Pub Date : 2025-05-01DOI: 10.1016/j.jobab.2024.12.005
Rui Yang , Changlei Xia , Changtong Mei , Jianzhang Li
The development of sustainable biomaterials has recently attracted great interest in the fields of flexible electronics and biosensing hydrogels. Hydrogels are a class of three-dimensional spatial network structure, and their structure and shape can exhibit reversible or noticeable responses to various stimuli, making them a popular choice for flexible electronic materials in recent years. Acrylic hydrogels, which possess a rich carboxylate network, can provide significant sensing and actuation properties to the hydrogels. They are often synthesized through the co-polymerization of their monomers and cross-linking agents, and they can be combined with naturally occurring biopolymers such as cellulose and chitosan to enhance biocompatibility. In this paper, we review the compounding methods and preparation process technologies of functionalized acrylic hydrogels and the application of polyacrylic acid (PAA) bioproducts in various fields. Finally, we review the current challenges and future directions for acrylic hydrogel prepared sensors and their applications.
{"title":"Integration of biopolymers in polyacrylic acid hydrogels: Innovations and applications in bioresources and bioproducts","authors":"Rui Yang , Changlei Xia , Changtong Mei , Jianzhang Li","doi":"10.1016/j.jobab.2024.12.005","DOIUrl":"10.1016/j.jobab.2024.12.005","url":null,"abstract":"<div><div>The development of sustainable biomaterials has recently attracted great interest in the fields of flexible electronics and biosensing hydrogels. Hydrogels are a class of three-dimensional spatial network structure, and their structure and shape can exhibit reversible or noticeable responses to various stimuli, making them a popular choice for flexible electronic materials in recent years. Acrylic hydrogels, which possess a rich carboxylate network, can provide significant sensing and actuation properties to the hydrogels. They are often synthesized through the co-polymerization of their monomers and cross-linking agents, and they can be combined with naturally occurring biopolymers such as cellulose and chitosan to enhance biocompatibility. In this paper, we review the compounding methods and preparation process technologies of functionalized acrylic hydrogels and the application of polyacrylic acid (PAA) bioproducts in various fields. Finally, we review the current challenges and future directions for acrylic hydrogel prepared sensors and their applications.</div></div>","PeriodicalId":52344,"journal":{"name":"Journal of Bioresources and Bioproducts","volume":"10 2","pages":"Pages 145-169"},"PeriodicalIF":20.2,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143890746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-05-01DOI: 10.1016/j.jobab.2025.03.005
Shuwei Tang , Lansheng Wei , Zhengguo Wu , Jiayao Weng , Jiwen Luo , Xiaoying Wang
Efficient cleanup of crude oil continues to be a global challenge owing to its inherent high viscosity, which makes it difficult to remove with conventional porous adsorbents. Here, a novel multifunctional aerogel was fabricated through directional freeze-drying, leveraging its photothermal properties and directional structure for the rapid cleanup of crude oil. The aerogel incorporates 2,2,6,6-tetramethyl-1-piperidinyloxy oxidized nanocellulose to enhance Ti3C2Tx (MXene) to construct functional networks, MXene/gold nanoparticles (MX/AuNPs) as photothermal absorbers, and methyltrimethoxysilane for hydrophobic coatings. After 30 compression-release cycles at 90% strain, the strain retention of the aerogel is 85.7%, indicating its mechanical super-elasticity. The as-prepared aerogel showed durable hydrophobicity (145°), high oil/organic solvent absorption capacity (45.7–85.6 g/g), and efficient photothermal conversion, rapidly attaining and sustaining 76 °C. Interestingly, for viscous crude oil that cannot be absorbed for a long time, the aerogel completed the absorption within 10 s after illumination, demonstrating an improved absorption ability of viscous crude oil. Furthermore, the obtained aerogel successfully achieved controlled and rapid light-driven motion, as well as long-lasting photothermal sterilization performance. This work presents a feasible strategy for developing multifunctional composite aerogels, addressing the increasing demands in crude oil separation applications.
{"title":"Robust MXene aerogel assisted by cellulose nanofiber for efficient crude oil spill remediation","authors":"Shuwei Tang , Lansheng Wei , Zhengguo Wu , Jiayao Weng , Jiwen Luo , Xiaoying Wang","doi":"10.1016/j.jobab.2025.03.005","DOIUrl":"10.1016/j.jobab.2025.03.005","url":null,"abstract":"<div><div>Efficient cleanup of crude oil continues to be a global challenge owing to its inherent high viscosity, which makes it difficult to remove with conventional porous adsorbents. Here, a novel multifunctional aerogel was fabricated through directional freeze-drying, leveraging its photothermal properties and directional structure for the rapid cleanup of crude oil. The aerogel incorporates 2,2,6,6-tetramethyl-1-piperidinyloxy oxidized nanocellulose to enhance Ti<sub>3</sub>C<sub>2</sub>T<em><sub>x</sub></em> (MXene) to construct functional networks, MXene/gold nanoparticles (MX/AuNPs) as photothermal absorbers, and methyltrimethoxysilane for hydrophobic coatings. After 30 compression-release cycles at 90% strain, the strain retention of the aerogel is 85.7%, indicating its mechanical super-elasticity. The as-prepared aerogel showed durable hydrophobicity (145°), high oil/organic solvent absorption capacity (45.7–85.6 g/g), and efficient photothermal conversion, rapidly attaining and sustaining 76 °C. Interestingly, for viscous crude oil that cannot be absorbed for a long time, the aerogel completed the absorption within 10 s after illumination, demonstrating an improved absorption ability of viscous crude oil. Furthermore, the obtained aerogel successfully achieved controlled and rapid light-driven motion, as well as long-lasting photothermal sterilization performance. This work presents a feasible strategy for developing multifunctional composite aerogels, addressing the increasing demands in crude oil separation applications.</div></div>","PeriodicalId":52344,"journal":{"name":"Journal of Bioresources and Bioproducts","volume":"10 2","pages":"Pages 209-223"},"PeriodicalIF":20.2,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143890749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-05-01DOI: 10.1016/j.jobab.2025.03.001
Dafang Huang , Jie Li , Suiyi Li , Jianbing Hu, Zhiru Cao, Yang Guo, Yu Ding, Mingwei Zhu, Yanfeng Chen
Lightweight structural materials with high strength and toughness are highly desirable for many advanced applications. Wood, as a sustainable structural material, is widely used in engineering due to its abundance and excellent mechanical properties. In this paper, we report a self-densification strategy to develop super-strong wood by reassembling highly aligned wood fibers as functional units and self-densified without the need for hot pressing. The resulting self-densified wood exhibits ultra-high tensile strength (496.1 MPa), flexural strength (392.7 MPa) and impact toughness (75.2 kJ/m2), surpassing those of compressed densified wood and traditional metal materials like aluminum alloys. Notably, the self-densified wood exhibits uniform shrinkage in the cross-section while maintaining its longitudinal dimension. This characteristic leads to an order-of-magnitude enhancement in the overall mechanical performance of the wood, presenting a significant advantage over compressed densified wood. Such super-strong yet lightweight wood has great potential for application as a sustainable engineering material, replacing traditional structural materials such as metals and alloys.
{"title":"Self-densified super-strong wood","authors":"Dafang Huang , Jie Li , Suiyi Li , Jianbing Hu, Zhiru Cao, Yang Guo, Yu Ding, Mingwei Zhu, Yanfeng Chen","doi":"10.1016/j.jobab.2025.03.001","DOIUrl":"10.1016/j.jobab.2025.03.001","url":null,"abstract":"<div><div>Lightweight structural materials with high strength and toughness are highly desirable for many advanced applications. Wood, as a sustainable structural material, is widely used in engineering due to its abundance and excellent mechanical properties. In this paper, we report a self-densification strategy to develop super-strong wood by reassembling highly aligned wood fibers as functional units and self-densified without the need for hot pressing. The resulting self-densified wood exhibits ultra-high tensile strength (496.1 MPa), flexural strength (392.7 MPa) and impact toughness (75.2 kJ/m<sup>2</sup>), surpassing those of compressed densified wood and traditional metal materials like aluminum alloys. Notably, the self-densified wood exhibits uniform shrinkage in the cross-section while maintaining its longitudinal dimension. This characteristic leads to an order-of-magnitude enhancement in the overall mechanical performance of the wood, presenting a significant advantage over compressed densified wood. Such super-strong yet lightweight wood has great potential for application as a sustainable engineering material, replacing traditional structural materials such as metals and alloys.</div></div>","PeriodicalId":52344,"journal":{"name":"Journal of Bioresources and Bioproducts","volume":"10 2","pages":"Pages 199-208"},"PeriodicalIF":20.2,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143890748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-05-01DOI: 10.1016/j.jobab.2025.03.006
Haiyu Liu, Fang He, Zhixiang Xu, Meng Zhang, Quan Wan, Yajun Shuai, Jie Wang, Mingying Yang, Zongpu Xu
Building high-performance aerogels with biomass-derived rather than fossil-derived polymers is an eco-friendlier option given the increasingly serious sustainability issues. Chitosan (CS) aerogels with oriented pore structures exhibit broad application prospects owing to light weight, high porosity, and favorable bioactivity, but the dominating drawback in low mechanical strength greatly hinders their functional advantages. In this study, two types of silk microfibers with similar diameter yet different aspect ratios (1–3 (denoting as SmSF) and 50–100 (denoting as LmSF)) were used as fillers to reinforce CS aerogels prepared by directional freeze casting. The distinction of SmSF and LmSF in size led to their notable variations in distribution pattern, as SmSF embedded within the individual CS lamellae while LmSF traversed throughout the adjacent CS lamellae, which in consequence significantly influence their mechanical reinforcing efficiency. The compressive strength values could be improved from 61.67 kPa (pure CS aerogel) to 82.13 kPa (SmSF/CS aerogel) and 165.03 kPa (LmSF/CS aerogel), respectively, attributing to the transition in deformation mechanisms from a bending- to crumpling-dominated mode. In addition, the embedding or bridging structure could also change the liquid transportation property of CS aerogels. The results of this study demonstrated the feasibility of applying filler-size-mediated strategy for material structural optimization.
{"title":"Achieving significant mechanical improvement of chitosan aerogel with embedding or bridging structures mediated by size-dependent silk microfibers","authors":"Haiyu Liu, Fang He, Zhixiang Xu, Meng Zhang, Quan Wan, Yajun Shuai, Jie Wang, Mingying Yang, Zongpu Xu","doi":"10.1016/j.jobab.2025.03.006","DOIUrl":"10.1016/j.jobab.2025.03.006","url":null,"abstract":"<div><div>Building high-performance aerogels with biomass-derived rather than fossil-derived polymers is an eco-friendlier option given the increasingly serious sustainability issues. Chitosan (CS) aerogels with oriented pore structures exhibit broad application prospects owing to light weight, high porosity, and favorable bioactivity, but the dominating drawback in low mechanical strength greatly hinders their functional advantages. In this study, two types of silk microfibers with similar diameter yet different aspect ratios (1–3 (denoting as SmSF) and 50–100 (denoting as LmSF)) were used as fillers to reinforce CS aerogels prepared by directional freeze casting. The distinction of SmSF and LmSF in size led to their notable variations in distribution pattern, as SmSF embedded within the individual CS lamellae while LmSF traversed throughout the adjacent CS lamellae, which in consequence significantly influence their mechanical reinforcing efficiency. The compressive strength values could be improved from 61.67 kPa (pure CS aerogel) to 82.13 kPa (SmSF/CS aerogel) and 165.03 kPa (LmSF/CS aerogel), respectively, attributing to the transition in deformation mechanisms from a bending- to crumpling-dominated mode. In addition, the embedding or bridging structure could also change the liquid transportation property of CS aerogels. The results of this study demonstrated the feasibility of applying filler-size-mediated strategy for material structural optimization.</div></div>","PeriodicalId":52344,"journal":{"name":"Journal of Bioresources and Bioproducts","volume":"10 2","pages":"Pages 187-198"},"PeriodicalIF":20.2,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143890747","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-05-01DOI: 10.1016/j.jobab.2025.03.004
Quan Zhou , Zijing Zhao , Litao Wang , Jiandong Wang , Lina Fu , Jihong Cui , Guosheng Liu , Jie Yang , Yujie Fu
The enzyme immobilization technique has been widely applied in biotechnology, biomedicine, and environmental remediation. In this research, carboxylated bamboo-based cellulose nanofibers (BCNFs) were obtained by one-step oxidation modification of bamboo fibers using ammonium persulphate. The surface carboxyl groups of the BCNFs were modified by a crosslinking agent and then combined with polyethylene imine (PEI) functionalized magnetic nanoparticles to construct a microreactor system for enzyme loading by the methods of electrostatic self-assembly and physical adsorption. Contrasted with free β-glucosidase, the microreactor possesses higher relative enzyme activity at pH 5.5 and 50 °C, and the storage stability is significantly higher, with >75% relative enzyme activity after storage at 4 °C for 15 d. In addition, the β-glucosidase loaded on the microreactor facilitates its separation from the reaction medium and subsequent reuse. After completing five cycles of use, it retained 76.47% of its initial activity. The biotransformation of geniposide reached 93.10%, and the genipin concentration increased 1.2 folds higher than that in the original plant extract. Therefore, PEI@Fe3O4@BCNFs microreactor immobilized with β-glucosidase can be successfully used to produce higher activity aglucone such as genipin from geniposide, and it might also have the potential to convert phytochemicals by the immobilized enzyme microreactor system with bamboo-based cellulose nanofibers in the natural production field.
{"title":"Immobilized enzyme microreactor system with bamboo-based cellulose nanofibers for efficient biotransformation of phytochemicals","authors":"Quan Zhou , Zijing Zhao , Litao Wang , Jiandong Wang , Lina Fu , Jihong Cui , Guosheng Liu , Jie Yang , Yujie Fu","doi":"10.1016/j.jobab.2025.03.004","DOIUrl":"10.1016/j.jobab.2025.03.004","url":null,"abstract":"<div><div>The enzyme immobilization technique has been widely applied in biotechnology, biomedicine, and environmental remediation. In this research, carboxylated bamboo-based cellulose nanofibers (BCNFs) were obtained by one-step oxidation modification of bamboo fibers using ammonium persulphate. The surface carboxyl groups of the BCNFs were modified by a crosslinking agent and then combined with polyethylene imine (PEI) functionalized magnetic nanoparticles to construct a microreactor system for enzyme loading by the methods of electrostatic self-assembly and physical adsorption. Contrasted with free <em>β</em>-glucosidase, the microreactor possesses higher relative enzyme activity at pH 5.5 and 50 °C, and the storage stability is significantly higher, with >75% relative enzyme activity after storage at 4 °C for 15 d. In addition, the <em>β</em>-glucosidase loaded on the microreactor facilitates its separation from the reaction medium and subsequent reuse. After completing five cycles of use, it retained 76.47% of its initial activity. The biotransformation of geniposide reached 93.10%, and the genipin concentration increased 1.2 folds higher than that in the original plant extract. Therefore, PEI@Fe<sub>3</sub>O<sub>4</sub>@BCNFs microreactor immobilized with <em>β</em>-glucosidase can be successfully used to produce higher activity aglucone such as genipin from geniposide, and it might also have the potential to convert phytochemicals by the immobilized enzyme microreactor system with bamboo-based cellulose nanofibers in the natural production field.</div></div>","PeriodicalId":52344,"journal":{"name":"Journal of Bioresources and Bioproducts","volume":"10 2","pages":"Pages 224-238"},"PeriodicalIF":20.2,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143890741","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-05-01DOI: 10.1016/j.jobab.2025.01.005
Bowen Yan , Hao Wu , Kui Zeng , Caoxing Huang , Chenhuan Lai , Qiang Yong
Russula vinosa Lindblad (R. vinosa Lindblad) is a nutrient-rich wild edible fungus, abundant in carbohydrates. In this study, two polysaccharides (Russula polysaccharides extracted from 1% KOH (RP-1) and Russula polysaccharides extracted from 5% KOH (RP-5)) were extracted from Russula fruit bodies using KOH-graded extraction technology. The molecular weights of RP-1 and RP-5 were 187 000 and 97 300 u, respectively. Their glycosyl compositions (galactose꞉glucose꞉xylose꞉ mannose, i.e., Gal꞉Glu꞉Xyl꞉Man) were 0.27:1.00:0.01:0.16 for RP-1 and 0.12:1.00:0.03:0.19 for RP-5. Nuclear magnetic resonance (NMR) analysis revealed that the main structural component of RP-1 was →3,6)-β-d-Glup-(1→, with a →6)-β-d-Glup-(1→ residue linked at sites 1 and 6, and a →3)-β-d-Glup-(1→ residue linked at sites 3. The RP-5 shared this structure with an additional →4)-β-d-Manp-(1→ residue attached to the →3)-β-d-Glup-(1→. Phagocytosis assay demonstrated that RP-5, with a lower molecular weight, lower galactose content, and higher xylose and mannose content, enhanced RAW 264.7 cell phagocytic activity by 121.04%, outperforming RP-1, which showed a 42.15% increase at the same concentration of 600 μg/mL. Furthermore, both RP-1 and RP-5 reduced the release of inflammatory factors and induced the nuclear translocation of the nuclear transcription factor-κB (NF-κB) pathway in RAW 264.7 cells. This study provided insights into the structural characteristics and immunomodulatory properties of Russula polysaccharides, offering potential for further applications in bioactive compound development.
{"title":"Structural characterization and immunomodulatory activities of polysaccharides from Russula vinosa lindblad extracted using KOH","authors":"Bowen Yan , Hao Wu , Kui Zeng , Caoxing Huang , Chenhuan Lai , Qiang Yong","doi":"10.1016/j.jobab.2025.01.005","DOIUrl":"10.1016/j.jobab.2025.01.005","url":null,"abstract":"<div><div><em>Russula vinosa</em> Lindblad (<em>R. vinosa</em> Lindblad) is a nutrient-rich wild edible fungus, abundant in carbohydrates. In this study, two polysaccharides (<em>Russula</em> polysaccharides extracted from 1% KOH (RP-1) and <em>Russula</em> polysaccharides extracted from 5% KOH (RP-5)) were extracted from <em>Russula</em> fruit bodies using KOH-graded extraction technology. The molecular weights of RP-1 and RP-5 were 187 000 and 97 300 u, respectively. Their glycosyl compositions (galactose꞉glucose꞉xylose꞉ mannose, i.e., Gal꞉Glu꞉Xyl꞉Man) were 0.27:1.00:0.01:0.16 for RP-1 and 0.12:1.00:0.03:0.19 for RP-5. Nuclear magnetic resonance (NMR) analysis revealed that the main structural component of RP-1 was →3,6)-<em>β</em>-<span>d</span>-Glu<em>p</em>-(1→, with a →6)-<em>β</em>-<span>d</span>-Glu<em>p</em>-(1→ residue linked at sites 1 and 6, and a →3)-<em>β</em>-<span>d</span>-Glu<em>p</em>-(1→ residue linked at sites 3. The RP-5 shared this structure with an additional →4)-<em>β</em>-<span>d</span>-Man<em>p</em>-(1→ residue attached to the →3)-<em>β</em>-<span>d</span>-Glu<em>p</em>-(1→. Phagocytosis assay demonstrated that RP-5, with a lower molecular weight, lower galactose content, and higher xylose and mannose content, enhanced RAW 264.7 cell phagocytic activity by 121.04%, outperforming RP-1, which showed a 42.15% increase at the same concentration of 600 μg/mL. Furthermore, both RP-1 and RP-5 reduced the release of inflammatory factors and induced the nuclear translocation of the nuclear transcription factor-κB (NF-κB) pathway in RAW 264.7 cells. This study provided insights into the structural characteristics and immunomodulatory properties of <em>Russula</em> polysaccharides, offering potential for further applications in bioactive compound development.</div></div>","PeriodicalId":52344,"journal":{"name":"Journal of Bioresources and Bioproducts","volume":"10 2","pages":"Pages 253-269"},"PeriodicalIF":20.2,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143890743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01DOI: 10.1016/j.jobab.2024.11.004
Abdul Hannan Asif , Lei Shi , Tao Ding , Shu Zhang , Hongqi Sun
{"title":"Emerging engineered biochar for environmental and energy applications","authors":"Abdul Hannan Asif , Lei Shi , Tao Ding , Shu Zhang , Hongqi Sun","doi":"10.1016/j.jobab.2024.11.004","DOIUrl":"10.1016/j.jobab.2024.11.004","url":null,"abstract":"","PeriodicalId":52344,"journal":{"name":"Journal of Bioresources and Bioproducts","volume":"10 1","pages":"Pages 1-3"},"PeriodicalIF":20.2,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143158582","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01DOI: 10.1016/j.jobab.2024.11.005
Chaisiri Kitpaosong , Siriluck Liengprayoon , Erwann Durand , Tucksin Lerksamran , Aurélie Daval , Eric Gohet , Lim Khan Tiva , Phean Chetha , Kong Mengchheang , Phen Phearun , Ung Rattana , Kim Chandy , Pol Sokea , Un Kim Eng , Kittipong Rattanaporn , Bruno Barea , Laurent Vaysse
Furan fatty acids produced by plants and bacteria, and present in some edible resources, have attracted significant scientific attention for their health benefits. They include 10,13-epoxy-11-methyl-octadecan-10,12-dienoic acid, which has been identified in the lipid fraction of latex from two Hevea brasiliensis genotypes commonly known as the source of natural rubber. Those two genotypes, namely RRIM501 and PB235, are from Rubber Research Institute of Malaysia (RRIM) and Prang Besar, Malaysia (PB), respectively. This research aimed to undertake the first ever investigation into the existence of this potential high value-added co-product in the lipid fraction of 48 Hevea brasiliensis genotypes, seeking to study the widest possible clonal variability. The results showed furan fatty acid exists in all lipid fractions of their latices. Its content varied significantly, ranging from 0.01% to 0.71% (w/w in latex), the highest concentrations were found in genotypes from the Institut de Recherche sur le Caoutchouc (IRCA) in Côte d'Ivoire, Prang Besar (PB) in Malaysia, and Rubber Research Institute of Vietnam (RRIV) in Vietnam breeding programs. A positive correlation with total fatty acid content was observed when its content exceeded 0.10%, suggesting an additive rather than a substitutive role with the other fatty acids present. Interestingly, linoleic and palmitoleic acids strongly correlated with the furan fatty acid concentration, indicating a possible biosynthetic pathway linkage. In terms of yield per tapping PB235, RRIV4, RRIV2, IRCA41, IRCA18, PB324, IRCA814, IRCA323, and IRCA109 genotypes showed the highest production potential, with yields range of 1 367–2 446 mg furan fatty acid per tree per tapping. Notably, the biochemical markers of natural rubber productivity (sucrose, inorganic phosphorus, thiols, and total solid content) showed no direct involvement in furan fatty acid biosynthesis during latex regeneration between tappings. Based on knowledge of the parentage of the studied clones, a trait heritability study was conducted and genotype PB5/51 was identified as a very worthwhile genitor for improving furan fatty acid contents in a breeding population.
呋喃脂肪酸由植物和细菌产生,存在于一些可食用资源中,因其对健康的益处而引起了科学界的极大关注。它们包括10,13-环氧-11-甲基十八烷-10,12-二烯酸,已在两种巴西橡胶树基因型乳胶的脂质部分中被鉴定出来,这些橡胶树基因型通常被称为天然橡胶的来源。这两个基因型分别为RRIM501和PB235,分别来自马来西亚橡胶研究所(RRIM)和马来西亚Prang Besar (PB)。本研究旨在对48种巴西橡胶树基因型的脂质部分是否存在这种潜在的高附加值副产品进行首次调查,寻求研究尽可能广泛的克隆变异性。结果表明,呋喃脂肪酸存在于其所有的脂质部分。其含量差异很大,范围为0.01%至0.71%(胶乳中w/w),最高浓度的基因型分别来自科特迪瓦Côte的Caoutchouc研究所(IRCA)、马来西亚的Prang Besar (PB)和越南橡胶研究所(RRIV)的育种计划。当总脂肪酸含量超过0.10%时,与总脂肪酸含量呈显著正相关,说明总脂肪酸的添加作用大于替代作用。有趣的是,亚油酸和棕榈油酸与呋喃脂肪酸浓度密切相关,表明可能存在生物合成途径联系。单株产量方面,PB235、RRIV4、RRIV2、IRCA41、IRCA18、PB324、IRCA814、IRCA323和IRCA109表现出最高的生产潜力,单株呋喃脂肪酸产量范围为1 367 ~ 2 446 mg /株。值得注意的是,天然橡胶产量的生化指标(蔗糖、无机磷、硫醇和总固形物含量)显示,在胶乳再生期间,呋喃脂肪酸的生物合成没有直接参与。根据对所研究无性系亲本的了解,进行了性状遗传力研究,发现基因型PB5/51是一个很有价值的提高育种群体呋喃脂肪酸含量的遗传源。
{"title":"Shedding light on the existence of Furan fatty acids in latex lipids across a wide diversity of Hevea brasiliensis genotypes","authors":"Chaisiri Kitpaosong , Siriluck Liengprayoon , Erwann Durand , Tucksin Lerksamran , Aurélie Daval , Eric Gohet , Lim Khan Tiva , Phean Chetha , Kong Mengchheang , Phen Phearun , Ung Rattana , Kim Chandy , Pol Sokea , Un Kim Eng , Kittipong Rattanaporn , Bruno Barea , Laurent Vaysse","doi":"10.1016/j.jobab.2024.11.005","DOIUrl":"10.1016/j.jobab.2024.11.005","url":null,"abstract":"<div><div>Furan fatty acids produced by plants and bacteria, and present in some edible resources, have attracted significant scientific attention for their health benefits. They include 10,13-epoxy-11-methyl-octadecan-10,12-dienoic acid, which has been identified in the lipid fraction of latex from two <em>Hevea brasiliensis</em> genotypes commonly known as the source of natural rubber. Those two genotypes, namely RRIM501 and PB235, are from Rubber Research Institute of Malaysia (RRIM) and Prang Besar, Malaysia (PB), respectively. This research aimed to undertake the first ever investigation into the existence of this potential high value-added co-product in the lipid fraction of 48 <em>Hevea brasiliensis</em> genotypes, seeking to study the widest possible clonal variability. The results showed furan fatty acid exists in all lipid fractions of their latices. Its content varied significantly, ranging from 0.01% to 0.71% (<em>w</em>/<em>w</em> in latex), the highest concentrations were found in genotypes from the Institut de Recherche sur le Caoutchouc (IRCA) in Côte d'Ivoire, Prang Besar (PB) in Malaysia, and Rubber Research Institute of Vietnam (RRIV) in Vietnam breeding programs. A positive correlation with total fatty acid content was observed when its content exceeded 0.10%, suggesting an additive rather than a substitutive role with the other fatty acids present. Interestingly, linoleic and palmitoleic acids strongly correlated with the furan fatty acid concentration, indicating a possible biosynthetic pathway linkage. In terms of yield per tapping PB235, RRIV4, RRIV2, IRCA41, IRCA18, PB324, IRCA814, IRCA323, and IRCA109 genotypes showed the highest production potential, with yields range of 1 367–2 446 mg furan fatty acid per tree per tapping. Notably, the biochemical markers of natural rubber productivity (sucrose, inorganic phosphorus, thiols, and total solid content) showed no direct involvement in furan fatty acid biosynthesis during latex regeneration between tappings. Based on knowledge of the parentage of the studied clones, a trait heritability study was conducted and genotype PB5/51 was identified as a very worthwhile genitor for improving furan fatty acid contents in a breeding population.</div></div>","PeriodicalId":52344,"journal":{"name":"Journal of Bioresources and Bioproducts","volume":"10 1","pages":"Pages 111-122"},"PeriodicalIF":20.2,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143159820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01DOI: 10.1016/j.jobab.2024.10.002
Bowei Wang, Dingkun Qiu, Yihui Gu, Zhu Shan, Ruonan Shi, Jing Luo, Shuang Qi, Yilin Wang, Bo Jiang, Yongcan Jin
The favorable antioxidant and antimicrobial activities of lignin have been shown to promote wound healing. However, the accumulation of lignin in high concentrations in the body brings about varying degrees of biotoxicity. Herein, a controlled/sustained release polyvinyl alcohol/chitosan/sulfonated lignin hydrogel (PVA-CS-L) integrated mechanical strengthening and bioactivities of lignin was developed. The lignin-induced non-covalent bond network (van der Waals force, hydrogen and electrostatic interactions) promoted energy dissipation when the hydrogel was subjected to stretching and compression. This endowed the PVA-CS-L hydrogel with improved tensile (∼36 kPa) and compressive strength (∼900 kPa), as well as compressive toughness (∼9.0 MJ/m3), which were superior to the polyvinyl alcohol/chitosan hydrogel (PVA-CS) (31 kPa, 680 kPa, and 7.5 MJ/m3, respectively). The construction of electrostatic interaction could not only slow down the sudden release of lignin but also make the hydrogel exhibit a good pH-sensitive behavior of controlled-release lignin. Also, the developed hydrogel had good biocompatibility and the released lignin had reactive oxygen species scavenging as well as inhibitory activity against Staphylococcus aureus. Finally, preliminary evaluation of drug delivery reveals that the presence of lignin enabled the hydrogel to exhibit longer-lasting controlled/sustained epigallocatechin gallate release properties. Such lignin-based controlled/sustained release hydrogel that integrates the molecular structure and biological difunctional features of lignin gives new insight into cost-effective, easy-to-operate manufacturing of load-bearing and bioactive materials.
{"title":"A lignin-based controlled/sustained release hydrogel by integrating mechanical strengthening and bioactivities of lignin","authors":"Bowei Wang, Dingkun Qiu, Yihui Gu, Zhu Shan, Ruonan Shi, Jing Luo, Shuang Qi, Yilin Wang, Bo Jiang, Yongcan Jin","doi":"10.1016/j.jobab.2024.10.002","DOIUrl":"10.1016/j.jobab.2024.10.002","url":null,"abstract":"<div><div>The favorable antioxidant and antimicrobial activities of lignin have been shown to promote wound healing. However, the accumulation of lignin in high concentrations in the body brings about varying degrees of biotoxicity. Herein, a controlled/sustained release polyvinyl alcohol/chitosan/sulfonated lignin hydrogel (PVA-CS-L) integrated mechanical strengthening and bioactivities of lignin was developed. The lignin-induced non-covalent bond network (van der Waals force, hydrogen and electrostatic interactions) promoted energy dissipation when the hydrogel was subjected to stretching and compression. This endowed the PVA-CS-L hydrogel with improved tensile (∼36 kPa) and compressive strength (∼900 kPa), as well as compressive toughness (∼9.0 MJ/m<sup>3</sup>), which were superior to the polyvinyl alcohol/chitosan hydrogel (PVA-CS) (31 kPa, 680 kPa, and 7.5 MJ/m<sup>3</sup>, respectively). The construction of electrostatic interaction could not only slow down the sudden release of lignin but also make the hydrogel exhibit a good pH-sensitive behavior of controlled-release lignin. Also, the developed hydrogel had good biocompatibility and the released lignin had reactive oxygen species scavenging as well as inhibitory activity against <em>Staphylococcus aureus</em>. Finally, preliminary evaluation of drug delivery reveals that the presence of lignin enabled the hydrogel to exhibit longer-lasting controlled/sustained epigallocatechin gallate release properties. Such lignin-based controlled/sustained release hydrogel that integrates the molecular structure and biological difunctional features of lignin gives new insight into cost-effective, easy-to-operate manufacturing of load-bearing and bioactive materials.</div></div>","PeriodicalId":52344,"journal":{"name":"Journal of Bioresources and Bioproducts","volume":"10 1","pages":"Pages 62-76"},"PeriodicalIF":20.2,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143158578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01DOI: 10.1016/j.jobab.2024.11.003
Shuang Liang , Xuechuan Wang , Chao Wei , Long Xie , Zhongming Song , Xugang Dang
Composite aerogel based on sodium carboxymethyl cellulose (CMCNa) and chitosan (CS), i.e., CS/CMCNa, was prepared through a sol-gel method. Then, CS/CMCNa was used for simulating the adsorption of metal ions (Cr3+, Al3+ and Zr4+) produced by the tanning industry. The adsorption process is consistent with the Langmuir isotherm adsorption model and pseudo-second order kinetics. The maximum fitted adsorption capacities of Cr3+, Al3+, and Zr4+ could reach 250.0, 111.1, and 100.0 mg/g, respectively. After metal ion adsorption, the obtained composite materials (CS/CMCNa-Cr3+, CS/CMCNa-Al3+, and CS/CMCNa-Zr4+) were used as re-tanning agents in the re-tanning process to leather. The re-tanning agent could increase the shrinkage temperature of leather by up to 5 °C. Compared with the traditional method, the method utilized in this study achieved the integration of mental ions-containing wastewater treatment and waste adsorbent/adsorbates recycling.
{"title":"Remediation and resource utilization of Cr(Ⅲ), Al(Ⅲ) and Zr(Ⅳ)-containing tannery effluent based on chitosan-carboxymethyl cellulose aerogel","authors":"Shuang Liang , Xuechuan Wang , Chao Wei , Long Xie , Zhongming Song , Xugang Dang","doi":"10.1016/j.jobab.2024.11.003","DOIUrl":"10.1016/j.jobab.2024.11.003","url":null,"abstract":"<div><div>Composite aerogel based on sodium carboxymethyl cellulose (CMC<img>Na) and chitosan (CS), i.e., CS/CMC<img>Na, was prepared through a sol-gel method. Then, CS/CMC<img>Na was used for simulating the adsorption of metal ions (Cr<sup>3+</sup>, Al<sup>3+</sup> and Zr<sup>4+</sup>) produced by the tanning industry. The adsorption process is consistent with the Langmuir isotherm adsorption model and pseudo-second order kinetics. The maximum fitted adsorption capacities of Cr<sup>3+</sup>, Al<sup>3+</sup>, and Zr<sup>4+</sup> could reach 250.0, 111.1, and 100.0 mg/g, respectively. After metal ion adsorption, the obtained composite materials (CS/CMC<img>Na-Cr<sup>3+</sup>, CS/CMC<img>Na-Al<sup>3+</sup>, and CS/CMC<img>Na-Zr<sup>4+</sup>) were used as re-tanning agents in the re-tanning process to leather. The re-tanning agent could increase the shrinkage temperature of leather by up to 5 °C. Compared with the traditional method, the method utilized in this study achieved the integration of mental ions-containing wastewater treatment and waste adsorbent/adsorbates recycling.</div></div>","PeriodicalId":52344,"journal":{"name":"Journal of Bioresources and Bioproducts","volume":"10 1","pages":"Pages 77-91"},"PeriodicalIF":20.2,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143158580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}