hyperglucagonemia and hyperglycemia.METHODSTo test this hypothesis, we therefore studied lean and obese individuals, the latter group with and without hepatic steatosis as defined by Proton Density Fat Fraction (PDFF) > 5%. After an overnight fast, femoral vein, femoral artery, and hepatic vein catheters were placed. [3-3H] glucose and L-[1-13C,15N]-leucine were used to measure glucose turnover and leucine oxidation respectively. During a hyperglycemic clamp, an amino acid mixture was infused together with insulin and glucagon (1.5 ng/kg/min 0 - 120 min; 3.0 ng/kg/min 120 - 240 min). Tracer-based measurement of hepatic leucine oxidation in response to rising glucagon concentrations and splanchnic balance (measured using arterio-venous differences across the liver), of the other AA were the main outcomes measured.RESULTSThe presence of hepatic steatosis did not alter hepatic glucose metabolism and leucine oxidation in response to insulin and rising concentrations of glucagon. Splanchnic balance of a few amino acids, and related metabolites differed amongst the groups. However, across-group differences of AA splanchnic balance in response to glucagon were unaffected by the presence of hepatic steatosis.CONCLUSIONThe action of glucagon on hepatic amino acid metabolism is unaffected by hepatic steatosis in humans.TRIAL REGISTRATIONThis study was registered at Clinical Trials.Gov: NCT05500586.FUNDINGThis work was funding by the NIH.","PeriodicalId":520097,"journal":{"name":"The Journal of Clinical Investigation","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145813511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jackson J Peterson,Shipra Chandel,Katherine James,Elizabeth S Bennett,Vincent Wu,Cory H White,Brigitte Allard,Matthew Clohosey,Taylor Whitaker,Caroline Baker,Susan Pedersen,Anne F Peery,Cynthia L Gay,Michael R Betts,David M Margolis,Nancie M Archin,Edward P Browne
Human gastrointestinal (GI) tissues are a major site of HIV-1 viral persistence, but the nature of the GI reservoir remains poorly described. To characterize the GI HIV reservoir, we profiled cells from GI tissue and matched peripheral blood mononuclear cells from ten people with HIV on antiretroviral therapy using single cell RNA sequencing. We identified distinct compartment-specific patterns of gene expression, highlighting key differences between blood and colon CD4 T cell populations. vRNA+ cells from both blood and GI tissue were heterogeneous and found in multiple subtypes of CD4 T cells, although vRNA+ cells were particularly enriched in cells with Th17 or Treg17 phenotypes. Transcriptomic comparison of HIV vRNA+ and vRNA- T cells revealed 116 differentially expressed genes that were associated with HIV infection including ZBED2, MAF and IL17F. These data provide novel information regarding the GI-resident HIV reservoir and suggest that compartment-specific patterns of gene expression are associated with HIV infection.
{"title":"Single cell characterization of the gastrointestinal HIV reservoir reveals heterogeneous cellular phenotypes.","authors":"Jackson J Peterson,Shipra Chandel,Katherine James,Elizabeth S Bennett,Vincent Wu,Cory H White,Brigitte Allard,Matthew Clohosey,Taylor Whitaker,Caroline Baker,Susan Pedersen,Anne F Peery,Cynthia L Gay,Michael R Betts,David M Margolis,Nancie M Archin,Edward P Browne","doi":"10.1172/jci196536","DOIUrl":"https://doi.org/10.1172/jci196536","url":null,"abstract":"Human gastrointestinal (GI) tissues are a major site of HIV-1 viral persistence, but the nature of the GI reservoir remains poorly described. To characterize the GI HIV reservoir, we profiled cells from GI tissue and matched peripheral blood mononuclear cells from ten people with HIV on antiretroviral therapy using single cell RNA sequencing. We identified distinct compartment-specific patterns of gene expression, highlighting key differences between blood and colon CD4 T cell populations. vRNA+ cells from both blood and GI tissue were heterogeneous and found in multiple subtypes of CD4 T cells, although vRNA+ cells were particularly enriched in cells with Th17 or Treg17 phenotypes. Transcriptomic comparison of HIV vRNA+ and vRNA- T cells revealed 116 differentially expressed genes that were associated with HIV infection including ZBED2, MAF and IL17F. These data provide novel information regarding the GI-resident HIV reservoir and suggest that compartment-specific patterns of gene expression are associated with HIV infection.","PeriodicalId":520097,"journal":{"name":"The Journal of Clinical Investigation","volume":"2 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145813508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhaojun Qiu,No-Joon Song,Anqi Li,Deepika Singh,Chandra B Prasad,Chunhong Yan,David P Carbone,Qi-En Wang,Xiaoli Zhang,Zihai Li,Junran Zhang
PP2A B55α, a regulatory subunit of protein phosphatase 2 (PP2A), is underexpressed in over 40% of non-small cell lung cancer (NSCLC) cases due to loss of heterozygosity of PPP2R2A, the gene encoding this protein. Given that low PPP2R2A expression correlates with poor prognosis, treating PPP2R2A-deficient NSCLC represents an unmet medical need. Here, we show that PPP2R2A knockdown or its heterozygosity (PPP2R2A+/-) increases cytosolic DNA, leading to cGAS-STING-type I interferon (IFN) pathway activation. PPP2R2A deficiency results in elevated expression of immune checkpoint protein PD-L1 via GSK-3β- and STING-dependent mechanisms. PPP2R2A+/- cancer cells have enhanced sensitivity to PD-L1 blockade in a mouse model of lung cancer due to modulation of the tumor immune microenvironment, resulting in increased NK cells and reduced infiltration and function of regulatory T cells (Tregs). Consequently, PD-L1 antibody treatment increases CD8+ T infiltration and activity, especially in tumors with PPP2R2A heterozygosity. Further, systemic or Treg-specific IFNAR1 blockade reduces the efficacy of PD-L1 blockade in PPP2R2A+/- tumors. Patients with NSCLC with a low PPP2R2A/PD-L1 ratio respond better to immune checkpoint blockade (ICB). These findings underscore the therapeutic potential of ICB in treating PPP2R2A-deficient NSCLC while suggesting that PPP2R2A deficiency could serve as a biomarker for guiding ICB-based therapies.
{"title":"PPP2R2A insufficiency enhances PD-L1 immune checkpoint blockade efficacy in lung cancer through cGAS-STING activation.","authors":"Zhaojun Qiu,No-Joon Song,Anqi Li,Deepika Singh,Chandra B Prasad,Chunhong Yan,David P Carbone,Qi-En Wang,Xiaoli Zhang,Zihai Li,Junran Zhang","doi":"10.1172/jci193354","DOIUrl":"https://doi.org/10.1172/jci193354","url":null,"abstract":"PP2A B55α, a regulatory subunit of protein phosphatase 2 (PP2A), is underexpressed in over 40% of non-small cell lung cancer (NSCLC) cases due to loss of heterozygosity of PPP2R2A, the gene encoding this protein. Given that low PPP2R2A expression correlates with poor prognosis, treating PPP2R2A-deficient NSCLC represents an unmet medical need. Here, we show that PPP2R2A knockdown or its heterozygosity (PPP2R2A+/-) increases cytosolic DNA, leading to cGAS-STING-type I interferon (IFN) pathway activation. PPP2R2A deficiency results in elevated expression of immune checkpoint protein PD-L1 via GSK-3β- and STING-dependent mechanisms. PPP2R2A+/- cancer cells have enhanced sensitivity to PD-L1 blockade in a mouse model of lung cancer due to modulation of the tumor immune microenvironment, resulting in increased NK cells and reduced infiltration and function of regulatory T cells (Tregs). Consequently, PD-L1 antibody treatment increases CD8+ T infiltration and activity, especially in tumors with PPP2R2A heterozygosity. Further, systemic or Treg-specific IFNAR1 blockade reduces the efficacy of PD-L1 blockade in PPP2R2A+/- tumors. Patients with NSCLC with a low PPP2R2A/PD-L1 ratio respond better to immune checkpoint blockade (ICB). These findings underscore the therapeutic potential of ICB in treating PPP2R2A-deficient NSCLC while suggesting that PPP2R2A deficiency could serve as a biomarker for guiding ICB-based therapies.","PeriodicalId":520097,"journal":{"name":"The Journal of Clinical Investigation","volume":"16 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145777389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Timothy F Burns,Sanja Dacic,Anish Chakka,Ethan Miller,Maria A Velez,Ashwin Somasundaram,Saveri Bhattacharya,Autumn Gaither-Davis,Princey Devadassan,Jingxiao Jin,Vinod Kumar,Arjun Pennathur,Joanne Xiu,Matthew Oberley,Michael J Glantz,Sonikpreet Aulakh,Uma R Chandran,Riyue Bao,Curtis Tatsuoka,Laura P Stabile
Non-small cell lung cancer (NSCLC) exhibits the highest rates of brain metastases (BM) among all solid tumors and presents a significant clinical challenge. The development of novel therapeutic strategies targeting BM is clearly needed. We identified a significant enrichment of MET amplification in lung adenocarcinoma (LUAD) BM compared to primary LUAD and extracranial metastases in oncogene driver-negative patients. Of note, MET amplified BM were responsive to MET inhibitors in vivo including models with acquired MET amplification at the time of metastasis. MET alterations (amplifications and/or mutations) were also more frequently detected in circulating tumor DNA from LUAD BM patients than in those without BM. MET altered BM also demonstrated unique genomic features compared to non-MET altered BM. Transcriptomic analyses revealed that in contrast to MET wildtype BM, MET amplified BM exhibited a more inflamed tumor microenvironment and displayed evidence of metabolic adaptation, particularly a reliance on glycolysis in contrast to oxidative phosphorylation in MET wildtype BM. Further, MET amplified BM demonstrated evidence of epithelial-mesenchymal transition signaling including increased expression of TWIST1. Patients with MET amplified BM had significantly shorter overall survival. These findings highlight MET amplification as a critical driver of LUAD BM, emphasizing its potential as a therapeutic target.
{"title":"MET alterations are enriched in lung adenocarcinoma brain metastases, defining a distinct biologic subtype.","authors":"Timothy F Burns,Sanja Dacic,Anish Chakka,Ethan Miller,Maria A Velez,Ashwin Somasundaram,Saveri Bhattacharya,Autumn Gaither-Davis,Princey Devadassan,Jingxiao Jin,Vinod Kumar,Arjun Pennathur,Joanne Xiu,Matthew Oberley,Michael J Glantz,Sonikpreet Aulakh,Uma R Chandran,Riyue Bao,Curtis Tatsuoka,Laura P Stabile","doi":"10.1172/jci194708","DOIUrl":"https://doi.org/10.1172/jci194708","url":null,"abstract":"Non-small cell lung cancer (NSCLC) exhibits the highest rates of brain metastases (BM) among all solid tumors and presents a significant clinical challenge. The development of novel therapeutic strategies targeting BM is clearly needed. We identified a significant enrichment of MET amplification in lung adenocarcinoma (LUAD) BM compared to primary LUAD and extracranial metastases in oncogene driver-negative patients. Of note, MET amplified BM were responsive to MET inhibitors in vivo including models with acquired MET amplification at the time of metastasis. MET alterations (amplifications and/or mutations) were also more frequently detected in circulating tumor DNA from LUAD BM patients than in those without BM. MET altered BM also demonstrated unique genomic features compared to non-MET altered BM. Transcriptomic analyses revealed that in contrast to MET wildtype BM, MET amplified BM exhibited a more inflamed tumor microenvironment and displayed evidence of metabolic adaptation, particularly a reliance on glycolysis in contrast to oxidative phosphorylation in MET wildtype BM. Further, MET amplified BM demonstrated evidence of epithelial-mesenchymal transition signaling including increased expression of TWIST1. Patients with MET amplified BM had significantly shorter overall survival. These findings highlight MET amplification as a critical driver of LUAD BM, emphasizing its potential as a therapeutic target.","PeriodicalId":520097,"journal":{"name":"The Journal of Clinical Investigation","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145777390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mechanistic target of rapamycin complex 1 (mTORC1) is a master controller of cell growth and its dysregulation is associated with cancer. KICSTOR, a complex comprising KPTN, ITFG2, C12orf66, and SZT2, functions as a critical negative regulator of amino acid-induced mTORC1 activation. However, the regulatory mechanisms governing KICSTOR remain largely unclear. In this study, we identify FBXO2 as a key modulator of amino acid-dependent mTORC1 signaling. Mechanistically, FBXO2 colocalizes and directly interacts with KPTN via its F-box-associated domain, promoting K48- and K63-linked polyubiquitination of KPTN at lysine residues 49, 67, 262, and 265. FBXO2-mediated KPTN ubiquitination disrupts its interaction with ITFG2 and SZT2, while enhancing its interaction with C12orf66, thereby impairing the ability of KICSTOR to recruit the GATOR1 complex to the lysosomal surface. Notably, FBXO2 protein levels are substantially upregulated in liver cancer patients and FBXO2-mediated KPTN ubiquitination facilitates the progression of hepatocellular carcinoma (HCC). These results reveal a key regulatory mechanism of the mTORC1 signaling and highlight FBXO2 and KPTN ubiquitination as therapeutic targets for HCC treatment.
雷帕霉素复合体1 (Mechanistic target of rapamycin complex 1, mTORC1)是细胞生长的主要控制因子,其失调与癌症有关。KICSTOR是一种由KPTN、ITFG2、C12orf66和SZT2组成的复合物,是氨基酸诱导mTORC1激活的关键负调控因子。然而,管理KICSTOR的监管机制在很大程度上仍然不清楚。在这项研究中,我们发现FBXO2是氨基酸依赖性mTORC1信号的关键调节剂。在机制上,FBXO2通过其f -box相关结构域与KPTN共定位并直接相互作用,促进赖氨酸残基49、67、262和265处K48-和k63 -连接的KPTN多泛素化。fbxo2介导的KPTN泛素化破坏了其与ITFG2和SZT2的相互作用,同时增强了其与C12orf66的相互作用,从而削弱了KICSTOR将GATOR1复合物募集到溶酶体表面的能力。值得注意的是,肝癌患者中FBXO2蛋白水平大幅上调,FBXO2介导的KPTN泛素化促进了肝细胞癌(HCC)的进展。这些结果揭示了mTORC1信号的关键调控机制,并强调FBXO2和KPTN泛素化是HCC治疗的治疗靶点。
{"title":"FBXO2-mediated KPTN ubiquitination promotes amino acid-dependent mTORC1 signaling and tumor growth.","authors":"Jianfang Gao,Jina Qing,Xianglong Li,Yuxuan Luo,Lingwen Huang,Hongxia Li,Huan Zhang,Jiao Zhang,Pei Xiao,Jinsong Li,Tingting Li,Shanping He","doi":"10.1172/jci195031","DOIUrl":"https://doi.org/10.1172/jci195031","url":null,"abstract":"Mechanistic target of rapamycin complex 1 (mTORC1) is a master controller of cell growth and its dysregulation is associated with cancer. KICSTOR, a complex comprising KPTN, ITFG2, C12orf66, and SZT2, functions as a critical negative regulator of amino acid-induced mTORC1 activation. However, the regulatory mechanisms governing KICSTOR remain largely unclear. In this study, we identify FBXO2 as a key modulator of amino acid-dependent mTORC1 signaling. Mechanistically, FBXO2 colocalizes and directly interacts with KPTN via its F-box-associated domain, promoting K48- and K63-linked polyubiquitination of KPTN at lysine residues 49, 67, 262, and 265. FBXO2-mediated KPTN ubiquitination disrupts its interaction with ITFG2 and SZT2, while enhancing its interaction with C12orf66, thereby impairing the ability of KICSTOR to recruit the GATOR1 complex to the lysosomal surface. Notably, FBXO2 protein levels are substantially upregulated in liver cancer patients and FBXO2-mediated KPTN ubiquitination facilitates the progression of hepatocellular carcinoma (HCC). These results reveal a key regulatory mechanism of the mTORC1 signaling and highlight FBXO2 and KPTN ubiquitination as therapeutic targets for HCC treatment.","PeriodicalId":520097,"journal":{"name":"The Journal of Clinical Investigation","volume":"93 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145765490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}