首页 > 最新文献

Plant Communications最新文献

英文 中文
A histone deacetylase complex regulates anthocyanin biosynthesis during normal plant growth and development and in response to jasmonate. 组蛋白脱乙酰酶复合体在正常植物生长发育过程中调控花青素的生物合成以及对茉莉酸的反应。
IF 11.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2026-01-12 Epub Date: 2025-11-04 DOI: 10.1016/j.xplc.2025.101587
Fei Huang, Zhaoxia Zhang, Jiabin Gu, Chao Shen, Dan Wang, Bosi Gao, Yuehui He

Anthocyanins are plant pigments that play diverse roles in plant growth, adaptation, and stress tolerance. Anthocyanin biosynthesis is tightly regulated, but the underlying regulatory mechanisms remain unclear. Here, we identify a regulatory module composed of the DNA-binding protein VAL1 (VIVIPAROUS1/ABI3-LIKE 1) and a SIN3 (SWI-INDEPENDENT 3)-like histone deacetylase complex that dynamically regulates anthocyanin biosynthesis in Arabidopsis thaliana. Under normal growth conditions, VAL1 recruits the SNL (SIN3-Like)-HDA19 (HISTONE DEACETYLASE 19) complex (SNL-HDA19c) to the PRODUCTION OF ANTHOCYANIN PIGMENT 1 (PAP1) locus for histone deacetylation. Moreover, the negative regulators of jasmonic acid (JA) signaling, JASMONATE-ZIM DOMAIN (JAZ) proteins, interact with VAL1 and further stabilize the binding of VAL1 and SNL-HDA19c to PAP1 chromatin. These molecular interactions transcriptionally repress PAP1 and inhibit anthocyanin biosynthesis. Upon JA accumulation, JAZs are degraded, resulting in the release of both VAL1 and SNL-HDA19c from the PAP1 chromatin. This release leads to an immediate increase in histone acetylation, promoting transcriptional activation of PAP1 and anthocyanin production. These findings elucidate a regulatory module (VAL1-JAZ-SNL-HDA19c) that represses anthocyanin biosynthesis under normal growth conditions and further reveal how the stress hormone JA rapidly induces anthocyanin production, enabling plants to adapt to their growth conditions.

花青素是一种植物色素,在植物生长、适应性和抗逆性等方面发挥着多种作用。众所周知,花青素的生物合成受到严格调控,但其潜在的分子机制尚不清楚。在这里,我们报道了一个由dna结合蛋白VAL1 (VIVIPAROUS1/ABI3-LIKE 1)和SIN3 (SWI-INDEPENDENT 3)样组蛋白去乙酰化酶复合物组成的调控模块,动态调控拟南芥花青素的生物合成。在正常生长条件下,VAL1招募SNL (SIN3 Like)-HDA19(组蛋白去乙酰化酶19)复合物SNL- hda19c,产生花青素色素1 (PAP1)位点,进行组蛋白去乙酰化。此外,茉莉酸(JA)信号的负调控因子JASMONATE-ZIM DOMAIN (JAZ)蛋白与VAL1相互作用,进一步稳定VAL1和SNL-HDA19c与PAP1染色质的结合,从而导致其有效的转录抑制,抑制花青素的生物合成。JA升高后,JAZs被降解,VAL1和SNL-HDA19c从PAP1染色质释放,导致组蛋白乙酰化立即增加,促进PAP1的转录激活和花青素的产生。这些发现阐明了在正常生长条件下抑制花青素生物合成的调控模块(val1 - jaz1 - snl - hda19c),并进一步揭示了胁迫激素JA如何快速诱导花青素产生,使植物适应其生长条件。
{"title":"A histone deacetylase complex regulates anthocyanin biosynthesis during normal plant growth and development and in response to jasmonate.","authors":"Fei Huang, Zhaoxia Zhang, Jiabin Gu, Chao Shen, Dan Wang, Bosi Gao, Yuehui He","doi":"10.1016/j.xplc.2025.101587","DOIUrl":"10.1016/j.xplc.2025.101587","url":null,"abstract":"<p><p>Anthocyanins are plant pigments that play diverse roles in plant growth, adaptation, and stress tolerance. Anthocyanin biosynthesis is tightly regulated, but the underlying regulatory mechanisms remain unclear. Here, we identify a regulatory module composed of the DNA-binding protein VAL1 (VIVIPAROUS1/ABI3-LIKE 1) and a SIN3 (SWI-INDEPENDENT 3)-like histone deacetylase complex that dynamically regulates anthocyanin biosynthesis in Arabidopsis thaliana. Under normal growth conditions, VAL1 recruits the SNL (SIN3-Like)-HDA19 (HISTONE DEACETYLASE 19) complex (SNL-HDA19c) to the PRODUCTION OF ANTHOCYANIN PIGMENT 1 (PAP1) locus for histone deacetylation. Moreover, the negative regulators of jasmonic acid (JA) signaling, JASMONATE-ZIM DOMAIN (JAZ) proteins, interact with VAL1 and further stabilize the binding of VAL1 and SNL-HDA19c to PAP1 chromatin. These molecular interactions transcriptionally repress PAP1 and inhibit anthocyanin biosynthesis. Upon JA accumulation, JAZs are degraded, resulting in the release of both VAL1 and SNL-HDA19c from the PAP1 chromatin. This release leads to an immediate increase in histone acetylation, promoting transcriptional activation of PAP1 and anthocyanin production. These findings elucidate a regulatory module (VAL1-JAZ-SNL-HDA19c) that represses anthocyanin biosynthesis under normal growth conditions and further reveal how the stress hormone JA rapidly induces anthocyanin production, enabling plants to adapt to their growth conditions.</p>","PeriodicalId":52373,"journal":{"name":"Plant Communications","volume":" ","pages":"101587"},"PeriodicalIF":11.6,"publicationDate":"2026-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12902250/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145453587","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiple factors interact in editing of PPR-E+- targeted sites in maize mitochondria and plastids. 在玉米线粒体和质体中PPR-E+靶向位点的编辑过程中,多种因素相互作用。
IF 11.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2026-01-12 Epub Date: 2025-12-16 DOI: 10.1016/j.xplc.2025.101666
Yong Wang, Zi-Qin Huang, Kai-Di Tian, Hao Li, Chunhui Xu, Bingyujie Xia, Bao-Cai Tan
{"title":"Multiple factors interact in editing of PPR-E+- targeted sites in maize mitochondria and plastids.","authors":"Yong Wang, Zi-Qin Huang, Kai-Di Tian, Hao Li, Chunhui Xu, Bingyujie Xia, Bao-Cai Tan","doi":"10.1016/j.xplc.2025.101666","DOIUrl":"10.1016/j.xplc.2025.101666","url":null,"abstract":"","PeriodicalId":52373,"journal":{"name":"Plant Communications","volume":" ","pages":"101666"},"PeriodicalIF":11.6,"publicationDate":"2026-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12902249/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145776719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Prime editing to improve the expression of DAHPS2 in the shikimate pathway by the type-B cytokinin response regulator RR26 enhances submergence tolerance in rice. 通过b型细胞分裂素反应调节因子RR26对莽草酸途径中DAHPS2的表达进行Prime编辑,提高水稻的耐淹性。
IF 11.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2026-01-08 DOI: 10.1016/j.xplc.2026.101714
Dongdong Chen, Linlin Hou, Zhennan Qiu, Qiang Xu, Qiaoyan Wang, Man Li, Zhiqi Hao, Pengfei Dong, Guangheng Zhang, Jiang Hu, Zhenyu Gao, Guojun Dong, Deyong Ren, Lan Shen, Yuchun Rao, Qing Li, Yuhang Zhang, Qiang Zhang, Longbiao Guo, Lianguang Shang, Qian Qian, Li Zhu

Early postgermination growth is critical for uniform seedling emergence in direct-seeded rice, yet its regulatory mechanism remains unclear. Here, we identified DS1, encoding the shikimate pathway initial enzyme DAHPS2, from a dwarf and sterile mutant (ds1) in Huazhan (HZ). Loss of DS1 disrupted the shikimate pathway, thereby reducing indole-3-acetic acid (IAA) levels via the downstream tryptophan-dependent IAA biosynthesis pathway and inducing excessive jasmonic acid (JA) production, resulting in severely inhibited postgermination growth. Exogenous auxin analog NAA or the JA biosynthesis inhibitor DIECA partially rescued the mutant phenotype. Conversely, DS1 overexpression elevated IAA levels, reduced JA accumulation, and enhanced postgermination growth, thereby facilitating rapid seedling emergence in rice under submergence. This result was subsequently confirmed in the Zhongjia3 (ZJ3) cultivar. We further demonstrated that DS1 is transcriptionally activated by RR26, a type-B cytokinin response regulator, through binding to the DS1-7 cis-element. Using prime editing, we precisely modified DS1-7 in HZ, generating transgene-free germplasm with improved DS1 expression and enhanced submergence tolerance. Our findings establish an RR26-DS1 module that regulates IAA-JA homeostasis through the shikimate pathway, providing mechanistic insights into postgermination growth and valuable germplasm for breeding direct-seeded rice.

在直播水稻中,萌发后早期生长对幼苗的均匀出苗至关重要,但其调控机制尚不清楚。在这里,我们从花株(HZ)的矮化不育突变体(DS1)中鉴定出编码莽草酸途径初始酶DAHPS2的DS1。DS1的缺失破坏了莽草酸途径,从而通过下游色氨酸依赖的IAA生物合成途径降低了吲哚-3-乙酸(IAA)水平,诱导茉莉酸(JA)过量产生,导致萌发后生长严重抑制。外源性生长素类似物NAA或JA生物合成抑制剂DIECA部分挽救了突变体表型。相反,DS1过表达提高IAA水平,减少JA积累,促进萌发后生长,从而促进水稻在淹水条件下快速出苗。这一结果随后在中嘉3号(ZJ3)品种中得到证实。我们进一步证明,DS1通过与DS1-7顺式元件的结合,被b型细胞分裂素反应调节因子RR26转录激活。利用引体编辑技术,我们在HZ中对DS1-7进行了精确修饰,获得了DS1表达改善、耐淹性增强的无转基因种质。我们的研究结果建立了一个通过莽草酸途径调控IAA-JA稳态的RR26-DS1模块,为直接播种水稻的萌发后生长提供了机制见解和有价值的种质资源。
{"title":"Prime editing to improve the expression of DAHPS2 in the shikimate pathway by the type-B cytokinin response regulator RR26 enhances submergence tolerance in rice.","authors":"Dongdong Chen, Linlin Hou, Zhennan Qiu, Qiang Xu, Qiaoyan Wang, Man Li, Zhiqi Hao, Pengfei Dong, Guangheng Zhang, Jiang Hu, Zhenyu Gao, Guojun Dong, Deyong Ren, Lan Shen, Yuchun Rao, Qing Li, Yuhang Zhang, Qiang Zhang, Longbiao Guo, Lianguang Shang, Qian Qian, Li Zhu","doi":"10.1016/j.xplc.2026.101714","DOIUrl":"https://doi.org/10.1016/j.xplc.2026.101714","url":null,"abstract":"<p><p>Early postgermination growth is critical for uniform seedling emergence in direct-seeded rice, yet its regulatory mechanism remains unclear. Here, we identified DS1, encoding the shikimate pathway initial enzyme DAHPS2, from a dwarf and sterile mutant (ds1) in Huazhan (HZ). Loss of DS1 disrupted the shikimate pathway, thereby reducing indole-3-acetic acid (IAA) levels via the downstream tryptophan-dependent IAA biosynthesis pathway and inducing excessive jasmonic acid (JA) production, resulting in severely inhibited postgermination growth. Exogenous auxin analog NAA or the JA biosynthesis inhibitor DIECA partially rescued the mutant phenotype. Conversely, DS1 overexpression elevated IAA levels, reduced JA accumulation, and enhanced postgermination growth, thereby facilitating rapid seedling emergence in rice under submergence. This result was subsequently confirmed in the Zhongjia3 (ZJ3) cultivar. We further demonstrated that DS1 is transcriptionally activated by RR26, a type-B cytokinin response regulator, through binding to the DS1-7 cis-element. Using prime editing, we precisely modified DS1-7 in HZ, generating transgene-free germplasm with improved DS1 expression and enhanced submergence tolerance. Our findings establish an RR26-DS1 module that regulates IAA-JA homeostasis through the shikimate pathway, providing mechanistic insights into postgermination growth and valuable germplasm for breeding direct-seeded rice.</p>","PeriodicalId":52373,"journal":{"name":"Plant Communications","volume":" ","pages":"101714"},"PeriodicalIF":11.6,"publicationDate":"2026-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145946770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative transcriptomic and co-expression analyses enable the discovery of key enzymes responsible for oleuropein biosynthesis in olive (Olea europaea). 比较转录组学和共表达分析使橄榄(Olea europaea)中橄榄苦苷生物合成的关键酶得以发现。
IF 11.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2026-01-08 DOI: 10.1016/j.xplc.2026.101713
Ornella Calderini, Mohamed O Kamileen, Yoko Nakamura, Sarah Heinicke, Ryan M Alam, Benke Hong, Yindi Jiang, Alma Gutiérrez-Vences, Fiammetta Alagna, Francesco Paolocci, Maria Cristina Valeri, Edoardo Franco, Soraya Mousavi, Roberto Mariotti, Lorenzo Caputi, Sarah E O'Connor, Carlos E Rodríguez-López

Olive (Olea europaea L.) is one of the most important crop trees, with olive oil being a key ingredient of the Mediterranean diet. Oleuropein, an oleoside-type secoiridoid, is the major determinant of flavor and quality of olive oil. Iridoid biosynthesis has been elucidated in Catharanthus roseus, which produces secologanin-type secoiridoids, but iridoid biosynthesis in other species remains unresolved. In this work, we sequenced RNA from olive fruit mesocarp of six commercial olive cultivars with varying oleuropein content, during maturation and ripening. Using this data we discovered three polyphenol oxidases with oleuropein synthase (OS) activity, a novel oleoside-11-methyl ester glucosyl transferase (OMEGT) synthesizing a potential intermediate in the route, and a 7-epi-loganic acid O-methyltransferase (7eLAMT). Interestingly, using transcriptome assemblies of 15 plant species from three iridoid-producing plant orders (Lamiales, Gentianales, and Cornales) for orthogroup inference and integration of two tissue expression panels from Jasminum sambac and Fraxinus excelsior, allowed the discovery of two 2-oxoglutarate dependent dioxygenases (named 7eLAS) that synthesize 7-epi-loganic acid; in contrast C. roseus 7-deoxy-loganic acid hydroxylase (7DLH), a known bottleneck in MIA production, is a cytochrome p450. This comparative co-expression method, which combines guilt by association and comparative transcriptomics approaches, can successfully leverage big datasets for untargeted discovery of enzymes. Given the increasing availability of expression data from species across the plant kingdom, the methods used for gene discovery used in this work can be readily applied to other untraced pathways.

橄榄(Olea europaea L.)是最重要的农作物之一,橄榄油是地中海饮食的关键成分。橄榄苦苷是一种橄榄苷型环烯醚萜,是橄榄油风味和品质的主要决定因素。环烯醚萜类化合物的生物合成已经在Catharanthus roseus中得到了阐明,该植物可产生secologanin型环烯醚萜类化合物,但其他物种的环烯醚萜类化合物的生物合成尚不清楚。在这项工作中,我们测序了六个不同橄榄苦苷含量的商业橄榄品种在成熟和成熟过程中橄榄果实中果皮的RNA。利用这些数据,我们发现了三种具有橄榄苷合成酶(OS)活性的多酚氧化酶,一种合成该路线中潜在中间体的新型橄榄苷-11-甲基酯葡萄糖基转移酶(OMEGT)和一种7-表麦草酸o -甲基转移酶(7eLAMT)。有趣的是,利用来自三个环烯醚萜类植物目(Lamiales, Gentianales和Cornales)的15个植物物种的转录组组装进行正群推断并整合来自Jasminum sambac和Fraxinus excelsior的两个组织表达板,发现了两个合成7-表木酸的2-氧戊二酸依赖双加氧酶(命名为7eLAS);相比之下,已知的MIA生产瓶颈——玫瑰C. roseus 7-脱氧-有机酸羟化酶(7DLH)是一种细胞色素p450。这种比较共表达方法结合了关联内疚和比较转录组学方法,可以成功地利用大数据集进行酶的非靶向发现。考虑到越来越多的植物界物种表达数据的可用性,这项工作中用于基因发现的方法可以很容易地应用于其他未追踪的途径。
{"title":"Comparative transcriptomic and co-expression analyses enable the discovery of key enzymes responsible for oleuropein biosynthesis in olive (Olea europaea).","authors":"Ornella Calderini, Mohamed O Kamileen, Yoko Nakamura, Sarah Heinicke, Ryan M Alam, Benke Hong, Yindi Jiang, Alma Gutiérrez-Vences, Fiammetta Alagna, Francesco Paolocci, Maria Cristina Valeri, Edoardo Franco, Soraya Mousavi, Roberto Mariotti, Lorenzo Caputi, Sarah E O'Connor, Carlos E Rodríguez-López","doi":"10.1016/j.xplc.2026.101713","DOIUrl":"https://doi.org/10.1016/j.xplc.2026.101713","url":null,"abstract":"<p><p>Olive (Olea europaea L.) is one of the most important crop trees, with olive oil being a key ingredient of the Mediterranean diet. Oleuropein, an oleoside-type secoiridoid, is the major determinant of flavor and quality of olive oil. Iridoid biosynthesis has been elucidated in Catharanthus roseus, which produces secologanin-type secoiridoids, but iridoid biosynthesis in other species remains unresolved. In this work, we sequenced RNA from olive fruit mesocarp of six commercial olive cultivars with varying oleuropein content, during maturation and ripening. Using this data we discovered three polyphenol oxidases with oleuropein synthase (OS) activity, a novel oleoside-11-methyl ester glucosyl transferase (OMEGT) synthesizing a potential intermediate in the route, and a 7-epi-loganic acid O-methyltransferase (7eLAMT). Interestingly, using transcriptome assemblies of 15 plant species from three iridoid-producing plant orders (Lamiales, Gentianales, and Cornales) for orthogroup inference and integration of two tissue expression panels from Jasminum sambac and Fraxinus excelsior, allowed the discovery of two 2-oxoglutarate dependent dioxygenases (named 7eLAS) that synthesize 7-epi-loganic acid; in contrast C. roseus 7-deoxy-loganic acid hydroxylase (7DLH), a known bottleneck in MIA production, is a cytochrome p450. This comparative co-expression method, which combines guilt by association and comparative transcriptomics approaches, can successfully leverage big datasets for untargeted discovery of enzymes. Given the increasing availability of expression data from species across the plant kingdom, the methods used for gene discovery used in this work can be readily applied to other untraced pathways.</p>","PeriodicalId":52373,"journal":{"name":"Plant Communications","volume":" ","pages":"101713"},"PeriodicalIF":11.6,"publicationDate":"2026-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145946791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sustainable bioenergy manufacturing in plants. 工厂中的可持续生物能源制造。
IF 11.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2026-01-08 DOI: 10.1016/j.xplc.2026.101711
Xiaolei Yu, Pengliang Wei, Chengyi Qu, Ci Kong, Hao Du

Sustainable bioenergy is pivotal for the global transition from fossil fuels to a circular bioeconomy, yet conventional biomass conversion is hindered by limitations in efficiency, cost, and versatility. This review examines how contemporary interdisciplinary advances are overcoming these challenges. We survey the convergence of synthetic biology, genomics, artificial intelligence (AI), and chemistry, which is revitalizing bioenergy production through the engineering of optimized biomass. Key strategies range from genomic editing of energy crops for enhanced nutrient efficiency and tailored lignin content to the development of AI-informed smart biorefineries. As a prime exemplar of this synergy, we present an in-depth case study on autoluminescent plants. This frontier application harnesses the fungal bioluminescence pathway (FBP) to directly convert photosynthetic energy into sustainable visible light. The FBP's unique reliance on the endogenous metabolite caffeic acid establishes a transformative platform for autonomous biological illumination. Our analysis underscores that an integrated approach, spanning omics, engineering, and agronomy, is critical for solving complex bioengineering problems and realizing the vision of high-brightness plants. We conclude by proposing that the next paradigm shift will be driven by generative AI, transitioning research and development from subject-specific inquiries to a holistic model of multidisciplinary convergence, thereby accelerating the realization of advanced, sustainable plant-based energy.

可持续生物能源是全球从化石燃料向循环生物经济过渡的关键,但传统的生物质转化受到效率、成本和多功能性的限制。这篇综述探讨了当代跨学科的进展如何克服这些挑战。我们调查了合成生物学、基因组学、人工智能(AI)和化学的融合,这是通过优化生物质工程来振兴生物能源生产的。关键战略包括对能源作物进行基因组编辑以提高营养效率和定制木质素含量,以及开发人工智能智能生物精炼厂。作为这种协同作用的主要范例,我们对自发光植物进行了深入的案例研究。这一前沿应用利用真菌生物发光途径(FBP)直接将光合能量转化为可持续的可见光。FBP对内源性代谢物咖啡酸的独特依赖为自主生物照明建立了一个变革平台。我们的分析强调了一种跨越组学、工程学和农学的综合方法对于解决复杂的生物工程问题和实现高亮度植物的愿景至关重要。最后,我们提出下一个范式转变将由生成式人工智能驱动,将研究和开发从特定主题的查询转变为多学科融合的整体模型,从而加速实现先进的、可持续的植物能源。
{"title":"Sustainable bioenergy manufacturing in plants.","authors":"Xiaolei Yu, Pengliang Wei, Chengyi Qu, Ci Kong, Hao Du","doi":"10.1016/j.xplc.2026.101711","DOIUrl":"https://doi.org/10.1016/j.xplc.2026.101711","url":null,"abstract":"<p><p>Sustainable bioenergy is pivotal for the global transition from fossil fuels to a circular bioeconomy, yet conventional biomass conversion is hindered by limitations in efficiency, cost, and versatility. This review examines how contemporary interdisciplinary advances are overcoming these challenges. We survey the convergence of synthetic biology, genomics, artificial intelligence (AI), and chemistry, which is revitalizing bioenergy production through the engineering of optimized biomass. Key strategies range from genomic editing of energy crops for enhanced nutrient efficiency and tailored lignin content to the development of AI-informed smart biorefineries. As a prime exemplar of this synergy, we present an in-depth case study on autoluminescent plants. This frontier application harnesses the fungal bioluminescence pathway (FBP) to directly convert photosynthetic energy into sustainable visible light. The FBP's unique reliance on the endogenous metabolite caffeic acid establishes a transformative platform for autonomous biological illumination. Our analysis underscores that an integrated approach, spanning omics, engineering, and agronomy, is critical for solving complex bioengineering problems and realizing the vision of high-brightness plants. We conclude by proposing that the next paradigm shift will be driven by generative AI, transitioning research and development from subject-specific inquiries to a holistic model of multidisciplinary convergence, thereby accelerating the realization of advanced, sustainable plant-based energy.</p>","PeriodicalId":52373,"journal":{"name":"Plant Communications","volume":" ","pages":"101711"},"PeriodicalIF":11.6,"publicationDate":"2026-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145946797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Targeted editing of TaROD1 confers disease resistance to both Fusarium head blight and powdery mildew in wheat without growth penalty. TaROD1基因的靶向编辑使小麦对枯萎病和白粉病都具有抗性,而不影响小麦的生长。
IF 11.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2026-01-08 DOI: 10.1016/j.xplc.2026.101712
Pengfeng Li, Xiying Zhu, Ruihua Zhao, Mingyu Luo, Guan Wang, Hanqi Li, Wei Huang, Wujun Ma, Hao Zhang, Shifeng Cheng, Dingzhong Tang, Cui-Jun Zhang
{"title":"Targeted editing of TaROD1 confers disease resistance to both Fusarium head blight and powdery mildew in wheat without growth penalty.","authors":"Pengfeng Li, Xiying Zhu, Ruihua Zhao, Mingyu Luo, Guan Wang, Hanqi Li, Wei Huang, Wujun Ma, Hao Zhang, Shifeng Cheng, Dingzhong Tang, Cui-Jun Zhang","doi":"10.1016/j.xplc.2026.101712","DOIUrl":"10.1016/j.xplc.2026.101712","url":null,"abstract":"","PeriodicalId":52373,"journal":{"name":"Plant Communications","volume":" ","pages":"101712"},"PeriodicalIF":11.6,"publicationDate":"2026-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145946817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The GreenCut protein TEF6 maintains photosystem II homeostasis under high light by stabilizing FtsH accumulation in Chlamydomonas reinhardtii. GreenCut蛋白TEF6通过稳定莱茵衣藻的FtsH积累来维持强光下光系统II的稳态。
IF 11.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2026-01-08 DOI: 10.1016/j.xplc.2026.101709
Heng Yi, Huanling Yang, Song Bin, Xiahe Huang, Jiale Xing, Yingchun Wang, Yongbiao Xue, Wenqiang Yang

Photosystem II (PSII) is susceptible to photodamage under high light stress, necessitating an efficient repair cycle that involves the degradation of the damaged D1 protein, primarily by FtsH proteases. While the involvement of FtsH in D1 turnover is established, the regulatory mechanisms ensuring precise degradation remain unclear. In this study, we characterize the function of TEF6, a conserved thylakoid membrane protein with two transmembrane domains in Chlamydomonas reinhardtii. The tef6 exhibits severe growth inhibition, reduced PSII activity, impaired accumulation of PSII supercomplexes, and disorganized thylakoid membranes specifically under high light conditions. Physiological, cellular, biochemical and genetics assays confirmed that loss of TEF6 specifically impairs PSII stability and repair. Furthermore, multiple approaches including co-immunoprecipitation coupled with mass spectrometry, yeast two-hybrid assays, and bimolecular fluorescence complementation (BiFC) experiments demonstrated that TEF6 directly interacts with both the D1 protein and the FtsH proteases (FtsH1/FtsH2). Loss of TEF6 leads to misregulated, excessive accumulation of FtsH under high light, which correlates with accelerated and uncontrolled degradation of the D1 protein, ultimately disrupting the PSII repair cycle and homeostasis. Our findings identify TEF6 functioning as a crucial scaffold-like factor in the PSII repair machinery. TEF6 stabilizes the proper accumulation of the FtsH protease complex in the thylakoid membrane, thereby ensuring the correct and regulated turnover of photo-damaged D1. This study reveals a novel regulatory mechanism, mediated by a GreenCut protein, for maintaining PSII quality control and photosynthetic efficiency under light stress.

光系统II (PSII)在强光胁迫下易受光损伤,需要一个有效的修复周期,其中包括受损D1蛋白的降解,主要是通过FtsH蛋白酶。虽然已确定FtsH参与D1的转换,但确保精确降解的调节机制仍不清楚。在这项研究中,我们对莱茵衣藻中具有两个跨膜结构域的保守类囊体膜蛋白TEF6的功能进行了表征。在强光条件下,tef6表现出严重的生长抑制,PSII活性降低,PSII超复合物积累受损,类囊体膜紊乱。生理、细胞、生化和遗传学分析证实TEF6的缺失特异性地损害了PSII的稳定性和修复。此外,包括共免疫沉淀结合质谱法、酵母双杂交试验和双分子荧光互补(BiFC)实验在内的多种方法表明,TEF6直接与D1蛋白和FtsH蛋白酶(FtsH1/FtsH2)相互作用。TEF6的缺失导致在强光下FtsH的过度积累,这与D1蛋白的加速和不受控制的降解有关,最终破坏PSII修复周期和体内平衡。我们的研究发现TEF6在PSII修复机制中起着关键的支架样因子的作用。TEF6稳定了类囊体膜中FtsH蛋白酶复合物的适当积累,从而确保光损伤D1的正确和调节的周转。该研究揭示了一种由GreenCut蛋白介导的光胁迫下维持PSII质量控制和光合效率的新调控机制。
{"title":"The GreenCut protein TEF6 maintains photosystem II homeostasis under high light by stabilizing FtsH accumulation in Chlamydomonas reinhardtii.","authors":"Heng Yi, Huanling Yang, Song Bin, Xiahe Huang, Jiale Xing, Yingchun Wang, Yongbiao Xue, Wenqiang Yang","doi":"10.1016/j.xplc.2026.101709","DOIUrl":"https://doi.org/10.1016/j.xplc.2026.101709","url":null,"abstract":"<p><p>Photosystem II (PSII) is susceptible to photodamage under high light stress, necessitating an efficient repair cycle that involves the degradation of the damaged D1 protein, primarily by FtsH proteases. While the involvement of FtsH in D1 turnover is established, the regulatory mechanisms ensuring precise degradation remain unclear. In this study, we characterize the function of TEF6, a conserved thylakoid membrane protein with two transmembrane domains in Chlamydomonas reinhardtii. The tef6 exhibits severe growth inhibition, reduced PSII activity, impaired accumulation of PSII supercomplexes, and disorganized thylakoid membranes specifically under high light conditions. Physiological, cellular, biochemical and genetics assays confirmed that loss of TEF6 specifically impairs PSII stability and repair. Furthermore, multiple approaches including co-immunoprecipitation coupled with mass spectrometry, yeast two-hybrid assays, and bimolecular fluorescence complementation (BiFC) experiments demonstrated that TEF6 directly interacts with both the D1 protein and the FtsH proteases (FtsH1/FtsH2). Loss of TEF6 leads to misregulated, excessive accumulation of FtsH under high light, which correlates with accelerated and uncontrolled degradation of the D1 protein, ultimately disrupting the PSII repair cycle and homeostasis. Our findings identify TEF6 functioning as a crucial scaffold-like factor in the PSII repair machinery. TEF6 stabilizes the proper accumulation of the FtsH protease complex in the thylakoid membrane, thereby ensuring the correct and regulated turnover of photo-damaged D1. This study reveals a novel regulatory mechanism, mediated by a GreenCut protein, for maintaining PSII quality control and photosynthetic efficiency under light stress.</p>","PeriodicalId":52373,"journal":{"name":"Plant Communications","volume":" ","pages":"101709"},"PeriodicalIF":11.6,"publicationDate":"2026-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145946760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PCdb: A comprehensive plant genome editing database integrating sgRNA efficiency, off-target predictions, and epigenomic landscapes. PCdb:一个综合的植物基因组编辑数据库,集成了sgRNA效率、脱靶预测和表观基因组景观。
IF 11.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2026-01-07 DOI: 10.1016/j.xplc.2026.101708
Fan Wang, Shengtao Lu, Can Zhu, Litao Yang

CRISPR/Cas-based genome editing has revolutionized plant biotechnology, enabling precise genomic modifications for crop improvement and functional genomics. The success of these applications hinges on designing single guide RNAs (sgRNAs) that maximize on-target efficiency while minimizing off-target effects. Current resources for sgRNA design and performance evaluation in plants are fragmented and lack integration with genomic and epigenomic context, which influences both editing efficacy and specificity. Here, we present PCdb (Plant CRISPR Database; https://gmo.sjtu.edu.cn/pcdb), a comprehensive plant-focused database by integrating experimentally validated sgRNAs, their annotated genomic contexts, genome-wide off-target predictions, and multi-layered epigenomic annotations. PCdb encompasses 6,172 manually curated editing records from 2,132 publications, covering 4,320 unique sgRNAs and 6,117,424 predicted off-target sites across nine major plant species. Uniquely, PCdb contextualizes potential editing outcomes-both on-target and off-target-within the chromatin landscape by incorporating DNA methylation profiles, chromatin accessibility data, and histone modification patterns. The database features an intuitive web interface supporting flexible queries, interactive visualization tools, and comprehensive analytical modules for both sgRNA efficiency assessment and off-target analysis. A case study reanalysis of Oryza sativa yield-related genes demonstrates PCdb's capability to provide a comprehensive performance profile, evaluating both on-target characteristics and off-target risks within their native epigenomic context. Through systematic analysis of the database, we reveal critical sequence and chromatin features influencing editing outcomes, providing novel insights for improved gene editing efficacy and specificity.

基于CRISPR/ cas的基因组编辑已经彻底改变了植物生物技术,为作物改良和功能基因组学提供了精确的基因组修饰。这些应用的成功取决于设计单导rna (sgrna),最大限度地提高靶效率,同时最大限度地减少脱靶效应。目前植物中sgRNA设计和性能评估的资源是碎片化的,缺乏与基因组和表观基因组背景的整合,这影响了编辑的有效性和特异性。在这里,我们提出了PCdb(植物CRISPR数据库;https://gmo.sjtu.edu.cn/pcdb),这是一个以植物为重点的综合数据库,通过整合实验验证的sgrna,其注释的基因组背景,全基因组脱靶预测和多层表观基因组注释。PCdb包含来自2,132种出版物的6,172条人工编辑记录,涵盖了9种主要植物物种的4,320个独特的sgrna和6,117,424个预测的脱靶位点。独特的是,PCdb通过结合DNA甲基化谱、染色质可及性数据和组蛋白修饰模式,将染色质景观中的潜在编辑结果(靶上和非靶上)置于背景中。该数据库具有直观的web界面,支持灵活的查询,交互式可视化工具,以及用于sgRNA效率评估和脱靶分析的综合分析模块。对水稻产量相关基因的案例研究再分析表明,PCdb能够提供全面的性能概况,在其原生表观基因组背景下评估靶特性和脱靶风险。通过对数据库的系统分析,我们揭示了影响编辑结果的关键序列和染色质特征,为提高基因编辑的功效和特异性提供了新的见解。
{"title":"PCdb: A comprehensive plant genome editing database integrating sgRNA efficiency, off-target predictions, and epigenomic landscapes.","authors":"Fan Wang, Shengtao Lu, Can Zhu, Litao Yang","doi":"10.1016/j.xplc.2026.101708","DOIUrl":"https://doi.org/10.1016/j.xplc.2026.101708","url":null,"abstract":"<p><p>CRISPR/Cas-based genome editing has revolutionized plant biotechnology, enabling precise genomic modifications for crop improvement and functional genomics. The success of these applications hinges on designing single guide RNAs (sgRNAs) that maximize on-target efficiency while minimizing off-target effects. Current resources for sgRNA design and performance evaluation in plants are fragmented and lack integration with genomic and epigenomic context, which influences both editing efficacy and specificity. Here, we present PCdb (Plant CRISPR Database; https://gmo.sjtu.edu.cn/pcdb), a comprehensive plant-focused database by integrating experimentally validated sgRNAs, their annotated genomic contexts, genome-wide off-target predictions, and multi-layered epigenomic annotations. PCdb encompasses 6,172 manually curated editing records from 2,132 publications, covering 4,320 unique sgRNAs and 6,117,424 predicted off-target sites across nine major plant species. Uniquely, PCdb contextualizes potential editing outcomes-both on-target and off-target-within the chromatin landscape by incorporating DNA methylation profiles, chromatin accessibility data, and histone modification patterns. The database features an intuitive web interface supporting flexible queries, interactive visualization tools, and comprehensive analytical modules for both sgRNA efficiency assessment and off-target analysis. A case study reanalysis of Oryza sativa yield-related genes demonstrates PCdb's capability to provide a comprehensive performance profile, evaluating both on-target characteristics and off-target risks within their native epigenomic context. Through systematic analysis of the database, we reveal critical sequence and chromatin features influencing editing outcomes, providing novel insights for improved gene editing efficacy and specificity.</p>","PeriodicalId":52373,"journal":{"name":"Plant Communications","volume":" ","pages":"101708"},"PeriodicalIF":11.6,"publicationDate":"2026-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145935861","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Actin-interacting protein 1 enhances stalk mechanical strength and yield in maize. 肌动蛋白相互作用蛋白1提高玉米茎秆机械强度和产量。
IF 11.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2026-01-07 DOI: 10.1016/j.xplc.2026.101698
Xiaqing Wang, Ruyang Zhang, Xuan Sun, Jinghuan Li, Tianyi Wang, Mengyuan Liu, Dongmei Chen, Ying Zhang, Shuai Wang, Yanxin Zhao, Chunhui Li, Jidong Wang, Zhiyong Li, Yanyan Jiao, Jinfeng Xing, Ronghuan Wang, Wei Song, Jiuran Zhao
{"title":"Actin-interacting protein 1 enhances stalk mechanical strength and yield in maize.","authors":"Xiaqing Wang, Ruyang Zhang, Xuan Sun, Jinghuan Li, Tianyi Wang, Mengyuan Liu, Dongmei Chen, Ying Zhang, Shuai Wang, Yanxin Zhao, Chunhui Li, Jidong Wang, Zhiyong Li, Yanyan Jiao, Jinfeng Xing, Ronghuan Wang, Wei Song, Jiuran Zhao","doi":"10.1016/j.xplc.2026.101698","DOIUrl":"10.1016/j.xplc.2026.101698","url":null,"abstract":"","PeriodicalId":52373,"journal":{"name":"Plant Communications","volume":" ","pages":"101698"},"PeriodicalIF":11.6,"publicationDate":"2026-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145935812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative characterization of chromatin-targeting mechanisms across seven H3K4 methyltransferases in Arabidopsis. 拟南芥7种H3K4甲基转移酶染色质靶向机制的比较研究
IF 11.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2026-01-05 DOI: 10.1016/j.xplc.2026.101694
Satoyo Oya, Susumu Uehara, Hideko Watabe, Juliarni, Yutaka Kodama, Shusei Mori, Akihisa Osakabe, Naoto Tanaka, Takumi Noyori, Mayumi Takahashi, Mika Nomoto, Yasuomi Tada, Tetsuji Kakutani, Soichi Inagaki

Methylation of histone H3 at lysine 4 (H3K4me) marks transcribed elements of the eukaryotic genome, and its distribution dynamically changes through developmental stages and in response to environmental factors. These dynamic regulatory changes are achieved by the combinatorial action of H3K4me methyltransferases, with multi-cellular organisms carrying multiple copies of these enzymes. The model plant Arabidopsis has at least seven H3K4 methyltransferase genes. Here, we comparatively analyze the seven H3K4 methyltransferases using epigenomics and biochemical approaches to better understand the mechanisms underlying their target specificity. Our findings, in combination with previous work, show that ATX1 to ATX5 (Trx/Trr-type methyltransferases) localize to loci with distinct sets of chromatin modifications and DNA motifs, which differ among the various ATX proteins. Notably, ATX3 localizes to the binding motifs of ASR3 and RAP2.11 transcriptional factors and directly interacts with these TFs. ATXR7 (Set1-type) and ATXR3 (non-canonical H3K4 methyltransferase) co-localize with the transcriptional machinery, suggesting co-transcriptional mechanisms of action for these enzymes. Interestingly, ATXR3, the major H3K4me3 methyltransferase in Arabidopsis, appears to form a protein complex independent of COMPASS, indicating that the regulatory mechanisms of H3K4me3 have diverged between plants and animals. Our work provides a foundation for understanding the chromatin targeting of H3K4 methyltransferases in plants and highlights significant differences in H3K4me3 regulation between plants and other eukaryotes.

赖氨酸4位点组蛋白H3 (H3K4me)的甲基化标志着真核生物基因组的转录元件,其分布随着发育阶段和环境因素的变化而动态变化。这些动态调节变化是通过H3K4me甲基转移酶的组合作用实现的,多细胞生物携带这些酶的多个拷贝。模式植物拟南芥具有至少7个H3K4甲基转移酶基因。在这里,我们使用表观基因组学和生化方法对7种H3K4甲基转移酶进行了比较分析,以更好地了解其靶特异性的机制。我们的发现,结合之前的工作,表明ATX1到ATX5 (Trx/ trr型甲基转移酶)定位于具有不同染色质修饰和DNA基序的位点,这些基序在不同的ATX蛋白中是不同的。值得注意的是,ATX3定位于ASR3和RAP2.11转录因子的结合基序,并直接与这些tf相互作用。ATXR7 (set1型)和ATXR3(非规范H3K4甲基转移酶)与转录机制共定位,提示这些酶的共转录机制。有趣的是,拟南芥中主要的H3K4me3甲基转移酶ATXR3似乎形成了一个独立于COMPASS的蛋白复合物,这表明H3K4me3的调控机制在植物和动物之间存在分歧。我们的工作为了解植物中H3K4甲基转移酶的染色质靶向性提供了基础,并突出了植物与其他真核生物之间H3K4me3调控的显着差异。
{"title":"Comparative characterization of chromatin-targeting mechanisms across seven H3K4 methyltransferases in Arabidopsis.","authors":"Satoyo Oya, Susumu Uehara, Hideko Watabe, Juliarni, Yutaka Kodama, Shusei Mori, Akihisa Osakabe, Naoto Tanaka, Takumi Noyori, Mayumi Takahashi, Mika Nomoto, Yasuomi Tada, Tetsuji Kakutani, Soichi Inagaki","doi":"10.1016/j.xplc.2026.101694","DOIUrl":"https://doi.org/10.1016/j.xplc.2026.101694","url":null,"abstract":"<p><p>Methylation of histone H3 at lysine 4 (H3K4me) marks transcribed elements of the eukaryotic genome, and its distribution dynamically changes through developmental stages and in response to environmental factors. These dynamic regulatory changes are achieved by the combinatorial action of H3K4me methyltransferases, with multi-cellular organisms carrying multiple copies of these enzymes. The model plant Arabidopsis has at least seven H3K4 methyltransferase genes. Here, we comparatively analyze the seven H3K4 methyltransferases using epigenomics and biochemical approaches to better understand the mechanisms underlying their target specificity. Our findings, in combination with previous work, show that ATX1 to ATX5 (Trx/Trr-type methyltransferases) localize to loci with distinct sets of chromatin modifications and DNA motifs, which differ among the various ATX proteins. Notably, ATX3 localizes to the binding motifs of ASR3 and RAP2.11 transcriptional factors and directly interacts with these TFs. ATXR7 (Set1-type) and ATXR3 (non-canonical H3K4 methyltransferase) co-localize with the transcriptional machinery, suggesting co-transcriptional mechanisms of action for these enzymes. Interestingly, ATXR3, the major H3K4me3 methyltransferase in Arabidopsis, appears to form a protein complex independent of COMPASS, indicating that the regulatory mechanisms of H3K4me3 have diverged between plants and animals. Our work provides a foundation for understanding the chromatin targeting of H3K4 methyltransferases in plants and highlights significant differences in H3K4me3 regulation between plants and other eukaryotes.</p>","PeriodicalId":52373,"journal":{"name":"Plant Communications","volume":" ","pages":"101694"},"PeriodicalIF":11.6,"publicationDate":"2026-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145913898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Plant Communications
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1