Pub Date : 2022-11-29DOI: 10.3390/nanomanufacturing2040015
C. Barbero, D. Acevedo
Direct laser interference patterning (DLIP) involves the formation of patterns of light intensity using coherent laser light beams that interfere between them. Light on the ultraviolet (<350 nm) and NIR (800–2000 nm) is absorbed in chromophores present in the polymer structure or in loaded absorbing species (dyes, polymers, nanoparticles). The absorbed light induces photothermal/photochemical processes, which alter permanently the topography of the polymer surface. The success of DLIP at different wavelengths is discussed in relation to the optical/thermal properties of the polymers and previous data on laser ablation of polymers. The size of the pattern is related directly to the wavelength of the light and inversely to the sine of the angle between beams and the refractive index of the external medium. In that way, nanometric structures (<100 nm) could be produced. Since the patterning occurs in a single short pulse (<10 ns), large surfaces can be modified. Both bacterial biofilm inhibition and human cell differentiation/orientation have been achieved. Large improvements in technological devices (e.g., thin film solar cells) using DLIP structured surfaces have also been demonstrated. Prospective application of DLIP to common polymers (e.g., Teflon®) and complex polymeric systems (e.g., layer-by-layer multilayers) is discussed on the basis of reported polymer data.
{"title":"Manufacturing Functional Polymer Surfaces by Direct Laser Interference Patterning (DLIP): A Polymer Science View","authors":"C. Barbero, D. Acevedo","doi":"10.3390/nanomanufacturing2040015","DOIUrl":"https://doi.org/10.3390/nanomanufacturing2040015","url":null,"abstract":"Direct laser interference patterning (DLIP) involves the formation of patterns of light intensity using coherent laser light beams that interfere between them. Light on the ultraviolet (<350 nm) and NIR (800–2000 nm) is absorbed in chromophores present in the polymer structure or in loaded absorbing species (dyes, polymers, nanoparticles). The absorbed light induces photothermal/photochemical processes, which alter permanently the topography of the polymer surface. The success of DLIP at different wavelengths is discussed in relation to the optical/thermal properties of the polymers and previous data on laser ablation of polymers. The size of the pattern is related directly to the wavelength of the light and inversely to the sine of the angle between beams and the refractive index of the external medium. In that way, nanometric structures (<100 nm) could be produced. Since the patterning occurs in a single short pulse (<10 ns), large surfaces can be modified. Both bacterial biofilm inhibition and human cell differentiation/orientation have been achieved. Large improvements in technological devices (e.g., thin film solar cells) using DLIP structured surfaces have also been demonstrated. Prospective application of DLIP to common polymers (e.g., Teflon®) and complex polymeric systems (e.g., layer-by-layer multilayers) is discussed on the basis of reported polymer data.","PeriodicalId":52345,"journal":{"name":"Nanomanufacturing and Metrology","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90251073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-11-24DOI: 10.1007/s41871-022-00155-5
F. Ji, Y. Yao, T. Xin, J. Seidel
{"title":"Correction: A Comprehensive FIB Lift-out Sample Preparation Method for Scanning Probe Microscopy","authors":"F. Ji, Y. Yao, T. Xin, J. Seidel","doi":"10.1007/s41871-022-00155-5","DOIUrl":"https://doi.org/10.1007/s41871-022-00155-5","url":null,"abstract":"","PeriodicalId":52345,"journal":{"name":"Nanomanufacturing and Metrology","volume":"48 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90225125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-11-23DOI: 10.1007/s41871-022-00158-2
Y. Kajihara, R. Takahashi, I. Yoshida, S. Saito, Norihiko Sekine, Shuichi Nowatari, Shigeo Miyake
{"title":"Correction: Measurement Method of Internal Residual Stress in Plastic Parts Using Terahertz Spectroscopy","authors":"Y. Kajihara, R. Takahashi, I. Yoshida, S. Saito, Norihiko Sekine, Shuichi Nowatari, Shigeo Miyake","doi":"10.1007/s41871-022-00158-2","DOIUrl":"https://doi.org/10.1007/s41871-022-00158-2","url":null,"abstract":"","PeriodicalId":52345,"journal":{"name":"Nanomanufacturing and Metrology","volume":"48 1","pages":"433"},"PeriodicalIF":0.0,"publicationDate":"2022-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73782521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-11-10DOI: 10.1007/s41871-022-00176-0
Shuming Yang, Zhuangde Jiang
{"title":"Foreword to the Special Issue on the 7th International Conference on Nanomanufacturing (nanoMan2021)","authors":"Shuming Yang, Zhuangde Jiang","doi":"10.1007/s41871-022-00176-0","DOIUrl":"https://doi.org/10.1007/s41871-022-00176-0","url":null,"abstract":"","PeriodicalId":52345,"journal":{"name":"Nanomanufacturing and Metrology","volume":"18 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89804248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-11-02DOI: 10.1007/s41871-022-00175-1
Weiwei Liu, Gamal Al-Hammadi, Kazi Mojtaba Saleheen, A. Abdelrahman, Huanqiang Liu, Zhidong Zhang
{"title":"Impact of Pulsed Laser Parameters and Scanning Pattern on the Properties of Thin-Walled Parts Manufactured Using Laser Metal Deposition","authors":"Weiwei Liu, Gamal Al-Hammadi, Kazi Mojtaba Saleheen, A. Abdelrahman, Huanqiang Liu, Zhidong Zhang","doi":"10.1007/s41871-022-00175-1","DOIUrl":"https://doi.org/10.1007/s41871-022-00175-1","url":null,"abstract":"","PeriodicalId":52345,"journal":{"name":"Nanomanufacturing and Metrology","volume":"89 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85036862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-11-01DOI: 10.3390/nanomanufacturing2040014
Zhe Shen, Dingxin Huang
Beam splitters are widely used in various optical systems, but traditional beam splitters are bulky and heavy, which are not conducive to the integrated utilization of optical devices. Metamaterials have attracted extensive attention as a kind of miniature artificial materials, and there have been many works on the design of metasurface beam splitters. Using metasurfaces, multiple functions of traditional beam splitters can be achieved. Meanwhile, metasurface beam splitters have the advantages of small size, easy integration, flexible design of beam-splitting performance, and tunable functions. This review surveys the current work on metasurface beam splitters and provides a classification and introduction to metasurface beam splitters. Metasurface beam splitters are expected to play a huge role in interferometers, multiplexing, multi-beam communications, and more.
{"title":"A Review on Metasurface Beam Splitters","authors":"Zhe Shen, Dingxin Huang","doi":"10.3390/nanomanufacturing2040014","DOIUrl":"https://doi.org/10.3390/nanomanufacturing2040014","url":null,"abstract":"Beam splitters are widely used in various optical systems, but traditional beam splitters are bulky and heavy, which are not conducive to the integrated utilization of optical devices. Metamaterials have attracted extensive attention as a kind of miniature artificial materials, and there have been many works on the design of metasurface beam splitters. Using metasurfaces, multiple functions of traditional beam splitters can be achieved. Meanwhile, metasurface beam splitters have the advantages of small size, easy integration, flexible design of beam-splitting performance, and tunable functions. This review surveys the current work on metasurface beam splitters and provides a classification and introduction to metasurface beam splitters. Metasurface beam splitters are expected to play a huge role in interferometers, multiplexing, multi-beam communications, and more.","PeriodicalId":52345,"journal":{"name":"Nanomanufacturing and Metrology","volume":"25 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82100052","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-10-23DOI: 10.1007/s41871-022-00169-z
Zack Hatfield, A. S. Peter, C. Dávila-Peralta, Joel Berkson, Daewook Kim, J. Hyatt
{"title":"Adaptive Thermoforming and Structural Design of Millimeter-Wave Antenna Panels","authors":"Zack Hatfield, A. S. Peter, C. Dávila-Peralta, Joel Berkson, Daewook Kim, J. Hyatt","doi":"10.1007/s41871-022-00169-z","DOIUrl":"https://doi.org/10.1007/s41871-022-00169-z","url":null,"abstract":"","PeriodicalId":52345,"journal":{"name":"Nanomanufacturing and Metrology","volume":"128 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90620729","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-10-10DOI: 10.3390/nanomanufacturing2040013
Aaron J. Austin, Nate Dice, E. Echeverria, A. Gupta, Jonathan Risner, Halle C. Helfrich, R. Sachan, D. Mcilroy
A method to conformally coat silica nanosprings with magnesium via sublimation at 450oC has been developed. In addition, Mg thin films were grown on Si(100) using this method to determine the effects of substrate morphology (nanoscale curvatures vs. planar) on the interfacial morphology of the Mg coating. High-resolution/powder X-ray diffraction (HRXRD/PXRD) on both the Mg-coated NS and the thin film revealed the presence of Mgand MgO due to exposure of the samples to air. Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) confirmed the presence of Mg on the nanosprings. Elemental mapping with TEM-EDS verified that Mg uniformity and conformally coats the nanosprings. Nanocrystallinity of the Mg coating on the nanosprings was determined to be polycrystalline by TEM and selected area electron diffraction (SAED). In contrast, the process produces large micron-scale crystals on planar surfaces.
{"title":"Magnesium Sublimation for Growing Thin Films and Conformal Coatings on 1D Nanostructures","authors":"Aaron J. Austin, Nate Dice, E. Echeverria, A. Gupta, Jonathan Risner, Halle C. Helfrich, R. Sachan, D. Mcilroy","doi":"10.3390/nanomanufacturing2040013","DOIUrl":"https://doi.org/10.3390/nanomanufacturing2040013","url":null,"abstract":"A method to conformally coat silica nanosprings with magnesium via sublimation at 450oC has been developed. In addition, Mg thin films were grown on Si(100) using this method to determine the effects of substrate morphology (nanoscale curvatures vs. planar) on the interfacial morphology of the Mg coating. High-resolution/powder X-ray diffraction (HRXRD/PXRD) on both the Mg-coated NS and the thin film revealed the presence of Mgand MgO due to exposure of the samples to air. Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) confirmed the presence of Mg on the nanosprings. Elemental mapping with TEM-EDS verified that Mg uniformity and conformally coats the nanosprings. Nanocrystallinity of the Mg coating on the nanosprings was determined to be polycrystalline by TEM and selected area electron diffraction (SAED). In contrast, the process produces large micron-scale crystals on planar surfaces.","PeriodicalId":52345,"journal":{"name":"Nanomanufacturing and Metrology","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90654197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-10-06DOI: 10.1007/s41871-022-00154-6
G. Dai, Xiukun Hu
{"title":"Correction of Interferometric High-Order Nonlinearity Error in Metrological Atomic Force Microscopy","authors":"G. Dai, Xiukun Hu","doi":"10.1007/s41871-022-00154-6","DOIUrl":"https://doi.org/10.1007/s41871-022-00154-6","url":null,"abstract":"","PeriodicalId":52345,"journal":{"name":"Nanomanufacturing and Metrology","volume":"19 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90344455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-10-02DOI: 10.3390/nanomanufacturing2040012
E. Díaz-Cervantes, Alejandra Monjaraz-Rodríguez, F. Aguilera-Granja
We studied two main bioactive molecules of oregano, carvacrol and thymol, in the present work. These bioactive conformers are linked to single wall carbon nanotubes (SWCNT) and so-called functionalized SWCNT (f-SWCNT) to find their application as anti-inflammatory drugs. We use the multiscale methods and the density functional theory (DFT) of formalism to achieve this aim. We have proposed two nanocarriers based on a finite size model of a metallic single wall carbon nanotube linked to carvacrol and thymol (with a size around 2.74 nm): the main bioactives present in oregano. The results show that the proposed molecules, Carva-SWCNT-Gluc and Thymol-SWCNT-Gluc, can be synthesized with the exposed condensation reaction; with an exergonic and spontaneous behavior, Gibbs free energies of the reaction are −1.75 eV and −1.81 eV, respectively. The studied molecules are subjected to an electronic characterization, considering the global descriptors based on the conceptual DFT formalism. Moreover, the results show that the studied molecules can present a possible biocompatibility due to the higher polarization of the molecule and the increase in apparent solubility. Finally, the interaction between the studied nanodevices (Carva-SWCNT-Gluc and Thymol-SWCNT-Gluc) with cancer and anti-inflammatory targets shows that the hydrogen bond and electrostatic interactions play a crucial role in the ligand–target interaction. The proposed f-SWCNT presents higher potentiality as a carrier vector nanodevice since it can deliver the oregano bioactives on the studied targets, promoting the putative apoptosis of neoplastic cells and simultaneously regulating the inflammatory process.
{"title":"Anti-Inflammatory Nanocarriers Based on SWCNTs and Bioactive Molecules of Oregano: An In Silico Study","authors":"E. Díaz-Cervantes, Alejandra Monjaraz-Rodríguez, F. Aguilera-Granja","doi":"10.3390/nanomanufacturing2040012","DOIUrl":"https://doi.org/10.3390/nanomanufacturing2040012","url":null,"abstract":"We studied two main bioactive molecules of oregano, carvacrol and thymol, in the present work. These bioactive conformers are linked to single wall carbon nanotubes (SWCNT) and so-called functionalized SWCNT (f-SWCNT) to find their application as anti-inflammatory drugs. We use the multiscale methods and the density functional theory (DFT) of formalism to achieve this aim. We have proposed two nanocarriers based on a finite size model of a metallic single wall carbon nanotube linked to carvacrol and thymol (with a size around 2.74 nm): the main bioactives present in oregano. The results show that the proposed molecules, Carva-SWCNT-Gluc and Thymol-SWCNT-Gluc, can be synthesized with the exposed condensation reaction; with an exergonic and spontaneous behavior, Gibbs free energies of the reaction are −1.75 eV and −1.81 eV, respectively. The studied molecules are subjected to an electronic characterization, considering the global descriptors based on the conceptual DFT formalism. Moreover, the results show that the studied molecules can present a possible biocompatibility due to the higher polarization of the molecule and the increase in apparent solubility. Finally, the interaction between the studied nanodevices (Carva-SWCNT-Gluc and Thymol-SWCNT-Gluc) with cancer and anti-inflammatory targets shows that the hydrogen bond and electrostatic interactions play a crucial role in the ligand–target interaction. The proposed f-SWCNT presents higher potentiality as a carrier vector nanodevice since it can deliver the oregano bioactives on the studied targets, promoting the putative apoptosis of neoplastic cells and simultaneously regulating the inflammatory process.","PeriodicalId":52345,"journal":{"name":"Nanomanufacturing and Metrology","volume":"42 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80719115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}