Pub Date : 2022-11-01DOI: 10.33005/jurnal_tekkim.v17i1.3483
Zefanya Satrina Nugroho, Rizky Andriana, Sani Sani, D. Astuti
{"title":"PERBANDINGAN MOL CaCl2 DENGAN ETILEN GLIKOL TERHADAP SINTESIS PRECIPITATED CALCUM CARBONATE","authors":"Zefanya Satrina Nugroho, Rizky Andriana, Sani Sani, D. Astuti","doi":"10.33005/jurnal_tekkim.v17i1.3483","DOIUrl":"https://doi.org/10.33005/jurnal_tekkim.v17i1.3483","url":null,"abstract":"","PeriodicalId":52562,"journal":{"name":"Jurnal Teknik Kimia dan Lingkungan","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89576911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-11-01DOI: 10.33005/jurnal_tekkim.v17i1.3489
Puguh Setyopratomo, Rudy Agustryanto, Muhammad Tan’im Nur Alam Hudin, Ricardo Sihombing
{"title":"PERAN GUGUS FUNGSI PADA ADSORPSI ZAT WARNA MENGGUNAKAN PASIR SUNGAI","authors":"Puguh Setyopratomo, Rudy Agustryanto, Muhammad Tan’im Nur Alam Hudin, Ricardo Sihombing","doi":"10.33005/jurnal_tekkim.v17i1.3489","DOIUrl":"https://doi.org/10.33005/jurnal_tekkim.v17i1.3489","url":null,"abstract":"","PeriodicalId":52562,"journal":{"name":"Jurnal Teknik Kimia dan Lingkungan","volume":"16 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85194228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-11-01DOI: 10.33005/jurnal_tekkim.v17i1.3480
Novi Melisa Pribadi, Pramesti Putri Maharani, Kindriari Nurma Wahyusi
{"title":"EDIBLE FILM DARI PEKTIN KULIT PEPAYA DAN KITOSAN DARI KULIT UDANG SEBAGAI PELAPIS MAKANAN","authors":"Novi Melisa Pribadi, Pramesti Putri Maharani, Kindriari Nurma Wahyusi","doi":"10.33005/jurnal_tekkim.v17i1.3480","DOIUrl":"https://doi.org/10.33005/jurnal_tekkim.v17i1.3480","url":null,"abstract":"","PeriodicalId":52562,"journal":{"name":"Jurnal Teknik Kimia dan Lingkungan","volume":"87 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84108368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sampah sayuran merupakan jenis sampah organik biodegradable yang dapat ditemukan di setiap lokasi di Indonesia. Selain itu, timbunan sampah sayuran juga mendominasi sampah makanan. Pemanfaatan lebih lanjut sampah sayuran salah satunya dapat menggunakan pemulihan energi. Pemulihan energi sampah sayuran dapat dilakukan dengan biodrying yang tergantung dengan waktu dan bioaktivator. Tujuan dari studi ini adalah untuk mengetahui pengaruh waktu dan pemberian aktivator pada proses biodrying sampah sayuran. Penelitian ini menggunakan sampah seberat 0,5 kg dengan pemberian laju alir udara 15 liter/menit, suhu pada proses berada pada rentang 28,4-34,1°C. Biodaktivator yang digunakan dalam penelitian ini adalah ragi roti, tempe, dan tape. Penurunan massa maksimum terjadi pada proses biodrying dengan penambahan bioaktivator. Hasil uji pengaruh pada multivariate menunjukkan adanya pengaruh waktu dan bioaktivator pada perubahan nilai kadar air dan nilai kalor. Akan tetapi, interaksi antara waktu dan bioaktivator hanya berpengaruh pada kadar air. Hal ini karena proses degradasi terjadi memanfaatkan mikroorganisma yang tersimpan di dalam cairan bioaktivator dan air dalam sampah sayuran. Penelitian lebih lanjut diperlukan untuk mengetaui lebih jelas pengaruh variabel lain dalam proses biodrying terutama pada waktu detensi yang tepat dan bioaktivator yang mempercepat laju degradasi.Vegetable waste is a type of biodegradable organic waste found in every location in Indonesia. In addition, vegetable waste also dominates food waste. One of the ways to use vegetable waste is to use energy recovery. Energy recovery of vegetable waste can be done by time-dependent biodrying and bioactivator. This study aimed to determine the effect of time and activator application on the vegetable waste biodrying process. In this study, 0.5 kg of waste is used with an airflow rate of 15 liters/minute, the temperature in the process is in the range of 28.4-34.1°C. The bioactivators used in this study were baker's yeast, tempeh, and tape. The maximum decrease in mass occurs in the biodrying process with the addition of a bioactivator. The multivariate effect test results showed an effect of time and bioactivator on changes in water content and caloric value. However, the interaction between time and bioactivator only affects the water content. This is because the degradation process occurs utilizing microorganisms stored in the bioactivator liquid and water in vegetable waste. Further research is needed to know the effect of other variables in the biodrying process, especially the right detention time and bioactivators that accelerate the rate of degradation.
{"title":"Vegetable Waste Biodrying Treatment for Energy Recovery as Refuse Derived Fuel Potential","authors":"M. Mutiara, I. Septiariva, W. K. Suryawan","doi":"10.33795/jtkl.v6i2.316","DOIUrl":"https://doi.org/10.33795/jtkl.v6i2.316","url":null,"abstract":"Sampah sayuran merupakan jenis sampah organik biodegradable yang dapat ditemukan di setiap lokasi di Indonesia. Selain itu, timbunan sampah sayuran juga mendominasi sampah makanan. Pemanfaatan lebih lanjut sampah sayuran salah satunya dapat menggunakan pemulihan energi. Pemulihan energi sampah sayuran dapat dilakukan dengan biodrying yang tergantung dengan waktu dan bioaktivator. Tujuan dari studi ini adalah untuk mengetahui pengaruh waktu dan pemberian aktivator pada proses biodrying sampah sayuran. Penelitian ini menggunakan sampah seberat 0,5 kg dengan pemberian laju alir udara 15 liter/menit, suhu pada proses berada pada rentang 28,4-34,1°C. Biodaktivator yang digunakan dalam penelitian ini adalah ragi roti, tempe, dan tape. Penurunan massa maksimum terjadi pada proses biodrying dengan penambahan bioaktivator. Hasil uji pengaruh pada multivariate menunjukkan adanya pengaruh waktu dan bioaktivator pada perubahan nilai kadar air dan nilai kalor. Akan tetapi, interaksi antara waktu dan bioaktivator hanya berpengaruh pada kadar air. Hal ini karena proses degradasi terjadi memanfaatkan mikroorganisma yang tersimpan di dalam cairan bioaktivator dan air dalam sampah sayuran. Penelitian lebih lanjut diperlukan untuk mengetaui lebih jelas pengaruh variabel lain dalam proses biodrying terutama pada waktu detensi yang tepat dan bioaktivator yang mempercepat laju degradasi.Vegetable waste is a type of biodegradable organic waste found in every location in Indonesia. In addition, vegetable waste also dominates food waste. One of the ways to use vegetable waste is to use energy recovery. Energy recovery of vegetable waste can be done by time-dependent biodrying and bioactivator. This study aimed to determine the effect of time and activator application on the vegetable waste biodrying process. In this study, 0.5 kg of waste is used with an airflow rate of 15 liters/minute, the temperature in the process is in the range of 28.4-34.1°C. The bioactivators used in this study were baker's yeast, tempeh, and tape. The maximum decrease in mass occurs in the biodrying process with the addition of a bioactivator. The multivariate effect test results showed an effect of time and bioactivator on changes in water content and caloric value. However, the interaction between time and bioactivator only affects the water content. This is because the degradation process occurs utilizing microorganisms stored in the bioactivator liquid and water in vegetable waste. Further research is needed to know the effect of other variables in the biodrying process, especially the right detention time and bioactivators that accelerate the rate of degradation.","PeriodicalId":52562,"journal":{"name":"Jurnal Teknik Kimia dan Lingkungan","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47666185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nur Karima, Noval Kurniawati, B. Fachri, I. Rahmawati, B. Palupi, M. Mahfud, Ditta Kharisma Yolanda, A. Rahmawati, Badril Azhar, M. Muharja
Beluntas (Pluchea Indica L.) yang biasa digunakan sebagai astringent dan antipiretik memiliki potensi yang tinggi sebagai bahan baku produksi minyak atsiri. Tujuan dari penelitian ini adalah untuk mengoptimalkan solvent-free microwave extraction (SFME) dari daun beluntas menggunakan response surface metodology (RSM). Desain Box-Behnken dengan variasi waktu ekstraksi (60-120 menit), rasio bahan/labu distilat (0,06-0,1 g/ml), dan daya pemanas (150-450 Watt) digunakan untuk mengoptimalkan produksi minyak atsiri. Faktor rasio bahan/penyuling memiliki pengaruh signifikan paling tinggi terhadap rendemen minyak atsiri (P<0,05). Rendemen minyak atsiri meningkat seiring dengan meningkatnya daya pemanasan minyak dan waktu ekstraksi, dan sebaliknya. Di sisi lain, peningkatan rasio bahan/labu distilat memberikan dampak negatif terhadap rendemen minyak atsiri. Hasil minyak atsiri maksimum menggunakan metode SFME sebesar 0,2728 b/b% diperoleh untuk kondisi optimal waktu ekstraksi 90 menit, daya pemanasan 450 W, dan rasio bahan/labu distilat 0,06.Beluntas (Pluchea Indica L.) which commonly used as astringent and antipyretic has a high potential for the feedstock of essential oil production. The objective of this work is to optimize solvent-free microwave extraction (SFME) of Beluntas leaves by using response surface methodology (RSM). Box-Behnken Design with the variations of extraction time (60-120 min), feed/distiller ratio (0.06-0.1 g/ml), and heating power (150-450 W) was utilized to optimize essential oil yield. The feed/distiller ratio factor had the highest significant effect on the essential oil yield (P<0.05). Essential oil yield increased as the increase of oil heating power and time extraction, and vice versa. On the other hand, the increase in the feed/distiller ratio gave a negative impact on the essential oil yield. The maximum essential oil yield using SFME method of 0.2728 b/b% was obtained for the optimized condition of extraction time of 90 min, microwave heating power of 450 W, and feed/distiller ratio of 0.06.
{"title":"Optimization of Essential Oil Extraction of Beluntas (Pluchea Indica L.) Leaves by Using Solvent-Free Microwave Extraction","authors":"Nur Karima, Noval Kurniawati, B. Fachri, I. Rahmawati, B. Palupi, M. Mahfud, Ditta Kharisma Yolanda, A. Rahmawati, Badril Azhar, M. Muharja","doi":"10.33795/jtkl.v6i2.339","DOIUrl":"https://doi.org/10.33795/jtkl.v6i2.339","url":null,"abstract":"Beluntas (Pluchea Indica L.) yang biasa digunakan sebagai astringent dan antipiretik memiliki potensi yang tinggi sebagai bahan baku produksi minyak atsiri. Tujuan dari penelitian ini adalah untuk mengoptimalkan solvent-free microwave extraction (SFME) dari daun beluntas menggunakan response surface metodology (RSM). Desain Box-Behnken dengan variasi waktu ekstraksi (60-120 menit), rasio bahan/labu distilat (0,06-0,1 g/ml), dan daya pemanas (150-450 Watt) digunakan untuk mengoptimalkan produksi minyak atsiri. Faktor rasio bahan/penyuling memiliki pengaruh signifikan paling tinggi terhadap rendemen minyak atsiri (P<0,05). Rendemen minyak atsiri meningkat seiring dengan meningkatnya daya pemanasan minyak dan waktu ekstraksi, dan sebaliknya. Di sisi lain, peningkatan rasio bahan/labu distilat memberikan dampak negatif terhadap rendemen minyak atsiri. Hasil minyak atsiri maksimum menggunakan metode SFME sebesar 0,2728 b/b% diperoleh untuk kondisi optimal waktu ekstraksi 90 menit, daya pemanasan 450 W, dan rasio bahan/labu distilat 0,06.Beluntas (Pluchea Indica L.) which commonly used as astringent and antipyretic has a high potential for the feedstock of essential oil production. The objective of this work is to optimize solvent-free microwave extraction (SFME) of Beluntas leaves by using response surface methodology (RSM). Box-Behnken Design with the variations of extraction time (60-120 min), feed/distiller ratio (0.06-0.1 g/ml), and heating power (150-450 W) was utilized to optimize essential oil yield. The feed/distiller ratio factor had the highest significant effect on the essential oil yield (P<0.05). Essential oil yield increased as the increase of oil heating power and time extraction, and vice versa. On the other hand, the increase in the feed/distiller ratio gave a negative impact on the essential oil yield. The maximum essential oil yield using SFME method of 0.2728 b/b% was obtained for the optimized condition of extraction time of 90 min, microwave heating power of 450 W, and feed/distiller ratio of 0.06.","PeriodicalId":52562,"journal":{"name":"Jurnal Teknik Kimia dan Lingkungan","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46946409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abdul Hamid, Amin Jakfar, S. Saiful, I. Febriana, F. Rohmah
Pada penelitian ini dipelajari pemanfaatan biodiesel dari minyak nyamplung (Calophyllum Inophyllum) melalui reaksi transesterifikasi menggunakan katalis heterogen CaO dari batu kapur yang berasal dari Pamekasan, Madura. Perbandingan komposisi yang digunakan antara minyak nyamplung terhadap metanol pada reaksi transesterifikasi adalah 1:12 (mol/mol) dengan penambahan 4% katalis CaO. Biodiesel yang terbentuk kemudian diuji kinerja dan karakteristik emisinya pada mesin diesel dengan variasi campuran bahan bakar antara solar murni dan biodiesel (B-10, B-20, B-30, B-40, B-100 dan S-100). Hasil pengujian campuran biodiesel dengan daya tertinggi dihasilkan dari bahan bakar B-10, B-20, B-30 dan B-100 masing-masing sebesar 0,26 kW pada beban 250 watt. Sedangkan pada beban 500 watt, daya tertinggi diperoleh pada bahan bakar B-40 yaitu sebesar 0,58 kW. Hasil pengujian kinerja menggunakan bahan bakar S-100 diperoleh nilai daya yang paling tinggi masing-masing sebesar 0,27 dan 0,58 kW dengan beban 250 dan 500 watt. Pengujian kinerja untuk campuran biodiesel, nilai torsi paling tinggi diperoleh ketika menggunakan bahan bakar B-10, B-20, B-30 dan B-100 yaitu masing-masing sebesar 1,65 N.m dengan beban 250 watt. Sedangkan pada beban 500 watt, torsi tertinggi diperoleh pada bahan bakar B-40 yaitu sebesar 3,69 N.m. Bahan bakar S-100 menghasilkan torsi masing-masing sebesar 1,71 dan 3,69 N.m dengan beban 250 dan 500 watt. Karakteristik gas emisi karbon monoksida (CO), nitrogen monoksida (NO) dan nitrogen oksida (NOx) menunjukkan konsentrasi terendah diperoleh pada bahan bakar B-100 masing-masing sebesar 387 ppm, 92 ppm dan 96 ppm. Sedangkan konsentrasi gas emisi CO, NO dan NOx tertinggi dihasilkan dari bahan bakar solar murni (S-100) yaitu masing-masing sebesar 574 ppm, 126 ppm dan 132 ppm. In this study, the use of biodiesel from nyamplung oil (Calophyllum Inophyllum) was studied through a transesterification reaction using a heterogeneous catalyst of CaO from limestone originating from Pamekasan, Madura. The composition ratio used between nyamplung oil and methanol in the transesterification reaction was 1:12 (mol/mol) with the addition of 4% CaO catalyst. The biodiesel that is formed is then tested for its performance and emission characteristics in diesel engines with various fuel mixtures between pure diesel and biodiesel (B-10, B-20, B-30, B-40, B-100 and S-100). The test results for biodiesel blends with the highest power produced from B-10, B-20, B-30 and B-100 fuels were 0.26 kW each at a load of 250 watts. While at a load of 500 watts, the highest power is obtained from the B-40 fuel, which is 0.58 kW. The results of performance testing using S-100 fuel obtained the highest power values of 0.27 and 0.58 kW, respectively, with a load of 250 and 500 watts. Performance testing for biodiesel blends, the highest torque value was obtained when using B-10, B-20, B-30 and B-100 fuels, which were 1.65 N.m each with a load of 250 watts. While at a load of 500 watt
{"title":"Effect the Addition of Biodiesel from Nyamplung Oil (Calophyllum Inophyllum) on Performance and Emission Characteristics of Diesel Engines","authors":"Abdul Hamid, Amin Jakfar, S. Saiful, I. Febriana, F. Rohmah","doi":"10.33795/jtkl.v6i2.336","DOIUrl":"https://doi.org/10.33795/jtkl.v6i2.336","url":null,"abstract":"Pada penelitian ini dipelajari pemanfaatan biodiesel dari minyak nyamplung (Calophyllum Inophyllum) melalui reaksi transesterifikasi menggunakan katalis heterogen CaO dari batu kapur yang berasal dari Pamekasan, Madura. Perbandingan komposisi yang digunakan antara minyak nyamplung terhadap metanol pada reaksi transesterifikasi adalah 1:12 (mol/mol) dengan penambahan 4% katalis CaO. Biodiesel yang terbentuk kemudian diuji kinerja dan karakteristik emisinya pada mesin diesel dengan variasi campuran bahan bakar antara solar murni dan biodiesel (B-10, B-20, B-30, B-40, B-100 dan S-100). Hasil pengujian campuran biodiesel dengan daya tertinggi dihasilkan dari bahan bakar B-10, B-20, B-30 dan B-100 masing-masing sebesar 0,26 kW pada beban 250 watt. Sedangkan pada beban 500 watt, daya tertinggi diperoleh pada bahan bakar B-40 yaitu sebesar 0,58 kW. Hasil pengujian kinerja menggunakan bahan bakar S-100 diperoleh nilai daya yang paling tinggi masing-masing sebesar 0,27 dan 0,58 kW dengan beban 250 dan 500 watt. Pengujian kinerja untuk campuran biodiesel, nilai torsi paling tinggi diperoleh ketika menggunakan bahan bakar B-10, B-20, B-30 dan B-100 yaitu masing-masing sebesar 1,65 N.m dengan beban 250 watt. Sedangkan pada beban 500 watt, torsi tertinggi diperoleh pada bahan bakar B-40 yaitu sebesar 3,69 N.m. Bahan bakar S-100 menghasilkan torsi masing-masing sebesar 1,71 dan 3,69 N.m dengan beban 250 dan 500 watt. Karakteristik gas emisi karbon monoksida (CO), nitrogen monoksida (NO) dan nitrogen oksida (NOx) menunjukkan konsentrasi terendah diperoleh pada bahan bakar B-100 masing-masing sebesar 387 ppm, 92 ppm dan 96 ppm. Sedangkan konsentrasi gas emisi CO, NO dan NOx tertinggi dihasilkan dari bahan bakar solar murni (S-100) yaitu masing-masing sebesar 574 ppm, 126 ppm dan 132 ppm. In this study, the use of biodiesel from nyamplung oil (Calophyllum Inophyllum) was studied through a transesterification reaction using a heterogeneous catalyst of CaO from limestone originating from Pamekasan, Madura. The composition ratio used between nyamplung oil and methanol in the transesterification reaction was 1:12 (mol/mol) with the addition of 4% CaO catalyst. The biodiesel that is formed is then tested for its performance and emission characteristics in diesel engines with various fuel mixtures between pure diesel and biodiesel (B-10, B-20, B-30, B-40, B-100 and S-100). The test results for biodiesel blends with the highest power produced from B-10, B-20, B-30 and B-100 fuels were 0.26 kW each at a load of 250 watts. While at a load of 500 watts, the highest power is obtained from the B-40 fuel, which is 0.58 kW. The results of performance testing using S-100 fuel obtained the highest power values of 0.27 and 0.58 kW, respectively, with a load of 250 and 500 watts. Performance testing for biodiesel blends, the highest torque value was obtained when using B-10, B-20, B-30 and B-100 fuels, which were 1.65 N.m each with a load of 250 watts. While at a load of 500 watt","PeriodicalId":52562,"journal":{"name":"Jurnal Teknik Kimia dan Lingkungan","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49442070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dini Nur Afifah, Neni Damajanti, Maulani Mustholidah, H. Hariyanti
Kulit singkong merupakan bahan alami dengan kandungan selulosa mencapai 33.33%. Dalam rangka pemanfaatan kulit singkong sebagai alternatif polimer alam maupun energi terbarukan, maka diperlukan proses delignifikasi untuk memisahkan selulosa dari hemiselulosa dan lignin yang menghalangi penetrasi cairan penghidrolisis selulosa. Metode yang dipilih adalah delignifikasi dengan metode alkali hidrogen peroksida (AHP). Metode AHP dilakukan berdasarkan prinsip autooksidasi oleh hidrogen peroksida (H2O2) basa. Metode ini dipilih karena dapat merusak struktur lignoselulosa dengan energi yang relatif rendah dan lebih selektif terhadap lignin. Walaupun demikian, pada kondisi tertentu penggunaan AHP dapat memicu depolimerisasi karbohidrat yang mengakibatkan penurunan yield. Oleh karenanya perlu dipelajari pengaruh konsentrasi H2O2, rasio Solid/Liquid (S/L) (b/v), serta pH terhadap efektivitas penghilangan lignin pada kulit singkong. Konsentrasi H2O2 divariasikan menjadi 1.5%, 3%, 4.5%, 6%, dan 7.5%. Rasio S/L divariasikan menjadi 1:3, 1:5, 1:7, 1:9, 1:12. pH larutan divariasikan menjadi 8, 9, 10, 11, dan 12. Suhu reaksi dijaga pada rentang 70-90°C selama 3 jam reaksi. Hasil penelitian menunjukkan bahwa lignin dapat diturunkan hingga 84,05% selama 3 jam reaksi. Kondisi yang diperlukan untuk mencapai kondisi tersebut adalah: Konsentrasi H2O2 sebesar 6%, rasio S/L 1:5 dan pH larutan 11. Reaksi yang dilakukan dengan kondisi tersebut juga dapat meningkatkan jumlah selulosa dari 33.33% hingga 49.00%.Cassava peel is a natural material with cellulose content reaching 33.33%. In order to utilize cassava peel as a biodegradable polymer and renewable energy alternative, a delignification process is essential to separate cellulose from hemicellulose and lignin, which prevents the penetration of cellulose hydrolyzer. The delignification method chosen in this study was alkaline hydrogen peroxide (AHP). The AHP is based on the autoxidation of lignin using hydrogen peroxide (H2O2) in an alkaline environment. This method was chosen because it can damage the lignocellulosic structure with relatively low energy and is more selective for lignin. However, under certain conditions, AHP can trigger carbohydrate depolymerization, which decreases yield. Therefore, it is necessary to study the effect of H2O2 concentration, Solid/Liquid ratio (S/L) (w/v), and pH to evaluate the effectiveness of lignin removal in cassava peel. The concentration of H2O2 was varied into 1.5%, 3%, 4.5%, 6%, and 7.5%. The S/L ratio is varied to 1:3, 1:5, 1:7, 1:9,1:12. The pH of the solution was varied to 8, 9, 10, 11, and 12. The reaction temperature was maintained at 70-90 °C for 3 hours. The results showed that lignin could be reduced to 84.05% for 3 hours by using 6% H2O2, an S/L ratio of 1:5, and a pH of 11. The reaction carried out under these conditions can also increase the amount of cellulose from 33.33% to 49.00%.
{"title":"Delignification of Cassava Peel by Using Alkaline Hydrogen Peroxide Method: Study of Peroxide Concentration, Solid/Liquid Ratio, and pH","authors":"Dini Nur Afifah, Neni Damajanti, Maulani Mustholidah, H. Hariyanti","doi":"10.33795/jtkl.v6i2.334","DOIUrl":"https://doi.org/10.33795/jtkl.v6i2.334","url":null,"abstract":"Kulit singkong merupakan bahan alami dengan kandungan selulosa mencapai 33.33%. Dalam rangka pemanfaatan kulit singkong sebagai alternatif polimer alam maupun energi terbarukan, maka diperlukan proses delignifikasi untuk memisahkan selulosa dari hemiselulosa dan lignin yang menghalangi penetrasi cairan penghidrolisis selulosa. Metode yang dipilih adalah delignifikasi dengan metode alkali hidrogen peroksida (AHP). Metode AHP dilakukan berdasarkan prinsip autooksidasi oleh hidrogen peroksida (H2O2) basa. Metode ini dipilih karena dapat merusak struktur lignoselulosa dengan energi yang relatif rendah dan lebih selektif terhadap lignin. Walaupun demikian, pada kondisi tertentu penggunaan AHP dapat memicu depolimerisasi karbohidrat yang mengakibatkan penurunan yield. Oleh karenanya perlu dipelajari pengaruh konsentrasi H2O2, rasio Solid/Liquid (S/L) (b/v), serta pH terhadap efektivitas penghilangan lignin pada kulit singkong. Konsentrasi H2O2 divariasikan menjadi 1.5%, 3%, 4.5%, 6%, dan 7.5%. Rasio S/L divariasikan menjadi 1:3, 1:5, 1:7, 1:9, 1:12. pH larutan divariasikan menjadi 8, 9, 10, 11, dan 12. Suhu reaksi dijaga pada rentang 70-90°C selama 3 jam reaksi. Hasil penelitian menunjukkan bahwa lignin dapat diturunkan hingga 84,05% selama 3 jam reaksi. Kondisi yang diperlukan untuk mencapai kondisi tersebut adalah: Konsentrasi H2O2 sebesar 6%, rasio S/L 1:5 dan pH larutan 11. Reaksi yang dilakukan dengan kondisi tersebut juga dapat meningkatkan jumlah selulosa dari 33.33% hingga 49.00%.Cassava peel is a natural material with cellulose content reaching 33.33%. In order to utilize cassava peel as a biodegradable polymer and renewable energy alternative, a delignification process is essential to separate cellulose from hemicellulose and lignin, which prevents the penetration of cellulose hydrolyzer. The delignification method chosen in this study was alkaline hydrogen peroxide (AHP). The AHP is based on the autoxidation of lignin using hydrogen peroxide (H2O2) in an alkaline environment. This method was chosen because it can damage the lignocellulosic structure with relatively low energy and is more selective for lignin. However, under certain conditions, AHP can trigger carbohydrate depolymerization, which decreases yield. Therefore, it is necessary to study the effect of H2O2 concentration, Solid/Liquid ratio (S/L) (w/v), and pH to evaluate the effectiveness of lignin removal in cassava peel. The concentration of H2O2 was varied into 1.5%, 3%, 4.5%, 6%, and 7.5%. The S/L ratio is varied to 1:3, 1:5, 1:7, 1:9,1:12. The pH of the solution was varied to 8, 9, 10, 11, and 12. The reaction temperature was maintained at 70-90 °C for 3 hours. The results showed that lignin could be reduced to 84.05% for 3 hours by using 6% H2O2, an S/L ratio of 1:5, and a pH of 11. The reaction carried out under these conditions can also increase the amount of cellulose from 33.33% to 49.00%.","PeriodicalId":52562,"journal":{"name":"Jurnal Teknik Kimia dan Lingkungan","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49204776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Proses pirolisis mempunyai banyak model dengan karakteristik dan spesifikasi yang berbeda. Masing-masing model memberikan nilai konversi yang berbeda pada penggunaan temperatur, waktu dan bahan baku yang digunakan. Limbah Jengkok Tembakau yang berbahaya karena kandungan Arsen (As) akan dimanfaatkan menjadi produk biochar yang mempunyai nilai ekonomis dan strategis melalui proses pirolisis model extrusion. Tujuan dari penelitian ini adalah menentukan konversi thermal (% Yield) proses pirolisis bahan limbah jengkok tembakau menjadi biochar terhadap temperatur dan waktu proses yang optimal. Variabel yang ditentukan terdiri dari temperatur proses (400, 450, 500, 550, dan 600°C) dan waktu proses (30, 35, dan 40 menit). Produk hasil proses akan dilakukan analisa statistik menggunakan uji korelasi rank spearman dan dilanjut dengan minitab untuk menghasilkan nilai optimal. Hasil penelitian menunjukkan bahwa nilai konversi thermal pada proses pembuatan biochar dengan bahan baku limbah jengkok tembakau adalah sebesar 29,476% (»30%) pada temperatur proses 500°C dan waktu proses 30 menit.The pyrolysis process has many models with different characteristics and specifications. Each model provides a different conversion value depending on the temperature value, length of time, and the number of raw materials used. Jengkok Tobacco waste was dangerous because it contains Arsenic (As), and was used as a biochar product with economic and strategic value through the extrusion model pyrolysis process. The purpose of this study was to determine the thermal conversion value (yield percentage) of the pyrolysis process of tobacco waste material into biochar at the optimal temperature and processing time. The specified variables consist of process temperatures (400, 450, 500, 550, and 600°C) and processing times (30, 35, and 40 minutes). The product of the process will be analyzed statistically using the Spearman rank correlation test and followed by Minitab to produce the optimal value. The results showed that the thermal conversion value in making biochar was 29.476% (»30%) at a process temperature of 500°C and a processing time of 30 minutes.
{"title":"Thermal Energy Conversion in Making Biochar from Jengkok Tobacco Waste Using Pyrolysis Extrusion Model","authors":"Taufik Iskandar, Ayu Chandra Kartika Fitri","doi":"10.33795/jtkl.v6i2.341","DOIUrl":"https://doi.org/10.33795/jtkl.v6i2.341","url":null,"abstract":"Proses pirolisis mempunyai banyak model dengan karakteristik dan spesifikasi yang berbeda. Masing-masing model memberikan nilai konversi yang berbeda pada penggunaan temperatur, waktu dan bahan baku yang digunakan. Limbah Jengkok Tembakau yang berbahaya karena kandungan Arsen (As) akan dimanfaatkan menjadi produk biochar yang mempunyai nilai ekonomis dan strategis melalui proses pirolisis model extrusion. Tujuan dari penelitian ini adalah menentukan konversi thermal (% Yield) proses pirolisis bahan limbah jengkok tembakau menjadi biochar terhadap temperatur dan waktu proses yang optimal. Variabel yang ditentukan terdiri dari temperatur proses (400, 450, 500, 550, dan 600°C) dan waktu proses (30, 35, dan 40 menit). Produk hasil proses akan dilakukan analisa statistik menggunakan uji korelasi rank spearman dan dilanjut dengan minitab untuk menghasilkan nilai optimal. Hasil penelitian menunjukkan bahwa nilai konversi thermal pada proses pembuatan biochar dengan bahan baku limbah jengkok tembakau adalah sebesar 29,476% (»30%) pada temperatur proses 500°C dan waktu proses 30 menit.The pyrolysis process has many models with different characteristics and specifications. Each model provides a different conversion value depending on the temperature value, length of time, and the number of raw materials used. Jengkok Tobacco waste was dangerous because it contains Arsenic (As), and was used as a biochar product with economic and strategic value through the extrusion model pyrolysis process. The purpose of this study was to determine the thermal conversion value (yield percentage) of the pyrolysis process of tobacco waste material into biochar at the optimal temperature and processing time. The specified variables consist of process temperatures (400, 450, 500, 550, and 600°C) and processing times (30, 35, and 40 minutes). The product of the process will be analyzed statistically using the Spearman rank correlation test and followed by Minitab to produce the optimal value. The results showed that the thermal conversion value in making biochar was 29.476% (»30%) at a process temperature of 500°C and a processing time of 30 minutes.","PeriodicalId":52562,"journal":{"name":"Jurnal Teknik Kimia dan Lingkungan","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45003354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rizki Fitria Darmayanti, M. Muharja, Tao Zhao, Ming Gao, Y. Tashiro, K. Sakai, K. Sonomoto
Terdapat beberapa tantangan fermentasi Acetone-Butanol-Ethanol (ABE) untuk digunakan dalam skala industri antara lain rendahnya rendemen butanol, tingginya kebutuhan energi untuk pemisahan dan pemurnian, dan persaingan gula dengan kebutuhan pangan sebagai substrat. Penelitian ini mempelajari aspek teknik dan ekonomi dari fermentasi ABE menggunakan sel amobil dengan volum ekstraktan besar. Keseluruhan proses produksi dirancang menggunakan bahan baku jerami padi yang dihidrolisis tak sempurna untuk menghasilkan campuran selobiosa, glukosa, xilosa, dan arabinosa. Gula konsentrat kemudian diumpankan ke fermentasi fed-batch ekstraktif menggunakan sel amobil. Akhirnya, ekstraktan diperoleh kembali dan produk dimurnikan dengan kolom distilasi. Dengan mengevaluasi desain proses ini untuk kapasitas skala kecil 238 kg-butanol dan aseton/hari, kebutuhan energi adalah 41,3 MJ/kg-butanol dan aseton dan biayanya adalah 1,91 $/kg-butanol dan aseton. Meskipun biayanya lebih tinggi daripada butanol yang dihasilkan oleh proses petrokimia sebesar 1,08 $/kg-butanol, biayanya dapat berkurang jika skalanya ditingkatkan.There are several challenges for ABE fermentation to be used in an industrial scale including the low of butanol yield, the high energy requirement for separation and purification, and the competeness of sugar with food demand as substrat. In this study, techno-economical aspects of ABE fermentation by using immobilized cells with large extractant volume were studied. Overall production process was designed using rice straw as raw material which is semi-hydrolyzed to produce cellobiose, glucose, xylose, and arabinose mixture. Concentrated sugar was then fed to extractive fed-batch fermentation using immobilized cells. Finally, extractant was recovered and products were purified by distillation column. By evaluating this process design for the small scale capacity of 238 kg-butanol and acetone/day, the energy requirement was 41.3 MJ/kg-butanol and acetone and the cost was 1.91 $/kg-butanol and acetone. Although the cost was higher than butanol produced by petrochemical process of 1.08 $/kg-butanol, it may reduce if the scale is increased.
{"title":"Techno-Economic Analysis of Extractive Butanol Fermentation by Immobilized Cells with Large Extractant Volume","authors":"Rizki Fitria Darmayanti, M. Muharja, Tao Zhao, Ming Gao, Y. Tashiro, K. Sakai, K. Sonomoto","doi":"10.33795/jtkl.v6i2.337","DOIUrl":"https://doi.org/10.33795/jtkl.v6i2.337","url":null,"abstract":"Terdapat beberapa tantangan fermentasi Acetone-Butanol-Ethanol (ABE) untuk digunakan dalam skala industri antara lain rendahnya rendemen butanol, tingginya kebutuhan energi untuk pemisahan dan pemurnian, dan persaingan gula dengan kebutuhan pangan sebagai substrat. Penelitian ini mempelajari aspek teknik dan ekonomi dari fermentasi ABE menggunakan sel amobil dengan volum ekstraktan besar. Keseluruhan proses produksi dirancang menggunakan bahan baku jerami padi yang dihidrolisis tak sempurna untuk menghasilkan campuran selobiosa, glukosa, xilosa, dan arabinosa. Gula konsentrat kemudian diumpankan ke fermentasi fed-batch ekstraktif menggunakan sel amobil. Akhirnya, ekstraktan diperoleh kembali dan produk dimurnikan dengan kolom distilasi. Dengan mengevaluasi desain proses ini untuk kapasitas skala kecil 238 kg-butanol dan aseton/hari, kebutuhan energi adalah 41,3 MJ/kg-butanol dan aseton dan biayanya adalah 1,91 $/kg-butanol dan aseton. Meskipun biayanya lebih tinggi daripada butanol yang dihasilkan oleh proses petrokimia sebesar 1,08 $/kg-butanol, biayanya dapat berkurang jika skalanya ditingkatkan.There are several challenges for ABE fermentation to be used in an industrial scale including the low of butanol yield, the high energy requirement for separation and purification, and the competeness of sugar with food demand as substrat. In this study, techno-economical aspects of ABE fermentation by using immobilized cells with large extractant volume were studied. Overall production process was designed using rice straw as raw material which is semi-hydrolyzed to produce cellobiose, glucose, xylose, and arabinose mixture. Concentrated sugar was then fed to extractive fed-batch fermentation using immobilized cells. Finally, extractant was recovered and products were purified by distillation column. By evaluating this process design for the small scale capacity of 238 kg-butanol and acetone/day, the energy requirement was 41.3 MJ/kg-butanol and acetone and the cost was 1.91 $/kg-butanol and acetone. Although the cost was higher than butanol produced by petrochemical process of 1.08 $/kg-butanol, it may reduce if the scale is increased.","PeriodicalId":52562,"journal":{"name":"Jurnal Teknik Kimia dan Lingkungan","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48660466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
L. Elizabeth, E. Widyanti, B. Soeswanto, Dini Sri Wahyuni, Kartika Dian Pratiwi
Tandan Kosong Kelapa Sawit (TKKS) merupakan salah satu limbah berjenis padatan dari industri pengolahan minyak kelapa sawit yang dapat dimanfaatkan untuk bahan produksi pupuk, kertas, filler, dan komposit karena mengandung lignoselulosa yang tinggi yaitu sekitar 81-89%. Metode pemisahan lignoselulosa menjadi selulosa, lignin, dan hemiselulosa dilakukan dengan delignifikasi menggunakan H2O2 dan penambahan katalis MnSO4.H2O yang dilakukan dengan dua percobaan yaitu dengan refluks pada suhu 36oC dan tanpa refluks pada suhu ruang (±25oC). Rancangan percobaan dibuat menggunakan metode Response Surface Methodology (RSM) pada program Minitab 21. Tujuan dari penelitian ini adalah mengetahui kondisi optimum delignifikasi menggunakan katalis MnSO4.H2O untuk menurunkan kadar lignin dengan memvariasikan waktu serta komposisi katalis. Hasil penelitian menunjukkan kadar lignin terendah pada delignifikasi dengan dan tanpa refluks berturut-turut sebesar 19,71% (b/b) dan 18,24% (b/b). Kondisi optimum yang didapatkan dengan pengolahan RSM untuk delignifikasi refluks adalah pada waktu 6,83 jam dengan rasio katalis terhadap TKKS 11,03% (b/b). Sedangkan untuk delignifikasi tanpa refluks memiliki kondisi optimum pada waktu 3,38 hari dengan rasio katalis terhadap TKKS sebesar 3,76%(b/b).Oil palm empty fruit bunches (OPEFB) is one kind of palm oil industry solid waste. OPEFB contains high lignocellulose for about 81-89% that can be used for production of fertilizer, paper, filler, and composite. The separating method of lignocellulose into cellulose, lignin, and hemicellulose can be carried out by delignification using H2O2 and MnSO4.H2O as catalyst. Two experimental designs were performed using the Minitab 21 program with Response Surface Methodology (RSM). Both designs have temperature as their dependent variable. The processes are carried out at 36oC and room temperature with the same variable independent, such as delignification time and concentration of the catalyst. The difference between these two designs is in their stirring process. Delignification that occured at 36oC is processed under constant stirring, while delignification that occured at room temperature is processed without stirring. This experiment aims to determine the optimum conditions for using Mn-catalyst in delignification by varying the time and catalyst concentration. The results show that the lowest lignin content in delignification with reflux is 19.71% (w/w), and for delignification without reflux is 18.24% (w/w). The optimum condition obtained by RSM for reflux delignification was at 6,83 hours with use of 11,03% (w/w) catalyst. Meanwhile, without reflux delignification, the optimum condition was at 3,38 days with a 3.76% (w/w) catalyst.
{"title":"Comparison of Oil Palm Empty Fruit Bunch Delignification at Room and Mild Temperature","authors":"L. Elizabeth, E. Widyanti, B. Soeswanto, Dini Sri Wahyuni, Kartika Dian Pratiwi","doi":"10.33795/jtkl.v6i2.322","DOIUrl":"https://doi.org/10.33795/jtkl.v6i2.322","url":null,"abstract":"Tandan Kosong Kelapa Sawit (TKKS) merupakan salah satu limbah berjenis padatan dari industri pengolahan minyak kelapa sawit yang dapat dimanfaatkan untuk bahan produksi pupuk, kertas, filler, dan komposit karena mengandung lignoselulosa yang tinggi yaitu sekitar 81-89%. Metode pemisahan lignoselulosa menjadi selulosa, lignin, dan hemiselulosa dilakukan dengan delignifikasi menggunakan H2O2 dan penambahan katalis MnSO4.H2O yang dilakukan dengan dua percobaan yaitu dengan refluks pada suhu 36oC dan tanpa refluks pada suhu ruang (±25oC). Rancangan percobaan dibuat menggunakan metode Response Surface Methodology (RSM) pada program Minitab 21. Tujuan dari penelitian ini adalah mengetahui kondisi optimum delignifikasi menggunakan katalis MnSO4.H2O untuk menurunkan kadar lignin dengan memvariasikan waktu serta komposisi katalis. Hasil penelitian menunjukkan kadar lignin terendah pada delignifikasi dengan dan tanpa refluks berturut-turut sebesar 19,71% (b/b) dan 18,24% (b/b). Kondisi optimum yang didapatkan dengan pengolahan RSM untuk delignifikasi refluks adalah pada waktu 6,83 jam dengan rasio katalis terhadap TKKS 11,03% (b/b). Sedangkan untuk delignifikasi tanpa refluks memiliki kondisi optimum pada waktu 3,38 hari dengan rasio katalis terhadap TKKS sebesar 3,76%(b/b).Oil palm empty fruit bunches (OPEFB) is one kind of palm oil industry solid waste. OPEFB contains high lignocellulose for about 81-89% that can be used for production of fertilizer, paper, filler, and composite. The separating method of lignocellulose into cellulose, lignin, and hemicellulose can be carried out by delignification using H2O2 and MnSO4.H2O as catalyst. Two experimental designs were performed using the Minitab 21 program with Response Surface Methodology (RSM). Both designs have temperature as their dependent variable. The processes are carried out at 36oC and room temperature with the same variable independent, such as delignification time and concentration of the catalyst. The difference between these two designs is in their stirring process. Delignification that occured at 36oC is processed under constant stirring, while delignification that occured at room temperature is processed without stirring. This experiment aims to determine the optimum conditions for using Mn-catalyst in delignification by varying the time and catalyst concentration. The results show that the lowest lignin content in delignification with reflux is 19.71% (w/w), and for delignification without reflux is 18.24% (w/w). The optimum condition obtained by RSM for reflux delignification was at 6,83 hours with use of 11,03% (w/w) catalyst. Meanwhile, without reflux delignification, the optimum condition was at 3,38 days with a 3.76% (w/w) catalyst.","PeriodicalId":52562,"journal":{"name":"Jurnal Teknik Kimia dan Lingkungan","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45063184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}