首页 > 最新文献

Current Opinion in Physiology最新文献

英文 中文
Cardiac adrenergic receptors and GRKs: mitochondrial modulation in the heart 心脏肾上腺素能受体和 GRKs:心脏线粒体调节
IF 2.5 Q2 Medicine Pub Date : 2023-12-07 DOI: 10.1016/j.cophys.2023.100733
Gizem Kayki-Mutlu, Ebru Arioglu-Inan

The cellular ‘powerhouse’, mitochondria play vital roles in cardiac cells, including the modulation of contractility. Among the various mechanisms, the modulation of cardiac mitochondria by adrenergic signaling stands out as a crucial component in orchestrating cardiac function. Adrenergic system serving as the primary regulator of cardiac contractility, exerts its effects through α- and ß-adrenoceptors, which are regulated by G-protein-coupled receptor kinase 2 (GRK2) and ß-arrestin. In recent years, it has been revealed that these components of adrenergic signaling interact with mitochondria in diverse ways. α- and ß-adrenoceptors are reported to contribute to mitochondrial biogenesis, dynamics, and function. Besides, GRK2 is known to be localized to mitochondria, following oxidative stress or ischemic injury, and exerts negative metabolic effects. In this review, we outlined the contributions of these pivotal elements of adrenergic signaling to mitochondrial function. The better understanding of this delicate relationship holds crucial implications for novel therapeutic options to treat cardiovascular pathologies.

线粒体是细胞的 "动力室",在心脏细胞中发挥着至关重要的作用,包括调节收缩力。在各种机制中,肾上腺素能信号对心脏线粒体的调节是协调心脏功能的重要组成部分。肾上腺素能系统是心脏收缩力的主要调节器,通过α-和ß-肾上腺素受体发挥作用,而α-和ß-肾上腺素受体又受 G 蛋白偶联受体激酶 2(GRK2)和ß-arrestin 的调节。据报道,α和ß肾上腺素受体有助于线粒体的生物生成、动力学和功能。此外,已知 GRK2 在氧化应激或缺血损伤后会定位到线粒体,并对新陈代谢产生负面影响。在这篇综述中,我们概述了肾上腺素能信号传导的这些关键因素对线粒体功能的贡献。更好地理解这种微妙的关系对治疗心血管疾病的新疗法具有重要意义。
{"title":"Cardiac adrenergic receptors and GRKs: mitochondrial modulation in the heart","authors":"Gizem Kayki-Mutlu,&nbsp;Ebru Arioglu-Inan","doi":"10.1016/j.cophys.2023.100733","DOIUrl":"10.1016/j.cophys.2023.100733","url":null,"abstract":"<div><p><span><span>The cellular ‘powerhouse’, mitochondria play vital roles in cardiac cells, including the modulation of contractility. Among the various mechanisms, the modulation of cardiac mitochondria by adrenergic signaling stands out as a crucial component in orchestrating cardiac function. Adrenergic system serving as the primary regulator of </span>cardiac contractility, exerts its effects through α- and ß-adrenoceptors, which are regulated by G-protein-coupled receptor kinase 2 (GRK2) and ß-arrestin. In recent years, it has been revealed that these components of adrenergic signaling interact with mitochondria in diverse ways. α- and ß-adrenoceptors are reported to contribute to </span>mitochondrial biogenesis<span>, dynamics, and function. Besides, GRK2 is known to be localized to mitochondria, following oxidative stress or ischemic injury, and exerts negative metabolic effects. In this review, we outlined the contributions of these pivotal elements of adrenergic signaling to mitochondrial function. The better understanding of this delicate relationship holds crucial implications for novel therapeutic options to treat cardiovascular pathologies.</span></p></div>","PeriodicalId":52156,"journal":{"name":"Current Opinion in Physiology","volume":"37 ","pages":"Article 100733"},"PeriodicalIF":2.5,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138625464","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The role of endothelial cells in autoimmune rheumatic disease 内皮细胞在自身免疫性风湿病中的作用
IF 2.5 Q2 Medicine Pub Date : 2023-12-01 DOI: 10.1016/j.cophys.2023.100732
Medha Kanitkar, Christopher P Denton

Vasculopathy is a generic feature of autoimmune rheumatic disease and there is substantial evidence that endothelial cell dysfunction has a role in pathogenesis and clinical manifestations of this challenging group of diseases. Endothelial cells (EC) are a target for injury and through their essential functional role in vascular homoeostasis, this has significant impact. In addition, the emerging recognition that EC are important regulators of other cell types and can differentiate into other relevant cell types has direct relevance. These aspects are reviewed with a focus on recent published evidence regarding the importance of EC in development, progression and treatment of autoimmune rheumatic disease. The potential role of the adaptive and innate immune system in causing endothelial cell damage, including anti-endothelial cell autoantibodies, will be reviewed. Recent advances in understanding how EC may differentiate into mesenchymal lineages and the interplay between physiological roles in healing or tissue repair and dysfunctional responses in acquired connective tissue disease will be reviewed.

血管病变是自身免疫性风湿病的一个共同特征,有大量证据表明,内皮细胞功能障碍在这组具有挑战性的疾病的发病机制和临床表现中起着重要作用。内皮细胞(EC)是损伤的目标,由于其在血管稳态中发挥着重要的功能作用,因此具有重大影响。此外,人们逐渐认识到内皮细胞是其他细胞类型的重要调节器,并能分化成其他相关细胞类型,这与内皮细胞有直接关系。本文对这些方面进行了综述,并重点分析了最近发表的有关心肌细胞在自身免疫性风湿病的发生、发展和治疗中的重要性的证据。还将综述适应性免疫系统和先天性免疫系统在造成内皮细胞损伤(包括抗内皮细胞自身抗体)方面的潜在作用。还将综述了解内皮细胞如何分化为间充质系的最新进展,以及在愈合或组织修复中的生理作用与获得性结缔组织疾病中的功能障碍反应之间的相互作用。
{"title":"The role of endothelial cells in autoimmune rheumatic disease","authors":"Medha Kanitkar,&nbsp;Christopher P Denton","doi":"10.1016/j.cophys.2023.100732","DOIUrl":"10.1016/j.cophys.2023.100732","url":null,"abstract":"<div><p>Vasculopathy is a generic feature of autoimmune rheumatic disease and there is substantial evidence that endothelial cell dysfunction has a role in pathogenesis and clinical manifestations of this challenging group of diseases. Endothelial cells (EC) are a target for injury and through their essential functional role in vascular homoeostasis, this has significant impact. In addition, the emerging recognition that EC are important regulators of other cell types and can differentiate into other relevant cell types has direct relevance. These aspects are reviewed with a focus on recent published evidence regarding the importance of EC in development, progression and treatment of autoimmune rheumatic disease. The potential role of the adaptive and innate immune system in causing endothelial cell damage, including anti-endothelial cell autoantibodies, will be reviewed. Recent advances in understanding how EC may differentiate into mesenchymal lineages and the interplay between physiological roles in healing or tissue repair and dysfunctional responses in acquired connective tissue disease will be reviewed.</p></div>","PeriodicalId":52156,"journal":{"name":"Current Opinion in Physiology","volume":"37 ","pages":"Article 100732"},"PeriodicalIF":2.5,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468867323001037/pdfft?md5=ac0864dcb763bc6948a89da29e1475ed&pid=1-s2.0-S2468867323001037-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138621862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
β-adrenergic receptor signaling mediated by β-arrestins and its potential role in heart failure 由β-阿司匹林介导的β-肾上腺素能受体信号转导及其在心力衰竭中的潜在作用
IF 2.5 Q2 Medicine Pub Date : 2023-11-18 DOI: 10.1016/j.cophys.2023.100723
Preston C Nibley , Sudha K Shenoy

The lethality of heart failure, particularly in the context of post-acute sequelae SARS-CoV-2 infection-related myocarditis, necessitates the discovery of the cellular pathways implicated in cardiovascular disease. We summarize the signaling mechanisms of the catecholamine-binding β-adrenergic receptors (β-ARs), with an emphasis on the role of β-arrestins. β-ARs, a subset of G protein-coupled receptors (GPCRs), canonically propagate signals through heterotrimeric G proteins. However, since their discovery in the late 1980s, β-arrestins have been shown to both (i) quench G protein signaling and (ii) initiate their own independent signaling cascades, which is influenced by posttranslational modifications. β-arrestin-biased agonism by the beta-blocker carvedilol and its allosteric modulation can serve a cardioprotective role. The increasingly labyrinthine nature of GPCR signaling suggests that ligand-dependent β-AR signaling, either stimulated by an agonist or blocked by an antagonist, is selectively enhanced or suppressed by allosteric modulations, which are orchestrated by novel drugs or endogenous posttranslational modifications.

心力衰竭的致死率很高,尤其是在急性后遗症 SARS-CoV-2 感染相关心肌炎的情况下,因此有必要发现与心血管疾病有关的细胞通路。我们总结了儿茶酚胺结合型β-肾上腺素能受体(β-ARs)的信号传导机制,重点是β-阻遏素的作用。β-ARs是G蛋白偶联受体(GPCRs)的一个子集,通常通过异三聚体G蛋白传播信号。然而,自 20 世纪 80 年代末发现以来,β-arrestins 已被证明既能(i)淬灭 G 蛋白信号,又能(ii)启动其自身独立的信号级联,这受到翻译后修饰的影响。β-受体阻滞剂卡维地洛(carvedilol)的β-restin-biased激动作用及其异位调节作用可起到保护心脏的作用。GPCR 信号转导的迷宫性质日益明显,这表明配体依赖的 β-AR 信号转导要么受到激动剂的刺激,要么受到拮抗剂的阻断,并通过异构调节选择性地增强或抑制,而异构调节是由新型药物或内源性翻译后修饰精心策划的。
{"title":"β-adrenergic receptor signaling mediated by β-arrestins and its potential role in heart failure","authors":"Preston C Nibley ,&nbsp;Sudha K Shenoy","doi":"10.1016/j.cophys.2023.100723","DOIUrl":"https://doi.org/10.1016/j.cophys.2023.100723","url":null,"abstract":"<div><p>The lethality of heart failure, particularly in the context of post-acute sequelae SARS-CoV-2 infection-related myocarditis, necessitates the discovery of the cellular pathways implicated in cardiovascular disease. We summarize the signaling mechanisms of the catecholamine-binding β-adrenergic receptors (β-ARs), with an emphasis on the role of β-arrestins. β-ARs, a subset of G protein-coupled receptors (GPCRs), canonically propagate signals through heterotrimeric G proteins. However, since their discovery in the late 1980s, β-arrestins have been shown to both (i) quench G protein signaling and (ii) initiate their own independent signaling cascades, which is influenced by posttranslational modifications<span>. β-arrestin-biased agonism by the beta-blocker carvedilol and its allosteric modulation can serve a cardioprotective role. The increasingly labyrinthine nature of GPCR signaling suggests that ligand-dependent β-AR signaling, either stimulated by an agonist or blocked by an antagonist, is selectively enhanced or suppressed by allosteric modulations, which are orchestrated by novel drugs or endogenous posttranslational modifications.</span></p></div>","PeriodicalId":52156,"journal":{"name":"Current Opinion in Physiology","volume":"37 ","pages":"Article 100723"},"PeriodicalIF":2.5,"publicationDate":"2023-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138548833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adrenergic signaling in cardiovascular aging 心血管衰老过程中的肾上腺素能信号传导
IF 2.5 Q2 Medicine Pub Date : 2023-11-13 DOI: 10.1016/j.cophys.2023.100722
Ioannis D Kyriazis , Claudio de Lucia

The average lifespan of humans is increasing worldwide, and the percentage of older adults is substantially growing. The adrenergic system is a crucial determinant for the cardiovascular homeostasis during aging. In this short review, we discuss the new insights that emerged concerning the role of adrenergic receptors and relative signaling in the aging of the heart and vasculature with particular emphasis on molecular mechanisms involved. We also examine specific therapeutic interventions that modulate the adrenergic system feasibly counteracting and delaying age-induced pathophysiological changes in cardiovascular function and structure.

全球人类的平均寿命在不断延长,老年人的比例也在大幅增加。肾上腺素能系统是衰老过程中心血管平衡的关键决定因素。在这篇简短的综述中,我们将讨论肾上腺素能受体和相关信号传导在心脏和血管衰老过程中的作用,特别强调其中的分子机制。我们还研究了调节肾上腺素能系统的具体治疗干预措施,这些干预措施可以抵消和延缓年龄引起的心血管功能和结构的病理生理变化。
{"title":"Adrenergic signaling in cardiovascular aging","authors":"Ioannis D Kyriazis ,&nbsp;Claudio de Lucia","doi":"10.1016/j.cophys.2023.100722","DOIUrl":"10.1016/j.cophys.2023.100722","url":null,"abstract":"<div><p><span>The average lifespan of humans is increasing worldwide, and the percentage of older adults is substantially growing. The adrenergic system is a crucial determinant for the cardiovascular homeostasis during aging. In this short review, we discuss the new insights that emerged concerning the role of </span>adrenergic receptors<span> and relative signaling in the aging of the heart and vasculature with particular emphasis on molecular mechanisms involved. We also examine specific therapeutic interventions that modulate the adrenergic system feasibly counteracting and delaying age-induced pathophysiological changes in cardiovascular function and structure.</span></p></div>","PeriodicalId":52156,"journal":{"name":"Current Opinion in Physiology","volume":"37 ","pages":"Article 100722"},"PeriodicalIF":2.5,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135715186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adrenergic receptors in endothelial and vascular smooth muscle cells 内皮细胞和血管平滑肌细胞中的肾上腺素能受体
IF 2.5 Q2 Medicine Pub Date : 2023-10-12 DOI: 10.1016/j.cophys.2023.100721
Jessica Gambardella , Antonella Fiordelisi , Roberta Avvisato , Antonietta Buonaiuto , Federica A Cerasuolo , Daniela Sorriento , Guido Iaccarino

Adrenergic receptors (AR) are essential regulators of vascular physiology and are largely used as pharmacological targets. This chapter will review the main roles of the vascular AR in both the endothelium and vascular smooth muscle. We will discuss the ability of ARs to regulate key functions in endothelial and smooth muscle cells and their involvement in several pathologic conditions such as hypertension, atherosclerosis, and heart failure.

肾上腺素能受体(AR)是血管生理的重要调节因子,被广泛用作药物靶点。本章将综述血管AR在内皮和血管平滑肌中的主要作用。我们将讨论ARs调节内皮细胞和平滑肌细胞关键功能的能力,以及它们在高血压、动脉粥样硬化和心力衰竭等几种病理状况中的作用。
{"title":"Adrenergic receptors in endothelial and vascular smooth muscle cells","authors":"Jessica Gambardella ,&nbsp;Antonella Fiordelisi ,&nbsp;Roberta Avvisato ,&nbsp;Antonietta Buonaiuto ,&nbsp;Federica A Cerasuolo ,&nbsp;Daniela Sorriento ,&nbsp;Guido Iaccarino","doi":"10.1016/j.cophys.2023.100721","DOIUrl":"https://doi.org/10.1016/j.cophys.2023.100721","url":null,"abstract":"<div><p>Adrenergic receptors (AR) are essential regulators of vascular physiology and are largely used as pharmacological targets. This chapter will review the main roles of the vascular AR in both the endothelium and vascular smooth muscle. We will discuss the ability of ARs to regulate key functions in endothelial and smooth muscle cells and their involvement in several pathologic conditions such as hypertension, atherosclerosis, and heart failure.</p></div>","PeriodicalId":52156,"journal":{"name":"Current Opinion in Physiology","volume":"36 ","pages":"Article 100721"},"PeriodicalIF":2.5,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"92142342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The stress connection in cancer: the adrenergic fuelling of breast tumors 癌症中的压力关系:乳腺肿瘤的肾上腺素能燃料
IF 2.5 Q2 Medicine Pub Date : 2023-10-06 DOI: 10.1016/j.cophys.2023.100720
Angela Albitre , Clara Reglero , Teresa González-Muñoz , Petronila Penela

Cancer progression involves complex interactions between tumor cells and the surrounding microenvironment. Chronic psychosocial stress and sympathetic nervous system activation lead to abnormal catecholamine release, impacting tumor cells directly and indirectly and fuelling cancer-promoting effects. However, the same adrenergic Receptor (AR) that mediate these effects could also convey exercise-related beneficial changes. Epidemiological studies show conflicting associations between stress, AR inhibitors, and breast cancer (BC) metastatic progression. Adrenergic sympathetic stress triggers sustained inflammatory and hypoxic-related signaling pathways, alters function and distribution of immune cell populations, and remodels blood vessels, leading to immunosuppression and premetastatic site formation. Activated AR initiate feedback loops with tyrosine kinase receptors and chemokine receptors, affecting stem-related transcription factors, pro-inflammatory mediators, angiogenic factors, and energy metabolism regulators, promoting tumor growth and invasion. Understanding molecular mechanisms of agonistic and antagonistic AR ligands and crosstalk with other signaling pathways is crucial for developing effective therapies targeting adrenergic-driven BC progression.

癌症的进展涉及肿瘤细胞与周围微环境之间复杂的相互作用。慢性社会心理压力和交感神经系统激活导致儿茶酚胺释放异常,直接或间接影响肿瘤细胞并促进癌症的发生。然而,介导这些影响的肾上腺素能受体(AR)也可能传达与运动相关的有益变化。流行病学研究显示压力、AR抑制剂和乳腺癌(BC)转移进展之间存在相互矛盾的关联。肾上腺素能交感应激触发持续炎症和缺氧相关的信号通路,改变免疫细胞群的功能和分布,重塑血管,导致免疫抑制和转移前部位形成。激活的AR启动酪氨酸激酶受体和趋化因子受体的反馈回路,影响干相关转录因子、促炎介质、血管生成因子和能量代谢调节因子,促进肿瘤生长和侵袭。了解激动和拮抗AR配体的分子机制以及与其他信号通路的串扰对于开发针对肾上腺素能驱动的BC进展的有效疗法至关重要。
{"title":"The stress connection in cancer: the adrenergic fuelling of breast tumors","authors":"Angela Albitre ,&nbsp;Clara Reglero ,&nbsp;Teresa González-Muñoz ,&nbsp;Petronila Penela","doi":"10.1016/j.cophys.2023.100720","DOIUrl":"https://doi.org/10.1016/j.cophys.2023.100720","url":null,"abstract":"<div><p>Cancer progression involves complex interactions between tumor cells and the surrounding microenvironment. Chronic psychosocial stress and sympathetic nervous system activation lead to abnormal catecholamine release, impacting tumor cells directly and indirectly and fuelling cancer-promoting effects. However, the same adrenergic Receptor (AR) that mediate these effects could also convey exercise-related beneficial changes. Epidemiological studies show conflicting associations between stress, AR inhibitors, and breast cancer (BC) metastatic progression. Adrenergic sympathetic stress triggers sustained inflammatory and hypoxic-related signaling pathways, alters function and distribution of immune cell populations, and remodels blood vessels, leading to immunosuppression and premetastatic site formation. Activated AR initiate feedback loops with tyrosine kinase receptors and chemokine receptors, affecting stem-related transcription factors, pro-inflammatory mediators, angiogenic factors, and energy metabolism regulators, promoting tumor growth and invasion. Understanding molecular mechanisms of agonistic and antagonistic AR ligands and crosstalk with other signaling pathways is crucial for developing effective therapies targeting adrenergic-driven BC progression.</p></div>","PeriodicalId":52156,"journal":{"name":"Current Opinion in Physiology","volume":"36 ","pages":"Article 100720"},"PeriodicalIF":2.5,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468867323000913/pdfft?md5=aed2a106f616954c94deb047200e5e28&pid=1-s2.0-S2468867323000913-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"92073581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Role of non-coding RNAs in physiological and pathological angiogenesis 非编码RNA在生理和病理血管生成中的作用
IF 2.5 Q2 Medicine Pub Date : 2023-10-01 DOI: 10.1016/j.cophys.2023.100690
Nihay Laham-Karam , Isidore Mushimiyimana , Krista Hokkanen , Seppo Ylä-Herttuala

Angiogenesis, the process of building new vessels, is important in physiology. In addition, it is involved in different pathologies, including cancers, ischemia, macular degeneration and inflammatory bowel disease. The regulation of angiogenesis is multifaceted and according to recent data includes transcriptional modulation by enhancers and non-coding RNAs as well as post-transcriptional regulation by microRNAs. In this review, we highlight recent findings in this field that relate both to physiological and pathological angiogenesis and discuss the effects on key angiogenic factors.

血管生成是建立新血管的过程,在生理学上很重要。此外,它还涉及不同的病理,包括癌症、局部缺血、黄斑变性和炎症性肠病。血管生成的调节是多方面的,根据最近的数据,包括增强子和非编码RNA的转录调节以及微小RNA的转录后调节。在这篇综述中,我们强调了该领域与生理和病理血管生成相关的最新发现,并讨论了对关键血管生成因子的影响。
{"title":"Role of non-coding RNAs in physiological and pathological angiogenesis","authors":"Nihay Laham-Karam ,&nbsp;Isidore Mushimiyimana ,&nbsp;Krista Hokkanen ,&nbsp;Seppo Ylä-Herttuala","doi":"10.1016/j.cophys.2023.100690","DOIUrl":"https://doi.org/10.1016/j.cophys.2023.100690","url":null,"abstract":"<div><p>Angiogenesis, the process of building new vessels, is important in physiology. In addition, it is involved in different pathologies, including cancers, ischemia, macular degeneration and inflammatory bowel disease. The regulation of angiogenesis is multifaceted and according to recent data includes transcriptional modulation by enhancers and non-coding RNAs as well as post-transcriptional regulation by microRNAs. In this review, we highlight recent findings in this field that relate both to physiological and pathological angiogenesis and discuss the effects on key angiogenic factors.</p></div>","PeriodicalId":52156,"journal":{"name":"Current Opinion in Physiology","volume":"35 ","pages":"Article 100690"},"PeriodicalIF":2.5,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49817985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Endothelial cell senescence — understanding aging and disease 内皮细胞衰老——理解衰老与疾病
IF 2.5 Q2 Medicine Pub Date : 2023-10-01 DOI: 10.1016/j.cophys.2023.100702
Paul R Coleman , Ka K Ting , Yanfei Qi , Mathew A Vadas , Jennifer R Gamble
{"title":"Endothelial cell senescence — understanding aging and disease","authors":"Paul R Coleman ,&nbsp;Ka K Ting ,&nbsp;Yanfei Qi ,&nbsp;Mathew A Vadas ,&nbsp;Jennifer R Gamble","doi":"10.1016/j.cophys.2023.100702","DOIUrl":"https://doi.org/10.1016/j.cophys.2023.100702","url":null,"abstract":"","PeriodicalId":52156,"journal":{"name":"Current Opinion in Physiology","volume":"35 ","pages":"Article 100702"},"PeriodicalIF":2.5,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49787169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Membrane force reception: mechanosensation in G protein-coupled receptors and tools to address it 膜受力:G蛋白偶联受体的机械感觉及其解决方法
IF 2.5 Q2 Medicine Pub Date : 2023-10-01 DOI: 10.1016/j.cophys.2023.100689
Katie Hardman , Adrian Goldman , Christos Pliotas

To survive, all organisms must detect and respond to mechanical cues in their environment. Cells are subjected to a plethora of mechanical forces, such as hydrostatic pressure, cell-cell contact, stretch, compression, and shear stress. Mechanosensitive (MS) membrane proteins have evolved across all life kingdoms to sense and respond to forces in the membrane. Bacterial MS ion channels provide a blueprint for understanding the fundamental mechanisms that underpin cellular responses to mechanical signals. Recently, the identification of eukaryotic force transducers, which includes membrane proteins other than channels, has led to the recognition of common structural hallmarks and unified biophysical mechanisms that could potentially link these diverse proteins. Accumulating evidence suggests G protein-coupled receptors (GPCRs) are candidates for pressure sensing in mammals. This review summarises the current knowledge on MS GPCRs, describes the tools used to assess their mechanosensitivity, and aims to highlight the key characteristics that link these receptors to established mechanosensors.

为了生存,所有生物都必须检测到环境中的机械信号并对其做出反应。细胞受到过多的机械力,如静水压力、细胞-细胞接触、拉伸、压缩和剪切应力。机械敏感(MS)膜蛋白已经在所有生命王国中进化,以感知和响应膜中的力。细菌MS离子通道为理解细胞对机械信号反应的基本机制提供了蓝图。最近,真核生物力传感器的鉴定,包括通道以外的膜蛋白,已经导致了对共同结构特征的识别和可能将这些不同蛋白质联系起来的统一生物物理机制。越来越多的证据表明,G蛋白偶联受体(GPCR)是哺乳动物压力传感的候选者。这篇综述总结了MS GPCR的当前知识,描述了用于评估其机械敏感性的工具,并旨在强调将这些受体与已建立的机械传感器联系起来的关键特征。
{"title":"Membrane force reception: mechanosensation in G protein-coupled receptors and tools to address it","authors":"Katie Hardman ,&nbsp;Adrian Goldman ,&nbsp;Christos Pliotas","doi":"10.1016/j.cophys.2023.100689","DOIUrl":"https://doi.org/10.1016/j.cophys.2023.100689","url":null,"abstract":"<div><p>To survive, all organisms must detect and respond to mechanical cues in their environment. Cells are subjected to a plethora of mechanical forces, such as hydrostatic pressure, cell-cell contact, stretch, compression, and shear stress. Mechanosensitive (MS) membrane proteins have evolved across all life kingdoms to sense and respond to forces in the membrane. Bacterial MS ion channels provide a blueprint for understanding the fundamental mechanisms that underpin cellular responses to mechanical signals. Recently, the identification of eukaryotic force transducers, which includes membrane proteins other than channels, has led to the recognition of common structural hallmarks and unified biophysical mechanisms that could potentially link these diverse proteins. Accumulating evidence suggests G protein-coupled receptors (GPCRs) are candidates for pressure sensing in mammals. This review summarises the current knowledge on MS GPCRs, describes the tools used to assess their mechanosensitivity, and aims to highlight the key characteristics that link these receptors to established mechanosensors.</p></div>","PeriodicalId":52156,"journal":{"name":"Current Opinion in Physiology","volume":"35 ","pages":"Article 100689"},"PeriodicalIF":2.5,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49787173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sex differences in coronavirus disease 2019 myocarditis 2019冠状病毒病心肌炎的性别差异
IF 2.5 Q2 Medicine Pub Date : 2023-10-01 DOI: 10.1016/j.cophys.2023.100704
Danielle J Beetler , DeLisa Fairweather

Myocarditis is frequently caused by viral infections, but animal models that closely resemble human disease suggest that virus-triggered autoimmune disease is the most likely cause of myocarditis. Myocarditis is a rare condition that occurs primarily in men under age 50. The incidence of myocarditis rose at least 15x during the coronavirus disease 2019 (COVID-19) pandemic from 1–10 to 150–400 cases/100 000 individuals, with most cases occurring in men under age 50. COVID-19 vaccination was also associated with rare cases of myocarditis primarily in young men under 50 years of age with an incidence as high as 50 cases/100 000 individuals reported for some mRNA vaccines. Sex differences in the immune response to COVID-19 are virtually identical to the mechanisms known to drive sex differences in myocarditis pre-COVID based on clinical studies and animal models. The many similarities between COVID-19 vaccine-associated myocarditis to COVID-19 myocarditis and non-COVID myocarditis suggest common immune mechanisms drive disease.

心肌炎通常由病毒感染引起,但与人类疾病非常相似的动物模型表明,病毒引发的自身免疫性疾病是心肌炎最有可能的原因。心肌炎是一种罕见的疾病,主要发生在50岁以下的男性身上。在2019冠状病毒病(新冠肺炎)大流行期间,心肌炎的发病率上升了至少15倍,从每10万人中有1-10例上升到150至400例,其中大多数病例发生在50岁以下的男性中。新冠肺炎疫苗接种也与罕见的心肌炎病例有关,主要发生在50岁以下的年轻男性中,某些mRNA疫苗的发病率高达50例/10万人。根据临床研究和动物模型,新冠肺炎免疫反应的性别差异实际上与已知的导致新冠肺炎前心肌炎性别差异的机制相同。新冠肺炎疫苗相关心肌炎与新冠肺炎心肌炎和非新冠肺炎心肌炎之间的许多相似之处表明,共同的免疫机制驱动疾病。
{"title":"Sex differences in coronavirus disease 2019 myocarditis","authors":"Danielle J Beetler ,&nbsp;DeLisa Fairweather","doi":"10.1016/j.cophys.2023.100704","DOIUrl":"10.1016/j.cophys.2023.100704","url":null,"abstract":"<div><p>Myocarditis is frequently caused by viral infections, but animal models that closely resemble human disease suggest that virus-triggered autoimmune disease is the most likely cause of myocarditis. Myocarditis is a rare condition that occurs primarily in men under age 50. The incidence of myocarditis rose at least 15x during the coronavirus disease 2019 (COVID-19) pandemic from 1–10 to 150–400 cases/100 000 individuals, with most cases occurring in men under age 50. COVID-19 vaccination was also associated with rare cases of myocarditis primarily in young men under 50 years of age with an incidence as high as 50 cases/100 000 individuals reported for some mRNA vaccines. Sex differences in the immune response to COVID-19 are virtually identical to the mechanisms known to drive sex differences in myocarditis pre-COVID based on clinical studies and animal models. The many similarities between COVID-19 vaccine-associated myocarditis to COVID-19 myocarditis and non-COVID myocarditis suggest common immune mechanisms drive disease.</p></div>","PeriodicalId":52156,"journal":{"name":"Current Opinion in Physiology","volume":"35 ","pages":"Article 100704"},"PeriodicalIF":2.5,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10470486/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10158201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Current Opinion in Physiology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1