首页 > 最新文献

Plant Communications最新文献

英文 中文
Decoding plant physiology through systems biology: Integrative multi-omics and computational perspectives for next-generation crop design. 通过系统生物学解码植物生理学:下一代作物设计的综合多组学和计算视角。
IF 11.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-12-10 DOI: 10.1016/j.xplc.2025.101668
Bikash Kumar Kundu, Bhaben Tanti

The convergence of high-resolution multi-omics technologies with computational systems biology is transforming plant physiology by enabling predictive, mechanistic, and field-relevant insights into crop performance, adaptation, and resilience. This review presents an integrative and forward-looking synthesis spanning genomics, transcriptomics, proteomics, metabolomics, epigenomics, phenomics, and the rapidly emerging fields of single-cell and spatial omics, highlighting how these complementary layers can be computationally unified to achieve cell-type-resolved and tissue-specific insights into plant function. We discuss integrative analytical frameworks that combine gene regulatory network inference, machine learning, and explainable artificial intelligence (XAI), illustrating how these approaches accelerate the identification of key regulators, improve genotype-environment interaction modeling, and advance multiscale phenotypic prediction. Representative case studies demonstrate how multi-omics integration-ranging from single-cell transcriptomic atlases in Arabidopsis to nitrogen-use-efficiency modeling and omics-guided genome editing in cereals-bridges laboratory-scale discovery with field-level validation. We further propose a translational roadmap that links persistent bottlenecks, including data heterogeneity, limited spatiotemporal resolution, and the underrepresentation of non-model species, with actionable solutions such as FAIR-compliant data infrastructures, high-resolution spatiotemporal omics, hybrid mechanistic artificial intelligence (AI) modeling, and digital twin frameworks. By connecting molecular mechanisms to ecosystem-level performance, this review articulates a coherent vision for predictive, design-driven, and climate-resilient agriculture grounded in systems-level plant biology.

高分辨率多组学技术与计算系统生物学的融合正在通过对作物性能、适应性和恢复力的预测、机制和田间相关见解来改变植物生理学。本文综述了基因组学、转录组学、蛋白质组学、代谢组学、表观基因组学、表型组学以及迅速兴起的单细胞组学和空间组学的综合和前瞻性研究,强调了如何将这些互补层在计算上统一起来,以实现细胞类型分辨和组织特异性对植物功能的理解。我们概述了结合基因调控网络推理、机器学习和可解释人工智能(XAI)的综合分析框架如何加速关键调控因子的发现,改进基因型-环境相互作用建模,推进多尺度表型预测。代表性案例研究表明,从拟南芥的单细胞转录组图谱到氮利用效率建模和基因组学指导的谷物基因组编辑的多组学整合如何将实验室规模的发现与田间水平的验证联系起来。我们进一步提出了一个转化路线图,该路线图将持续存在的瓶颈(如数据异质性、有限的时空分辨率和非s的代表性不足)与可操作的解决方案联系起来,包括符合fair标准的数据基础设施、高分辨率和时空组学、混合机制人工智能建模和数字孪生框架。通过将分子机制与生态系统水平的表现联系起来,本文阐述了基于系统级植物生物学的预测性、设计驱动型和气候适应型农业的一致愿景。
{"title":"Decoding plant physiology through systems biology: Integrative multi-omics and computational perspectives for next-generation crop design.","authors":"Bikash Kumar Kundu, Bhaben Tanti","doi":"10.1016/j.xplc.2025.101668","DOIUrl":"10.1016/j.xplc.2025.101668","url":null,"abstract":"<p><p>The convergence of high-resolution multi-omics technologies with computational systems biology is transforming plant physiology by enabling predictive, mechanistic, and field-relevant insights into crop performance, adaptation, and resilience. This review presents an integrative and forward-looking synthesis spanning genomics, transcriptomics, proteomics, metabolomics, epigenomics, phenomics, and the rapidly emerging fields of single-cell and spatial omics, highlighting how these complementary layers can be computationally unified to achieve cell-type-resolved and tissue-specific insights into plant function. We discuss integrative analytical frameworks that combine gene regulatory network inference, machine learning, and explainable artificial intelligence (XAI), illustrating how these approaches accelerate the identification of key regulators, improve genotype-environment interaction modeling, and advance multiscale phenotypic prediction. Representative case studies demonstrate how multi-omics integration-ranging from single-cell transcriptomic atlases in Arabidopsis to nitrogen-use-efficiency modeling and omics-guided genome editing in cereals-bridges laboratory-scale discovery with field-level validation. We further propose a translational roadmap that links persistent bottlenecks, including data heterogeneity, limited spatiotemporal resolution, and the underrepresentation of non-model species, with actionable solutions such as FAIR-compliant data infrastructures, high-resolution spatiotemporal omics, hybrid mechanistic artificial intelligence (AI) modeling, and digital twin frameworks. By connecting molecular mechanisms to ecosystem-level performance, this review articulates a coherent vision for predictive, design-driven, and climate-resilient agriculture grounded in systems-level plant biology.</p>","PeriodicalId":52373,"journal":{"name":"Plant Communications","volume":" ","pages":"101668"},"PeriodicalIF":11.6,"publicationDate":"2025-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145726800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The miR164e-NAC32 module orchestrates maize plant height via post-translational regulation of DELLA protein stability. miR164e-NAC32模块通过翻译后调控DELLA蛋白稳定性来协调玉米植株高度。
IF 11.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-12-10 DOI: 10.1016/j.xplc.2025.101670
Chuanxi Peng, Xi Zhao, Jinzhong Xiao, Xingyu Zhong, Limei Chen, Yan He, Zhaohu Li, Yuyi Zhou, Liusheng Duan

Optimization of plant architecture requires precise regulation of internode elongation; however, the post-translational mechanisms that integrate microRNA and phytohormone signaling remain poorly understood. Here, we describe a hierarchical miR164e-NAC32-DELLA regulatory network that controls stem development in maize. Genetic analyses demonstrate that ZmmiR164e negatively regulates its target gene ZmNAC32, with ZmmiR164e overexpression enhancing internode cell elongation and loss-of-function resulting in dwarfism. Notably, ZmNAC32 physically interacts with and stabilizes the DELLA protein ZmD8, as evidenced by increased ZmD8 protein levels in ZmNAC32-overexpressing plants compared with the wild type. Transcriptome profiling reveals that ZmNAC32-mediated regulation of plant height occurs primarily through post-translational stabilization rather than extensive transcriptional reprogramming, with downstream cell wall biosynthesis genes (EXP, XTH, and LAC) showing GA-responsive suppression. Structural analyses further reveal that ZmNAC32 binding stabilizes ZmD8 by shielding the key interaction residue K399, thereby suppressing its degradation. Together, these results identify a miRNA-NAC-DELLA module that governs post-translational protein stability during stem development and provides strategic targets for precision breeding of plant architecture.

植物结构优化需要精确调控节间伸长,然而整合microRNA和植物激素信号的翻译后机制仍然知之甚少。在这里,我们破译了一个控制玉米茎发育的miR164e-NAC32-DELLA调控网络。遗传分析表明,ZmmiR164e负调控靶基因zmac32,其过表达增强节间细胞伸长,并导致其功能丧失导致侏儒症。关键是,ZmNAC32与DELLA蛋白ZmD8发生物理相互作用以稳定其积累,与野生型相比,ZmNAC32过表达系中ZmD8蛋白水平升高证明了这一点。转录组分析显示,zmnac32介导的高度调节通过翻译后稳定而不是转录重编程进行,下游细胞壁生物合成基因(EXP, XTH, LAC)表现出ga响应性抑制。结构分析表明,zmac32结合通过屏蔽关键相互作用残基K399来稳定ZmD8,从而抑制其降解。这些结果揭示了miRNA-NAC-DELLA模块在茎发育过程中控制翻译后蛋白的稳定性,为植物结构的精确育种提供了战略靶点。
{"title":"The miR164e-NAC32 module orchestrates maize plant height via post-translational regulation of DELLA protein stability.","authors":"Chuanxi Peng, Xi Zhao, Jinzhong Xiao, Xingyu Zhong, Limei Chen, Yan He, Zhaohu Li, Yuyi Zhou, Liusheng Duan","doi":"10.1016/j.xplc.2025.101670","DOIUrl":"10.1016/j.xplc.2025.101670","url":null,"abstract":"<p><p>Optimization of plant architecture requires precise regulation of internode elongation; however, the post-translational mechanisms that integrate microRNA and phytohormone signaling remain poorly understood. Here, we describe a hierarchical miR164e-NAC32-DELLA regulatory network that controls stem development in maize. Genetic analyses demonstrate that ZmmiR164e negatively regulates its target gene ZmNAC32, with ZmmiR164e overexpression enhancing internode cell elongation and loss-of-function resulting in dwarfism. Notably, ZmNAC32 physically interacts with and stabilizes the DELLA protein ZmD8, as evidenced by increased ZmD8 protein levels in ZmNAC32-overexpressing plants compared with the wild type. Transcriptome profiling reveals that ZmNAC32-mediated regulation of plant height occurs primarily through post-translational stabilization rather than extensive transcriptional reprogramming, with downstream cell wall biosynthesis genes (EXP, XTH, and LAC) showing GA-responsive suppression. Structural analyses further reveal that ZmNAC32 binding stabilizes ZmD8 by shielding the key interaction residue K399, thereby suppressing its degradation. Together, these results identify a miRNA-NAC-DELLA module that governs post-translational protein stability during stem development and provides strategic targets for precision breeding of plant architecture.</p>","PeriodicalId":52373,"journal":{"name":"Plant Communications","volume":" ","pages":"101670"},"PeriodicalIF":11.6,"publicationDate":"2025-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145726981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The transcription factor ANAC017 links mitochondrial retrograde signaling with the ubiquitin-proteasome system to control mitochondrial function in Arabidopsis. 转录因子ANAC017将线粒体逆行信号与泛素-蛋白酶体系统联系起来,控制拟南芥线粒体功能。
IF 11.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-12-10 DOI: 10.1016/j.xplc.2025.101667
Yang Zhao, Michael Ogden, Ronghui Pan, Jianping Hu, Staffan Persson, Monika W Murcha, Huixia Shou, Yan Wang, Ghazanfar Abbas Khan, James Whelan

Mitochondrial biogenesis requires the import of more than a thousand proteins encoded by nuclear DNA. The translocase of the outer mitochondrial membrane (TOM) complex serves as the primary gateway for specific recognition of precursor proteins, which are synthesized in the cytosol. Little is known about the regulation of the abundance of the TOM complex. Using forward genetics, we identified key 26S proteasome subunits, including REGULATORY PARTICLE NON-ATPASE1A (RPN1A), that affect the abundance of TOM-complex subunits through the ubiquitin-proteasome pathway. Loss of proteasome function through rpn1a mutation or MG132 treatment increased the abundance of TOM20 isoforms and induced mitochondrial stress marker genes. By contrast, overexpression of ANAC017, an endoplasmic reticulum-anchored transcription factor that activates mitochondrial retrograde signaling under stress, lowered TOM20 abundance and reduced mitochondrial protein import. The rates of mitochondrial protein import and respiratory activity were also altered. Genetic analyses placed the proteasome downstream of ANAC017, since the reduction in TOM20 required the RPN1a subunit. Transcriptome profiling after antimycin A treatment showed broad ANAC017-dependent reprogramming of ubiquitin-proteasome system genes. A second tier formed by ANAC053- and ANAC078-bound promoters of proteasome subunits, including RPN1a, is required to restrain TOM20 accumulation. These findings establish a two-step transcriptional circuit that engages the ubiquitin-proteasome system to tune TOM abundance and coordinate protein import with organelle function.

线粒体的生物发生需要输入超过一千种由核DNA编码的蛋白质。线粒体外膜(TOM)复合体的转位酶是特异性识别细胞质中合成的前体蛋白的主要途径。人们对TOM复合物丰度的调控知之甚少。利用正向遗传学,我们确定了关键的26S蛋白酶体亚基,包括调控粒子NON-ATPASE1A (RPN1A),它们通过泛素-蛋白酶体途径影响TOM复合物亚基的丰度。通过rpn1a突变或MG132处理导致的蛋白酶体功能丧失增加了TOM20亚型的丰度,并诱导了线粒体应激标记基因。相比之下,ANAC017(一种内质网锚定转录因子,在应激下激活线粒体逆行信号传导)的过表达降低了TOM20的丰度,减少了线粒体蛋白的输入。线粒体蛋白输入速率和呼吸活动也发生了改变。遗传分析将蛋白酶体定位在ANAC017的下游,因为TOM20的减少需要RPN1a亚基。抗霉素A作用下的转录组分析显示泛素蛋白酶体系统基因广泛依赖ANAC017重编程。ANAC053和ANAC078结合蛋白酶体亚基启动子(包括RPN1a)形成的第二层抑制TOM20的积累。这些发现建立了一个两步转录回路,该回路涉及泛素蛋白酶体系统来调节TOM丰度并协调蛋白质输入与细胞器功能。
{"title":"The transcription factor ANAC017 links mitochondrial retrograde signaling with the ubiquitin-proteasome system to control mitochondrial function in Arabidopsis.","authors":"Yang Zhao, Michael Ogden, Ronghui Pan, Jianping Hu, Staffan Persson, Monika W Murcha, Huixia Shou, Yan Wang, Ghazanfar Abbas Khan, James Whelan","doi":"10.1016/j.xplc.2025.101667","DOIUrl":"10.1016/j.xplc.2025.101667","url":null,"abstract":"<p><p>Mitochondrial biogenesis requires the import of more than a thousand proteins encoded by nuclear DNA. The translocase of the outer mitochondrial membrane (TOM) complex serves as the primary gateway for specific recognition of precursor proteins, which are synthesized in the cytosol. Little is known about the regulation of the abundance of the TOM complex. Using forward genetics, we identified key 26S proteasome subunits, including REGULATORY PARTICLE NON-ATPASE1A (RPN1A), that affect the abundance of TOM-complex subunits through the ubiquitin-proteasome pathway. Loss of proteasome function through rpn1a mutation or MG132 treatment increased the abundance of TOM20 isoforms and induced mitochondrial stress marker genes. By contrast, overexpression of ANAC017, an endoplasmic reticulum-anchored transcription factor that activates mitochondrial retrograde signaling under stress, lowered TOM20 abundance and reduced mitochondrial protein import. The rates of mitochondrial protein import and respiratory activity were also altered. Genetic analyses placed the proteasome downstream of ANAC017, since the reduction in TOM20 required the RPN1a subunit. Transcriptome profiling after antimycin A treatment showed broad ANAC017-dependent reprogramming of ubiquitin-proteasome system genes. A second tier formed by ANAC053- and ANAC078-bound promoters of proteasome subunits, including RPN1a, is required to restrain TOM20 accumulation. These findings establish a two-step transcriptional circuit that engages the ubiquitin-proteasome system to tune TOM abundance and coordinate protein import with organelle function.</p>","PeriodicalId":52373,"journal":{"name":"Plant Communications","volume":" ","pages":"101667"},"PeriodicalIF":11.6,"publicationDate":"2025-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145726907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-resolution structural analysis of the cyanobacterial photosystem I complex reveals independent incorporation of small transmembrane and cytoplasmic subunits. 蓝藻光系统I复合体的高分辨率结构分析揭示了小的跨膜和细胞质亚基的独立结合。
IF 11.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-12-08 Epub Date: 2025-08-25 DOI: 10.1016/j.xplc.2025.101493
Quentin Charras Ferroussier, Sadanand Gupta, Martin Tichý, Ashraf Al-Amoudi, Martin Lukeš, Daniel Štipl, Peter Koník, David Bína, Marek Zákopčaník, Petr Novák, Roman Sobotka, Josef Komenda, Andreas Naschberger
{"title":"High-resolution structural analysis of the cyanobacterial photosystem I complex reveals independent incorporation of small transmembrane and cytoplasmic subunits.","authors":"Quentin Charras Ferroussier, Sadanand Gupta, Martin Tichý, Ashraf Al-Amoudi, Martin Lukeš, Daniel Štipl, Peter Koník, David Bína, Marek Zákopčaník, Petr Novák, Roman Sobotka, Josef Komenda, Andreas Naschberger","doi":"10.1016/j.xplc.2025.101493","DOIUrl":"10.1016/j.xplc.2025.101493","url":null,"abstract":"","PeriodicalId":52373,"journal":{"name":"Plant Communications","volume":" ","pages":"101493"},"PeriodicalIF":11.6,"publicationDate":"2025-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12744741/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144978169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gaseous cues regenerate the periderm. 气体提示使外周再生。
IF 11.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-12-08 Epub Date: 2025-10-27 DOI: 10.1016/j.xplc.2025.101576
Hassan Iqbal, Chen Yaning, Muhammad Waqas, Tom Beeckman, Ülo Niinemets, Christoph-Martin Geilfus
{"title":"Gaseous cues regenerate the periderm.","authors":"Hassan Iqbal, Chen Yaning, Muhammad Waqas, Tom Beeckman, Ülo Niinemets, Christoph-Martin Geilfus","doi":"10.1016/j.xplc.2025.101576","DOIUrl":"10.1016/j.xplc.2025.101576","url":null,"abstract":"","PeriodicalId":52373,"journal":{"name":"Plant Communications","volume":" ","pages":"101576"},"PeriodicalIF":11.6,"publicationDate":"2025-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12744759/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145379795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
BAM1/2-mediated phosphorylation of ABCG16 reduces its stability and ABA export activity to suppress root growth in Arabidopsis. bam1 /2介导的ABCG16磷酸化降低其稳定性和ABA输出活性,抑制拟南芥根系生长
IF 11.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-12-08 Epub Date: 2025-11-25 DOI: 10.1016/j.xplc.2025.101623
Yeling Zhou, Xiaoju Liang, Jiansheng Liang

The phytohormone abscisic acid (ABA) governs plant stress responses through dynamic control of its cellular distribution by ABA transporters, yet the mechanisms controlling ABA transporter activity remain poorly understood. Here, we identify a phosphorylation-dependent regulatory mechanism that modulates cellular ABA levels and root growth responses in Arabidopsis. We show that ABA alters the subcellular distribution of its transporter ATP-binding cassette G16 (ABCG16), which functions as a negative regulator of ABA-induced root growth inhibition. In contrast to ABCG16, the receptor-like kinases BARELY ANY MERISTEM 1 and 2 (BAM1/2) are essential for proper root responses to ABA. BAM1/2 physically interact with ABCG16 and phosphorylate it at threonine 45. Relative intensity analyses and cell-free degradation assays reveal enhanced ABCG16 accumulation in the bam1;+/-bam2 mutant, indicating that ABCG16 protein stability is at least partially dependent on BAM1/2. ABA transport and root growth assays further show that the non-phosphorylated ABCG16 variant promotes ABA efflux and restores ABA-induced root growth inhibition similar to the wild-type protein, whereas the phospho-mimic ABCG16 variant impairs cytosolic ABA efflux and fails to restore root growth under ABA treatment. Consistently, the bam1;+/-bam2 mutant shows constitutively elevated ABA efflux activity compared with wild-type landsberg erecta (Ler), supporting the notion that BAM1/2-mediated phosphorylation dampens ABCG16 transport activity. The abcg16 bam1 and abcg16 bam2 double mutants phenocopy the abcg16 single mutant, showing ABA hypersensitivity in root growth. Together, these findings demonstrate that BAM1/2-mediated phosphorylation of ABCG16 reduces its stability and ABA export activity, thereby maintaining cellular ABA levels required for root growth inhibition.

植物激素脱落酸(ABA)通过ABA转运体对其细胞分布的动态调节来调控植物的胁迫反应,但调控ABA转运体活性的机制尚不清楚。在这里,我们发现了一个磷酸化依赖的调节机制,控制细胞ABA水平和拟南芥根系生长反应。我们发现ABA介导其转运体ABCG16的亚细胞分布,这与ABA诱导的根生长抑制负相关。与ABCG16相反,发现BAM1/2受体样激酶是ABA的根反应所必需的。进一步表明BAM1/2与ABCG16物理相互作用并使其在苏氨酸45 (Thr45)位点磷酸化。相对强度和细胞降解实验显示ABCG16在bam1中的积累增强;+/- bam2突变体,表明ABCG16蛋白的稳定性至少部分依赖于BAM1/2。ABA转运和根生长分析表明,ABCG16的非磷酸化变体与野生型ABCG16一样,促进ABA外排活性并恢复根对ABA的生长响应,而磷酸化模拟ABCG16在ABA处理下会损害细胞内ABA外排,无法恢复根的生长。此外,bam1;与野生型Ler相比,+/-bam2突变体表现出不断提高的ABA外排活性,进一步证实bam1 /2介导的ABCG16磷酸化抑制了其转运活性。遗传层次分析表明,双突变体g16 bam1和g16 bam2表型与单突变体g16相似,在根生长反应中具有ABA超敏性。综上所述,bam1 /2介导的ABCG16磷酸化可抑制其稳定性和ABA输出活性,从而维持细胞内ABA水平,抑制根生长。
{"title":"BAM1/2-mediated phosphorylation of ABCG16 reduces its stability and ABA export activity to suppress root growth in Arabidopsis.","authors":"Yeling Zhou, Xiaoju Liang, Jiansheng Liang","doi":"10.1016/j.xplc.2025.101623","DOIUrl":"10.1016/j.xplc.2025.101623","url":null,"abstract":"<p><p>The phytohormone abscisic acid (ABA) governs plant stress responses through dynamic control of its cellular distribution by ABA transporters, yet the mechanisms controlling ABA transporter activity remain poorly understood. Here, we identify a phosphorylation-dependent regulatory mechanism that modulates cellular ABA levels and root growth responses in Arabidopsis. We show that ABA alters the subcellular distribution of its transporter ATP-binding cassette G16 (ABCG16), which functions as a negative regulator of ABA-induced root growth inhibition. In contrast to ABCG16, the receptor-like kinases BARELY ANY MERISTEM 1 and 2 (BAM1/2) are essential for proper root responses to ABA. BAM1/2 physically interact with ABCG16 and phosphorylate it at threonine 45. Relative intensity analyses and cell-free degradation assays reveal enhanced ABCG16 accumulation in the bam1;+/-bam2 mutant, indicating that ABCG16 protein stability is at least partially dependent on BAM1/2. ABA transport and root growth assays further show that the non-phosphorylated ABCG16 variant promotes ABA efflux and restores ABA-induced root growth inhibition similar to the wild-type protein, whereas the phospho-mimic ABCG16 variant impairs cytosolic ABA efflux and fails to restore root growth under ABA treatment. Consistently, the bam1;+/-bam2 mutant shows constitutively elevated ABA efflux activity compared with wild-type landsberg erecta (Ler), supporting the notion that BAM1/2-mediated phosphorylation dampens ABCG16 transport activity. The abcg16 bam1 and abcg16 bam2 double mutants phenocopy the abcg16 single mutant, showing ABA hypersensitivity in root growth. Together, these findings demonstrate that BAM1/2-mediated phosphorylation of ABCG16 reduces its stability and ABA export activity, thereby maintaining cellular ABA levels required for root growth inhibition.</p>","PeriodicalId":52373,"journal":{"name":"Plant Communications","volume":" ","pages":"101623"},"PeriodicalIF":11.6,"publicationDate":"2025-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12744738/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145642619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The DCC1-DCCR1 phytocytokine-receptor kinase pair activates basal immunity in wheat. DCC1-DCCR1植物细胞因子受体激酶对激活小麦基础免疫。
IF 11.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-12-08 Epub Date: 2025-09-15 DOI: 10.1016/j.xplc.2025.101524
Chuanchun Yin, Siru Shi, Zhaoxi Lu, Hongxu Li, Lijun Wang, Yongjian Zhang, Jinghui Yan, Cuicui Du, Haimiao Zhang, Hongqian Lu, Yaxi Zhu, Xiao Luo, Chao Wang, Guochen Qin, Xinhua Ding, Shuguo Hou
{"title":"The DCC1-DCCR1 phytocytokine-receptor kinase pair activates basal immunity in wheat.","authors":"Chuanchun Yin, Siru Shi, Zhaoxi Lu, Hongxu Li, Lijun Wang, Yongjian Zhang, Jinghui Yan, Cuicui Du, Haimiao Zhang, Hongqian Lu, Yaxi Zhu, Xiao Luo, Chao Wang, Guochen Qin, Xinhua Ding, Shuguo Hou","doi":"10.1016/j.xplc.2025.101524","DOIUrl":"10.1016/j.xplc.2025.101524","url":null,"abstract":"","PeriodicalId":52373,"journal":{"name":"Plant Communications","volume":" ","pages":"101524"},"PeriodicalIF":11.6,"publicationDate":"2025-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12744742/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145076525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-dimensional epigenomic dynamics converge on H3K4-mediated regulation of low-CO2 adaptation in Nannochloropsis oceanica. 多维表观基因组动力学聚焦于海洋纳米叶绿体H3K4调控低CO2适应。
IF 11.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-12-08 Epub Date: 2025-09-25 DOI: 10.1016/j.xplc.2025.101534
Yanhai Gong, Qintao Wang, Li Wei, Lianhong Wang, Nana Lv, Xuefeng Du, Chen Shen, Yi Xin, Luyang Sun, Jian Xu

Despite their ecological and biotechnological importance, the extent to which microalgae are regulated by epigenetic mechanisms has remained poorly understood. In the model industrial microalga Nannochloropsis oceanica, by comprehensive, multi-dimensional epigenomic analyses, this study uncovers an epigenetic regulatory network responsive to CO2 levels. This network involves intricate interactions among DNA methylation, histone modifications, dynamic nucleosome positioning, and three-dimensional chromatin organization during adaptation to low-CO2 conditions. Although DNA methylation is minimal, histone modifications-such as lysine acetylation, crotonylation, and methylation-are associated with active chromatin states and linked to 43.1% of differentially expressed genes. Notably, histone H3K4 di-methylation (H3K4me2) displays a distinct dual-peak profile around the transcription start site and is correlated with chromatin compartment dynamics. Knockout of NO24G02310, a putative H3K4 methyltransferase gene, caused genome-wide shifts in H3K4me2 peaks and decreased H3K4me1 levels, accompanied by direct or indirect downregulation of NoHINT and NoPMA2 expression, slower algal growth, and reduced photosynthetic efficiency (indicated by Fv/Fm), specifically under low-CO2 conditions. Deletion and overexpression of genes encoding the histidine triad nucleotide-binding protein NoHINT and the plasma membrane H⁺-ATPase NoPMA2 confirmed their roles in growth and photosynthetic efficiency under low CO2; NoHINT influences growth and NoPMA2 affects photosynthesis. As a previously unrecognized low-CO2 adaptation mechanism, NO24G02310 likely coordinates the regulation of NoHINT and NoPMA2 through H3K4 modifications. These findings provide a foundation for enhancing microalgal productivity through targeted epigenetic engineering.

尽管微藻具有重要的生态和生物技术意义,但表观遗传学是否以及如何调控微藻仍然知之甚少。通过对海洋纳米绿藻(Nannochloropsis oceanica)模型工业微藻进行全面、多维的表观基因组分析,揭示了低二氧化碳适应过程中DNA甲基化、组蛋白修饰、动态核小体定位和三维染色质结构等复杂相互作用的表观遗传调控机制。尽管DNA甲基化程度极低,但组蛋白修饰(包括赖氨酸乙酰化、巴豆酰化和甲基化)与活性染色质状态相关,并与43.1%的差异表达基因相关。值得注意的是,组蛋白H3K4二甲基化(H3K4me2)在转录起始位点周围表现出明显的双峰特征,并与染色质区隔动力学有关。敲除候选H3K4甲基转移酶NO24G02310,导致全基因组H3K4me2峰值移位和H3K4me1水平降低,并伴有NoHINT和NoPMA2表达的直接或间接下调,微藻生长减慢和光合作用减少(用Fv/Fm表示),特别是在低CO2条件下。NoHINT的组氨酸三联体核苷酸结合蛋白和NoPMA2的质膜H+- atp酶的缺失和过表达揭示了这两种酶在低CO2条件下对生长和光合效率的作用,NoHINT调节生长,NoPMA2影响光合作用。因此,NO24G02310可能通过参与H3K4修饰来协调NoHINT和NoPMA2的调节,作为一种之前未被认识到的低CO2适应策略。这些发现为通过表观遗传工程提高微藻产量奠定了基础。
{"title":"Multi-dimensional epigenomic dynamics converge on H3K4-mediated regulation of low-CO<sub>2</sub> adaptation in Nannochloropsis oceanica.","authors":"Yanhai Gong, Qintao Wang, Li Wei, Lianhong Wang, Nana Lv, Xuefeng Du, Chen Shen, Yi Xin, Luyang Sun, Jian Xu","doi":"10.1016/j.xplc.2025.101534","DOIUrl":"10.1016/j.xplc.2025.101534","url":null,"abstract":"<p><p>Despite their ecological and biotechnological importance, the extent to which microalgae are regulated by epigenetic mechanisms has remained poorly understood. In the model industrial microalga Nannochloropsis oceanica, by comprehensive, multi-dimensional epigenomic analyses, this study uncovers an epigenetic regulatory network responsive to CO<sub>2</sub> levels. This network involves intricate interactions among DNA methylation, histone modifications, dynamic nucleosome positioning, and three-dimensional chromatin organization during adaptation to low-CO<sub>2</sub> conditions. Although DNA methylation is minimal, histone modifications-such as lysine acetylation, crotonylation, and methylation-are associated with active chromatin states and linked to 43.1% of differentially expressed genes. Notably, histone H3K4 di-methylation (H3K4me2) displays a distinct dual-peak profile around the transcription start site and is correlated with chromatin compartment dynamics. Knockout of NO24G02310, a putative H3K4 methyltransferase gene, caused genome-wide shifts in H3K4me2 peaks and decreased H3K4me1 levels, accompanied by direct or indirect downregulation of NoHINT and NoPMA2 expression, slower algal growth, and reduced photosynthetic efficiency (indicated by Fv/Fm), specifically under low-CO<sub>2</sub> conditions. Deletion and overexpression of genes encoding the histidine triad nucleotide-binding protein NoHINT and the plasma membrane H⁺-ATPase NoPMA2 confirmed their roles in growth and photosynthetic efficiency under low CO<sub>2</sub>; NoHINT influences growth and NoPMA2 affects photosynthesis. As a previously unrecognized low-CO<sub>2</sub> adaptation mechanism, NO24G02310 likely coordinates the regulation of NoHINT and NoPMA2 through H3K4 modifications. These findings provide a foundation for enhancing microalgal productivity through targeted epigenetic engineering.</p>","PeriodicalId":52373,"journal":{"name":"Plant Communications","volume":" ","pages":"101534"},"PeriodicalIF":11.6,"publicationDate":"2025-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12744764/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145180169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Engineering a dual-cycle carbon fixation system for enhanced biomass and lipid production in plants. 设计双循环碳固定系统以提高植物生物量和脂质产量。
IF 11.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-12-08 Epub Date: 2025-10-30 DOI: 10.1016/j.xplc.2025.101578
Chengshuai Xu, Suihao Yan, Yuyong Hou, Lei Zhao
{"title":"Engineering a dual-cycle carbon fixation system for enhanced biomass and lipid production in plants.","authors":"Chengshuai Xu, Suihao Yan, Yuyong Hou, Lei Zhao","doi":"10.1016/j.xplc.2025.101578","DOIUrl":"10.1016/j.xplc.2025.101578","url":null,"abstract":"","PeriodicalId":52373,"journal":{"name":"Plant Communications","volume":" ","pages":"101578"},"PeriodicalIF":11.6,"publicationDate":"2025-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12744737/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145410739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Streamlined multiplex CRISPR editing of receptor-like kinases in Populus via cell suspension transformation. 通过细胞悬浮转化对杨树受体样激酶进行流线型多重CRISPR编辑。
IF 11.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-12-08 Epub Date: 2025-09-05 DOI: 10.1016/j.xplc.2025.101518
Jianbo Luo, Ying Zhang, Shumin Cao, Zijian Gong, Zengshun Lin, Xiao Li, Laifu Luo, Yu Zhong, Junhui Shen, Jiayan Sun, Laigeng Li, Jinshan Gui
{"title":"Streamlined multiplex CRISPR editing of receptor-like kinases in Populus via cell suspension transformation.","authors":"Jianbo Luo, Ying Zhang, Shumin Cao, Zijian Gong, Zengshun Lin, Xiao Li, Laifu Luo, Yu Zhong, Junhui Shen, Jiayan Sun, Laigeng Li, Jinshan Gui","doi":"10.1016/j.xplc.2025.101518","DOIUrl":"10.1016/j.xplc.2025.101518","url":null,"abstract":"","PeriodicalId":52373,"journal":{"name":"Plant Communications","volume":" ","pages":"101518"},"PeriodicalIF":11.6,"publicationDate":"2025-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12744739/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145008526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Plant Communications
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1