首页 > 最新文献

Jurnal Teknik Kimia dan Lingkungan最新文献

英文 中文
PERBANDINGAN MOL CaCl2 DENGAN ETILEN GLIKOL TERHADAP SINTESIS PRECIPITATED CALCUM CARBONATE
Pub Date : 2022-11-01 DOI: 10.33005/jurnal_tekkim.v17i1.3483
Zefanya Satrina Nugroho, Rizky Andriana, Sani Sani, D. Astuti
{"title":"PERBANDINGAN MOL CaCl2 DENGAN ETILEN GLIKOL TERHADAP SINTESIS PRECIPITATED CALCUM CARBONATE","authors":"Zefanya Satrina Nugroho, Rizky Andriana, Sani Sani, D. Astuti","doi":"10.33005/jurnal_tekkim.v17i1.3483","DOIUrl":"https://doi.org/10.33005/jurnal_tekkim.v17i1.3483","url":null,"abstract":"","PeriodicalId":52562,"journal":{"name":"Jurnal Teknik Kimia dan Lingkungan","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89576911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PERAN GUGUS FUNGSI PADA ADSORPSI ZAT WARNA MENGGUNAKAN PASIR SUNGAI 利用河沙对着色物质的吸收作用
Pub Date : 2022-11-01 DOI: 10.33005/jurnal_tekkim.v17i1.3489
Puguh Setyopratomo, Rudy Agustryanto, Muhammad Tan’im Nur Alam Hudin, Ricardo Sihombing
{"title":"PERAN GUGUS FUNGSI PADA ADSORPSI ZAT WARNA MENGGUNAKAN PASIR SUNGAI","authors":"Puguh Setyopratomo, Rudy Agustryanto, Muhammad Tan’im Nur Alam Hudin, Ricardo Sihombing","doi":"10.33005/jurnal_tekkim.v17i1.3489","DOIUrl":"https://doi.org/10.33005/jurnal_tekkim.v17i1.3489","url":null,"abstract":"","PeriodicalId":52562,"journal":{"name":"Jurnal Teknik Kimia dan Lingkungan","volume":"16 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85194228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
EDIBLE FILM DARI PEKTIN KULIT PEPAYA DAN KITOSAN DARI KULIT UDANG SEBAGAI PELAPIS MAKANAN 木瓜皮果皮和虾皮KITOSAN的食用薄膜
Pub Date : 2022-11-01 DOI: 10.33005/jurnal_tekkim.v17i1.3480
Novi Melisa Pribadi, Pramesti Putri Maharani, Kindriari Nurma Wahyusi
{"title":"EDIBLE FILM DARI PEKTIN KULIT PEPAYA DAN KITOSAN DARI KULIT UDANG SEBAGAI PELAPIS MAKANAN","authors":"Novi Melisa Pribadi, Pramesti Putri Maharani, Kindriari Nurma Wahyusi","doi":"10.33005/jurnal_tekkim.v17i1.3480","DOIUrl":"https://doi.org/10.33005/jurnal_tekkim.v17i1.3480","url":null,"abstract":"","PeriodicalId":52562,"journal":{"name":"Jurnal Teknik Kimia dan Lingkungan","volume":"87 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84108368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vegetable Waste Biodrying Treatment for Energy Recovery as Refuse Derived Fuel Potential 蔬菜废弃物生物干燥处理作为垃圾燃料的能源回收潜力
Pub Date : 2022-10-31 DOI: 10.33795/jtkl.v6i2.316
M. Mutiara, I. Septiariva, W. K. Suryawan
Sampah sayuran merupakan jenis sampah organik biodegradable yang dapat ditemukan di setiap lokasi di Indonesia. Selain itu, timbunan sampah sayuran juga mendominasi sampah makanan. Pemanfaatan lebih lanjut sampah sayuran salah satunya dapat menggunakan pemulihan energi. Pemulihan energi sampah sayuran dapat dilakukan dengan biodrying yang tergantung dengan waktu dan bioaktivator. Tujuan dari studi ini adalah untuk mengetahui pengaruh waktu dan pemberian aktivator pada proses biodrying sampah sayuran. Penelitian ini menggunakan sampah seberat 0,5 kg dengan pemberian laju alir udara 15 liter/menit, suhu pada proses berada pada rentang 28,4-34,1°C. Biodaktivator yang digunakan dalam penelitian ini adalah ragi roti, tempe, dan tape. Penurunan massa maksimum terjadi pada proses biodrying dengan penambahan bioaktivator. Hasil uji pengaruh pada multivariate menunjukkan adanya pengaruh waktu dan bioaktivator pada perubahan nilai kadar air dan nilai kalor. Akan tetapi, interaksi antara waktu dan bioaktivator hanya berpengaruh pada kadar air. Hal ini karena proses degradasi terjadi memanfaatkan mikroorganisma yang tersimpan di dalam cairan bioaktivator dan air dalam sampah sayuran. Penelitian lebih lanjut diperlukan untuk mengetaui lebih jelas pengaruh variabel lain dalam proses biodrying terutama pada waktu detensi yang tepat dan bioaktivator yang mempercepat laju degradasi.Vegetable waste is a type of biodegradable organic waste found in every location in Indonesia. In addition, vegetable waste also dominates food waste. One of the ways to use vegetable waste is to use energy recovery. Energy recovery of vegetable waste can be done by time-dependent biodrying and bioactivator. This study aimed to determine the effect of time and activator application on the vegetable waste biodrying process. In this study, 0.5 kg of waste is used with an airflow rate of 15 liters/minute, the temperature in the process is in the range of 28.4-34.1°C. The bioactivators used in this study were baker's yeast, tempeh, and tape. The maximum decrease in mass occurs in the biodrying process with the addition of a bioactivator. The multivariate effect test results showed an effect of time and bioactivator on changes in water content and caloric value. However, the interaction between time and bioactivator only affects the water content. This is because the degradation process occurs utilizing microorganisms stored in the bioactivator liquid and water in vegetable waste. Further research is needed to know the effect of other variables in the biodrying process, especially the right detention time and bioactivators that accelerate the rate of degradation.
蔬菜垃圾是一种可生物降解的有机垃圾,在印度尼西亚的任何地方都可以找到。此外,一堆蔬菜垃圾也以食物垃圾为主。蔬菜垃圾的进一步利用可以利用能源回收。蔬菜废弃能源的再生可以用时间依赖的生物干燥和生物活化剂来完成。本研究的目的是确定时间和活化剂输送对蔬菜垃圾生物干燥过程的影响。这项研究使用了0.5公斤垃圾,流速为15升/分钟,过程中的温度在28.4至34.1°C之间。这项研究中使用的生物检测器是烤面包、豆瓣和胶带。在生物干燥过程中,通过添加生物活化剂可以最大限度地减少质量。多元影响试验的结果表明,时间和生物活性剂会影响耗水率和热量值的变化。但是时间和生物活化剂之间的相互作用只影响含水率。这是因为降解过程是利用储存在生物活化液中的微生物和蔬菜垃圾中的水进行的。需要进一步的研究来更清楚地确定生物干燥过程中其他变量的影响,特别是在适当的滞留时间和生物活化剂加速降解的情况下。蔬菜垃圾是一种可生物降解的有机垃圾,在印度尼西亚的每个地方都有。此外,蔬菜浪费也在食物浪费中占主导地位。利用蔬菜废弃物的方法之一是利用能源回收。蔬菜废弃物的能量回收可以通过时间相关的生物干燥和生物活化剂来实现。本研究旨在确定时间和活化剂应用对蔬菜废弃物生物干燥过程的影响。在这项研究中,使用0.5公斤废物,气流速度为15升/分钟,过程中的温度在28.4-34.1°C之间。本研究中使用的生物活性剂是面包酵母、豆芽和胶带。在添加生物活化剂的生物干燥过程中,质量最大程度地减少。多元效应测试结果表明,时间和生物活性剂对水分和热值的变化有影响。然而,时间和生物活化剂之间的相互作用只影响含水量。这是因为降解过程是利用储存在生物活化剂液体中的微生物和蔬菜废物中的水进行的。需要进一步的研究来了解生物干燥过程中其他变量的影响,特别是合适的停留时间和加速降解速率的生物活化剂。
{"title":"Vegetable Waste Biodrying Treatment for Energy Recovery as Refuse Derived Fuel Potential","authors":"M. Mutiara, I. Septiariva, W. K. Suryawan","doi":"10.33795/jtkl.v6i2.316","DOIUrl":"https://doi.org/10.33795/jtkl.v6i2.316","url":null,"abstract":"Sampah sayuran merupakan jenis sampah organik biodegradable yang dapat ditemukan di setiap lokasi di Indonesia. Selain itu, timbunan sampah sayuran juga mendominasi sampah makanan. Pemanfaatan lebih lanjut sampah sayuran salah satunya dapat menggunakan pemulihan energi. Pemulihan energi sampah sayuran dapat dilakukan dengan biodrying yang tergantung dengan waktu dan bioaktivator. Tujuan dari studi ini adalah untuk mengetahui pengaruh waktu dan pemberian aktivator pada proses biodrying sampah sayuran. Penelitian ini menggunakan sampah seberat 0,5 kg dengan pemberian laju alir udara 15 liter/menit, suhu pada proses berada pada rentang 28,4-34,1°C. Biodaktivator yang digunakan dalam penelitian ini adalah ragi roti, tempe, dan tape. Penurunan massa maksimum terjadi pada proses biodrying dengan penambahan bioaktivator. Hasil uji pengaruh pada multivariate menunjukkan adanya pengaruh waktu dan bioaktivator pada perubahan nilai kadar air dan nilai kalor. Akan tetapi, interaksi antara waktu dan bioaktivator hanya berpengaruh pada kadar air. Hal ini karena proses degradasi terjadi memanfaatkan mikroorganisma yang tersimpan di dalam cairan bioaktivator dan air dalam sampah sayuran. Penelitian lebih lanjut diperlukan untuk mengetaui lebih jelas pengaruh variabel lain dalam proses biodrying terutama pada waktu detensi yang tepat dan bioaktivator yang mempercepat laju degradasi.Vegetable waste is a type of biodegradable organic waste found in every location in Indonesia. In addition, vegetable waste also dominates food waste. One of the ways to use vegetable waste is to use energy recovery. Energy recovery of vegetable waste can be done by time-dependent biodrying and bioactivator. This study aimed to determine the effect of time and activator application on the vegetable waste biodrying process. In this study, 0.5 kg of waste is used with an airflow rate of 15 liters/minute, the temperature in the process is in the range of 28.4-34.1°C. The bioactivators used in this study were baker's yeast, tempeh, and tape. The maximum decrease in mass occurs in the biodrying process with the addition of a bioactivator. The multivariate effect test results showed an effect of time and bioactivator on changes in water content and caloric value. However, the interaction between time and bioactivator only affects the water content. This is because the degradation process occurs utilizing microorganisms stored in the bioactivator liquid and water in vegetable waste. Further research is needed to know the effect of other variables in the biodrying process, especially the right detention time and bioactivators that accelerate the rate of degradation.","PeriodicalId":52562,"journal":{"name":"Jurnal Teknik Kimia dan Lingkungan","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47666185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimization of Essential Oil Extraction of Beluntas (Pluchea Indica L.) Leaves by Using Solvent-Free Microwave Extraction 白莲花挥发油提取工艺优化无溶剂微波萃取法提取茶叶
Pub Date : 2022-10-31 DOI: 10.33795/jtkl.v6i2.339
Nur Karima, Noval Kurniawati, B. Fachri, I. Rahmawati, B. Palupi, M. Mahfud, Ditta Kharisma Yolanda, A. Rahmawati, Badril Azhar, M. Muharja
Beluntas (Pluchea Indica L.) yang biasa digunakan sebagai astringent dan antipiretik memiliki potensi yang tinggi sebagai bahan baku produksi minyak atsiri. Tujuan dari penelitian ini adalah untuk mengoptimalkan solvent-free microwave extraction (SFME) dari daun beluntas menggunakan response surface metodology (RSM). Desain Box-Behnken dengan variasi waktu ekstraksi (60-120 menit), rasio bahan/labu distilat (0,06-0,1 g/ml), dan daya pemanas (150-450 Watt) digunakan untuk mengoptimalkan produksi minyak atsiri. Faktor rasio bahan/penyuling memiliki pengaruh signifikan paling tinggi terhadap rendemen minyak atsiri (P<0,05). Rendemen minyak atsiri meningkat seiring dengan meningkatnya daya pemanasan minyak dan waktu ekstraksi, dan sebaliknya. Di sisi lain, peningkatan rasio bahan/labu distilat memberikan dampak negatif terhadap rendemen minyak atsiri. Hasil minyak atsiri maksimum menggunakan metode SFME sebesar 0,2728 b/b% diperoleh untuk kondisi optimal waktu ekstraksi 90 menit, daya pemanasan 450 W, dan rasio bahan/labu distilat 0,06.Beluntas (Pluchea Indica L.) which commonly used as astringent and antipyretic has a high potential for the feedstock of essential oil production. The objective of this work is to optimize solvent-free microwave extraction (SFME) of Beluntas leaves by using response surface methodology (RSM). Box-Behnken Design with the variations of extraction time (60-120 min), feed/distiller ratio (0.06-0.1 g/ml), and heating power (150-450 W) was utilized to optimize essential oil yield. The feed/distiller ratio factor had the highest significant effect on the essential oil yield (P<0.05). Essential oil yield increased as the increase of oil heating power and time extraction, and vice versa. On the other hand, the increase in the feed/distiller ratio gave a negative impact on the essential oil yield. The maximum essential oil yield using SFME method of 0.2728 b/b% was obtained for the optimized condition of extraction time of 90 min, microwave heating power of 450 W, and feed/distiller ratio of 0.06.
Beluntas (Pluchea Indica)是一种营养和抗树脂的原料,其潜力很高。本研究的目的是利用表面响应代谢学(RSM)的回路微波提取(SFME)。boxbi - hnken设计的提取时间变化(60-120分钟),原料/南瓜提取物比(0.06 - 0.1 g/ml)和热量(150-450瓦)被用来优化atsiri石油生产。物质/蒸馏比因子对atsiri油renc (P< 0.05)的影响最为显著。随着石油变暖和开采时间的增加,大气惯性也在上升。另一方面,增加的成分/南瓜提取物比对大气油膏的修正产生了负面影响。最大油产量为0.2728 b/b%,以最佳提取时间为90分钟,加热功率为450 W,成分/南瓜蒸馏比为0.06。作为一种营养和抗树脂生产的常用的Beluntas (Pluchea Indica)具有很高的潜力。这项工作的目标是利用病理响应系统(RSM)进行优化的带氧微波带离。boxbehnken设计的超时间变化(60-120分钟),feed/distiller ratio (0.06-0.1 g/ml),和燃气(150-450 W)都是功利主义石油。饲料/铁矿因素在易挥发石油上有最严重的影响(P<0.05)。石油燃料的增加,石油燃料的消耗和时间的消耗,反之亦然。另一方面,饲料/提纯铁路的增加对石油的负面影响。使用SFME mememememememethod的最大石油产品
{"title":"Optimization of Essential Oil Extraction of Beluntas (Pluchea Indica L.) Leaves by Using Solvent-Free Microwave Extraction","authors":"Nur Karima, Noval Kurniawati, B. Fachri, I. Rahmawati, B. Palupi, M. Mahfud, Ditta Kharisma Yolanda, A. Rahmawati, Badril Azhar, M. Muharja","doi":"10.33795/jtkl.v6i2.339","DOIUrl":"https://doi.org/10.33795/jtkl.v6i2.339","url":null,"abstract":"Beluntas (Pluchea Indica L.) yang biasa digunakan sebagai astringent dan antipiretik memiliki potensi yang tinggi sebagai bahan baku produksi minyak atsiri. Tujuan dari penelitian ini adalah untuk mengoptimalkan solvent-free microwave extraction (SFME) dari daun beluntas menggunakan response surface metodology (RSM). Desain Box-Behnken dengan variasi waktu ekstraksi (60-120 menit), rasio bahan/labu distilat (0,06-0,1 g/ml), dan daya pemanas (150-450 Watt) digunakan untuk mengoptimalkan produksi minyak atsiri. Faktor rasio bahan/penyuling memiliki pengaruh signifikan paling tinggi terhadap rendemen minyak atsiri (P<0,05). Rendemen minyak atsiri meningkat seiring dengan meningkatnya daya pemanasan minyak dan waktu ekstraksi, dan sebaliknya. Di sisi lain, peningkatan rasio bahan/labu distilat memberikan dampak negatif terhadap rendemen minyak atsiri. Hasil minyak atsiri maksimum menggunakan metode SFME sebesar 0,2728 b/b% diperoleh untuk kondisi optimal waktu ekstraksi 90 menit, daya pemanasan 450 W, dan rasio bahan/labu distilat 0,06.Beluntas (Pluchea Indica L.) which commonly used as astringent and antipyretic has a high potential for the feedstock of essential oil production. The objective of this work is to optimize solvent-free microwave extraction (SFME) of Beluntas leaves by using response surface methodology (RSM). Box-Behnken Design with the variations of extraction time (60-120 min), feed/distiller ratio (0.06-0.1 g/ml), and heating power (150-450 W) was utilized to optimize essential oil yield. The feed/distiller ratio factor had the highest significant effect on the essential oil yield (P<0.05). Essential oil yield increased as the increase of oil heating power and time extraction, and vice versa. On the other hand, the increase in the feed/distiller ratio gave a negative impact on the essential oil yield. The maximum essential oil yield using SFME method of 0.2728 b/b% was obtained for the optimized condition of extraction time of 90 min, microwave heating power of 450 W, and feed/distiller ratio of 0.06.","PeriodicalId":52562,"journal":{"name":"Jurnal Teknik Kimia dan Lingkungan","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46946409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Effect the Addition of Biodiesel from Nyamplung Oil (Calophyllum Inophyllum) on Performance and Emission Characteristics of Diesel Engines Nyamplung油添加生物柴油对柴油机性能和排放特性的影响
Pub Date : 2022-10-31 DOI: 10.33795/jtkl.v6i2.336
Abdul Hamid, Amin Jakfar, S. Saiful, I. Febriana, F. Rohmah
Pada penelitian ini dipelajari pemanfaatan biodiesel dari minyak nyamplung (Calophyllum Inophyllum) melalui reaksi transesterifikasi menggunakan katalis heterogen CaO dari batu kapur yang berasal dari Pamekasan, Madura. Perbandingan komposisi yang digunakan antara minyak nyamplung terhadap metanol pada reaksi transesterifikasi adalah 1:12 (mol/mol) dengan penambahan 4% katalis CaO. Biodiesel yang terbentuk kemudian diuji kinerja dan karakteristik emisinya pada mesin diesel dengan variasi campuran bahan bakar antara solar murni dan biodiesel (B-10, B-20, B-30, B-40, B-100 dan S-100). Hasil pengujian campuran biodiesel dengan daya tertinggi dihasilkan dari bahan bakar B-10, B-20, B-30 dan B-100 masing-masing sebesar 0,26 kW pada beban 250 watt. Sedangkan pada beban 500 watt, daya tertinggi diperoleh pada bahan bakar B-40 yaitu sebesar 0,58 kW. Hasil pengujian kinerja menggunakan bahan bakar S-100 diperoleh nilai daya yang paling tinggi masing-masing sebesar 0,27 dan 0,58 kW dengan beban 250 dan 500 watt. Pengujian kinerja untuk campuran biodiesel, nilai torsi paling tinggi diperoleh ketika menggunakan bahan bakar B-10, B-20, B-30 dan B-100 yaitu masing-masing sebesar 1,65 N.m dengan beban 250 watt.  Sedangkan pada beban 500 watt, torsi tertinggi diperoleh pada bahan bakar B-40 yaitu sebesar 3,69 N.m. Bahan bakar S-100 menghasilkan torsi masing-masing sebesar 1,71 dan 3,69 N.m dengan beban 250 dan 500 watt. Karakteristik gas emisi karbon monoksida (CO), nitrogen monoksida (NO) dan nitrogen oksida (NOx) menunjukkan konsentrasi terendah diperoleh pada bahan bakar B-100 masing-masing sebesar 387 ppm, 92 ppm dan 96 ppm. Sedangkan konsentrasi gas emisi CO, NO dan NOx tertinggi dihasilkan dari bahan bakar solar murni (S-100) yaitu masing-masing sebesar 574 ppm, 126 ppm dan 132 ppm. In this study, the use of biodiesel from nyamplung oil (Calophyllum Inophyllum) was studied through a transesterification reaction using a heterogeneous catalyst of CaO from limestone originating from Pamekasan, Madura. The composition ratio used between nyamplung oil and methanol in the transesterification reaction was 1:12 (mol/mol) with the addition of 4% CaO catalyst. The biodiesel that is formed is then tested for its performance and emission characteristics in diesel engines with various fuel mixtures between pure diesel and biodiesel (B-10, B-20, B-30, B-40, B-100 and S-100). The test results for biodiesel blends with the highest power produced from B-10, B-20, B-30 and B-100 fuels were 0.26 kW each at a load of 250 watts. While at a load of 500 watts, the highest power is obtained from the B-40 fuel, which is 0.58 kW. The results of performance testing using S-100 fuel obtained the highest power values of 0.27 and 0.58 kW, respectively, with a load of 250 and 500 watts. Performance testing for biodiesel blends, the highest torque value was obtained when using B-10, B-20, B-30 and B-100 fuels, which were 1.65 N.m each with a load of 250 watts. While at a load of 500 watt
在本研究中,利用来自马杜拉Pamekasan的石灰石中的非均相催化剂CaO,通过酯交换反应,了解了从原油(Calophyllum Inophylum)中提取生物柴油的用途。在酯交换反应中原油和甲醇之间使用的组成的比较是1:12(mol/mol)加4%CaO催化剂。形成的生物柴油随后在纯太阳能和生物柴油(B-10、B-20、B-30、B-40、B-100和S-100)之间的燃料混合物变化的柴油发动机上测试了其性能和排放特性。最高功率生物柴油混合物的测试结果是由燃料B-10、B-20、B-30和B-100在250瓦的负载下产生的,每种燃料的功率为0.26千瓦。当功率为500瓦时,燃料B-40的最大功率为0.58千瓦。对于生物柴油混合物的性能测试,当使用燃料B-10、B-20、B-30和B-100时,获得最高扭转值,每种燃料在250瓦的负载下为1.65 N.m。当负载为500瓦时,B-40燃料的躯干最高,为3.69 N.m。S-100燃料在250瓦和500瓦的负载下产生1.71和3.69 N.m的躯干。一氧化碳(CO)、一氧化氮(NO)和氮氧化物(NOx)的排放气体特性表明,在每种B-100燃料上获得的最低浓度分别为387ppm、92ppm和96ppm。纯太阳能燃料(S-100)产生的CO、NO和NOx排放浓度最高,分别为574ppm、126ppm和132ppm。在本研究中,通过使用来自马杜拉Pamekasan的石灰石中的CaO的多相催化剂进行酯交换反应,研究了从nyamplung油(Calophyllum Inophyllus)中提取生物柴油的用途。在酯交换反应中,在添加4%CaO催化剂的情况下,nyamplung油和甲醇的组成比为1:12(mol/mol)。然后用纯柴油和生物柴油之间的各种燃料混合物(B-10、B-20、B-30、B-40、B-100和S-100)测试形成的生物柴油在柴油发动机中的性能和排放特性。B-10、B-20、B-30和B-100燃料产生的具有最高功率的生物柴油混合物的测试结果分别为0.26千瓦,负载为250瓦。当负载为500瓦时,B-40燃料获得的最高功率为0.58千瓦。使用S-100燃料的性能测试结果分别获得了0.27和0.58千瓦的最高功率值,负载为250和500瓦。对于生物柴油混合物的性能测试,当使用B-10、B-20、B-30和B-100燃料时获得了最高的扭矩值,这些燃料在250瓦的负载下分别为1.65牛米。当负载为500瓦时,B-40燃料获得的扭矩最高,为3.69牛米。S-100燃料在负载为250瓦和500瓦时分别产生1.71和3.69牛米的扭矩。一氧化碳(CO)、一氧化氮(NO)和氮氧化物(NOx)的排放气体特性显示,B-100燃料中获得的最低浓度分别为387ppm、92ppm和96ppm。同时,纯柴油(S-100)产生的CO、NO和NOx排放浓度最高,分别为574ppm、126ppm和132ppm。
{"title":"Effect the Addition of Biodiesel from Nyamplung Oil (Calophyllum Inophyllum) on Performance and Emission Characteristics of Diesel Engines","authors":"Abdul Hamid, Amin Jakfar, S. Saiful, I. Febriana, F. Rohmah","doi":"10.33795/jtkl.v6i2.336","DOIUrl":"https://doi.org/10.33795/jtkl.v6i2.336","url":null,"abstract":"Pada penelitian ini dipelajari pemanfaatan biodiesel dari minyak nyamplung (Calophyllum Inophyllum) melalui reaksi transesterifikasi menggunakan katalis heterogen CaO dari batu kapur yang berasal dari Pamekasan, Madura. Perbandingan komposisi yang digunakan antara minyak nyamplung terhadap metanol pada reaksi transesterifikasi adalah 1:12 (mol/mol) dengan penambahan 4% katalis CaO. Biodiesel yang terbentuk kemudian diuji kinerja dan karakteristik emisinya pada mesin diesel dengan variasi campuran bahan bakar antara solar murni dan biodiesel (B-10, B-20, B-30, B-40, B-100 dan S-100). Hasil pengujian campuran biodiesel dengan daya tertinggi dihasilkan dari bahan bakar B-10, B-20, B-30 dan B-100 masing-masing sebesar 0,26 kW pada beban 250 watt. Sedangkan pada beban 500 watt, daya tertinggi diperoleh pada bahan bakar B-40 yaitu sebesar 0,58 kW. Hasil pengujian kinerja menggunakan bahan bakar S-100 diperoleh nilai daya yang paling tinggi masing-masing sebesar 0,27 dan 0,58 kW dengan beban 250 dan 500 watt. Pengujian kinerja untuk campuran biodiesel, nilai torsi paling tinggi diperoleh ketika menggunakan bahan bakar B-10, B-20, B-30 dan B-100 yaitu masing-masing sebesar 1,65 N.m dengan beban 250 watt.  Sedangkan pada beban 500 watt, torsi tertinggi diperoleh pada bahan bakar B-40 yaitu sebesar 3,69 N.m. Bahan bakar S-100 menghasilkan torsi masing-masing sebesar 1,71 dan 3,69 N.m dengan beban 250 dan 500 watt. Karakteristik gas emisi karbon monoksida (CO), nitrogen monoksida (NO) dan nitrogen oksida (NOx) menunjukkan konsentrasi terendah diperoleh pada bahan bakar B-100 masing-masing sebesar 387 ppm, 92 ppm dan 96 ppm. Sedangkan konsentrasi gas emisi CO, NO dan NOx tertinggi dihasilkan dari bahan bakar solar murni (S-100) yaitu masing-masing sebesar 574 ppm, 126 ppm dan 132 ppm. In this study, the use of biodiesel from nyamplung oil (Calophyllum Inophyllum) was studied through a transesterification reaction using a heterogeneous catalyst of CaO from limestone originating from Pamekasan, Madura. The composition ratio used between nyamplung oil and methanol in the transesterification reaction was 1:12 (mol/mol) with the addition of 4% CaO catalyst. The biodiesel that is formed is then tested for its performance and emission characteristics in diesel engines with various fuel mixtures between pure diesel and biodiesel (B-10, B-20, B-30, B-40, B-100 and S-100). The test results for biodiesel blends with the highest power produced from B-10, B-20, B-30 and B-100 fuels were 0.26 kW each at a load of 250 watts. While at a load of 500 watts, the highest power is obtained from the B-40 fuel, which is 0.58 kW. The results of performance testing using S-100 fuel obtained the highest power values of 0.27 and 0.58 kW, respectively, with a load of 250 and 500 watts. Performance testing for biodiesel blends, the highest torque value was obtained when using B-10, B-20, B-30 and B-100 fuels, which were 1.65 N.m each with a load of 250 watts. While at a load of 500 watt","PeriodicalId":52562,"journal":{"name":"Jurnal Teknik Kimia dan Lingkungan","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49442070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Delignification of Cassava Peel by Using Alkaline Hydrogen Peroxide Method: Study of Peroxide Concentration, Solid/Liquid Ratio, and pH 用碱性过氧化氢法对木薯皮进行脱木素:过氧化物浓度、固液比和pH值的研究
Pub Date : 2022-10-31 DOI: 10.33795/jtkl.v6i2.334
Dini Nur Afifah, Neni Damajanti, Maulani Mustholidah, H. Hariyanti
Kulit singkong merupakan bahan alami dengan kandungan selulosa mencapai 33.33%. Dalam rangka pemanfaatan kulit singkong sebagai alternatif polimer alam maupun energi terbarukan, maka diperlukan proses delignifikasi untuk memisahkan selulosa dari hemiselulosa dan lignin yang menghalangi penetrasi cairan penghidrolisis selulosa. Metode yang dipilih adalah delignifikasi dengan metode alkali hidrogen peroksida (AHP). Metode AHP dilakukan berdasarkan prinsip autooksidasi oleh hidrogen peroksida (H2O2) basa. Metode ini dipilih karena dapat merusak struktur lignoselulosa dengan energi yang relatif rendah dan lebih selektif terhadap lignin. Walaupun demikian, pada kondisi tertentu penggunaan AHP dapat memicu depolimerisasi karbohidrat yang mengakibatkan penurunan yield. Oleh karenanya perlu dipelajari pengaruh konsentrasi H2O2, rasio Solid/Liquid (S/L) (b/v), serta pH terhadap efektivitas penghilangan lignin pada kulit singkong. Konsentrasi H2O2 divariasikan menjadi 1.5%, 3%,  4.5%,  6%, dan 7.5%. Rasio S/L divariasikan menjadi 1:3, 1:5, 1:7, 1:9, 1:12. pH larutan divariasikan menjadi 8, 9, 10, 11, dan 12. Suhu reaksi dijaga pada rentang 70-90°C selama 3 jam reaksi. Hasil penelitian menunjukkan bahwa lignin dapat diturunkan hingga 84,05% selama 3 jam reaksi. Kondisi yang diperlukan untuk mencapai kondisi tersebut adalah:  Konsentrasi H2O2 sebesar 6%, rasio S/L 1:5 dan pH larutan 11. Reaksi yang dilakukan dengan kondisi tersebut juga dapat meningkatkan jumlah selulosa dari 33.33% hingga 49.00%.Cassava peel is a natural material with cellulose content reaching 33.33%. In order to utilize cassava peel as a biodegradable polymer and renewable energy alternative, a delignification process is essential to separate cellulose from hemicellulose and lignin, which prevents the penetration of cellulose hydrolyzer. The delignification method chosen in this study was alkaline hydrogen peroxide (AHP). The AHP is based on the autoxidation of lignin using hydrogen peroxide (H2O2) in an alkaline environment. This method was chosen because it can damage the lignocellulosic structure with relatively low energy and is more selective for lignin. However, under certain conditions, AHP can trigger carbohydrate depolymerization, which decreases yield. Therefore, it is necessary to study the effect of H2O2 concentration, Solid/Liquid ratio (S/L) (w/v), and pH to evaluate the effectiveness of lignin removal in cassava peel. The concentration of H2O2 was varied into 1.5%, 3%, 4.5%, 6%, and 7.5%. The S/L ratio is varied to 1:3, 1:5, 1:7, 1:9,1:12. The pH of the solution was varied to 8, 9, 10, 11, and 12. The reaction temperature was maintained at 70-90 °C for 3 hours. The results showed that lignin could be reduced to 84.05% for 3 hours by using  6% H2O2, an S/L ratio of 1:5, and a pH of 11. The reaction carried out under these conditions can also increase the amount of cellulose from 33.33% to 49.00%.
短皮是一种纤维素含量达到33.33%的天然成分。为了将短皮用作天然聚合物或可再生能源的替代品,需要进行脱木素工艺,将纤维素与半纤维素和木质素分离,以防止纤维素水解液渗透。所选择的方法是用碱性过氧化氢(AHP)法进行脱毒。AHP法基于碱性过氧化氢(H2O2)自氧化原理。选择这种方法是因为它可以以相对较低且对木质素更具选择性的能量破坏木质纤维素的结构。然而,在某些条件下,AHP的使用可能会引发碳水化合物的去石灰化,导致产量下降。因此,应研究H2O2浓度、固液比(S/L)(b/v)和pH对短皮木质素损失效果的影响。H2O2浓度分化为1.5%、3%、[UNK]4.5%、[UNK]16%和7.5%。S/L比分化为1:3、1:5、1:7、1:9和1:12。溶液的pH值分为8、9、10、11和12。反应温度保持在70-90°C,反应3小时。研究表明,木质素在反应3小时后可降低至84.05%。达到该条件所需的条件是:[HUNK]H2O2浓度为6%,S/L比为1:5,pH溶液为11。为了利用木薯皮作为可生物降解的聚合物和可再生能源的替代品,脱木素过程对于将纤维素与半纤维素和木质素分离至关重要,-这防止了纤维素水解剂的渗透。本研究选用的脱木素方法为碱性过氧化氢法(AHP)。AHP是基于木质素在碱性环境中使用过氧化氢(H2O2)的自动氧化。选择这种方法是因为它可以以相对较低的能量破坏木质纤维素结构,并且对木质素更具选择性。然而,在一定条件下,AHP会引发碳水化合物解聚,从而降低产量。因此,有必要研究H2O2浓度、固液比(S/L)(w/v)和pH值对木薯皮木质素去除效果的影响。H2O2的浓度分别为1.5%、3%、4.5%、6%和7.5%。S/L比分别为1:3、1:5、1:7、1:9、1:12。溶液的pH值变化为8、9、10、11和12。将反应温度保持在70-90°C达3小时。结果表明,在浓度为6%H2O2、S/L比为1:5、pH为11的条件下,木质素可在3小时内还原至84.05%。在这些条件下进行的反应还可以将纤维素的量从33.33%增加到49.00%。
{"title":"Delignification of Cassava Peel by Using Alkaline Hydrogen Peroxide Method: Study of Peroxide Concentration, Solid/Liquid Ratio, and pH","authors":"Dini Nur Afifah, Neni Damajanti, Maulani Mustholidah, H. Hariyanti","doi":"10.33795/jtkl.v6i2.334","DOIUrl":"https://doi.org/10.33795/jtkl.v6i2.334","url":null,"abstract":"Kulit singkong merupakan bahan alami dengan kandungan selulosa mencapai 33.33%. Dalam rangka pemanfaatan kulit singkong sebagai alternatif polimer alam maupun energi terbarukan, maka diperlukan proses delignifikasi untuk memisahkan selulosa dari hemiselulosa dan lignin yang menghalangi penetrasi cairan penghidrolisis selulosa. Metode yang dipilih adalah delignifikasi dengan metode alkali hidrogen peroksida (AHP). Metode AHP dilakukan berdasarkan prinsip autooksidasi oleh hidrogen peroksida (H2O2) basa. Metode ini dipilih karena dapat merusak struktur lignoselulosa dengan energi yang relatif rendah dan lebih selektif terhadap lignin. Walaupun demikian, pada kondisi tertentu penggunaan AHP dapat memicu depolimerisasi karbohidrat yang mengakibatkan penurunan yield. Oleh karenanya perlu dipelajari pengaruh konsentrasi H2O2, rasio Solid/Liquid (S/L) (b/v), serta pH terhadap efektivitas penghilangan lignin pada kulit singkong. Konsentrasi H2O2 divariasikan menjadi 1.5%, 3%,  4.5%,  6%, dan 7.5%. Rasio S/L divariasikan menjadi 1:3, 1:5, 1:7, 1:9, 1:12. pH larutan divariasikan menjadi 8, 9, 10, 11, dan 12. Suhu reaksi dijaga pada rentang 70-90°C selama 3 jam reaksi. Hasil penelitian menunjukkan bahwa lignin dapat diturunkan hingga 84,05% selama 3 jam reaksi. Kondisi yang diperlukan untuk mencapai kondisi tersebut adalah:  Konsentrasi H2O2 sebesar 6%, rasio S/L 1:5 dan pH larutan 11. Reaksi yang dilakukan dengan kondisi tersebut juga dapat meningkatkan jumlah selulosa dari 33.33% hingga 49.00%.Cassava peel is a natural material with cellulose content reaching 33.33%. In order to utilize cassava peel as a biodegradable polymer and renewable energy alternative, a delignification process is essential to separate cellulose from hemicellulose and lignin, which prevents the penetration of cellulose hydrolyzer. The delignification method chosen in this study was alkaline hydrogen peroxide (AHP). The AHP is based on the autoxidation of lignin using hydrogen peroxide (H2O2) in an alkaline environment. This method was chosen because it can damage the lignocellulosic structure with relatively low energy and is more selective for lignin. However, under certain conditions, AHP can trigger carbohydrate depolymerization, which decreases yield. Therefore, it is necessary to study the effect of H2O2 concentration, Solid/Liquid ratio (S/L) (w/v), and pH to evaluate the effectiveness of lignin removal in cassava peel. The concentration of H2O2 was varied into 1.5%, 3%, 4.5%, 6%, and 7.5%. The S/L ratio is varied to 1:3, 1:5, 1:7, 1:9,1:12. The pH of the solution was varied to 8, 9, 10, 11, and 12. The reaction temperature was maintained at 70-90 °C for 3 hours. The results showed that lignin could be reduced to 84.05% for 3 hours by using  6% H2O2, an S/L ratio of 1:5, and a pH of 11. The reaction carried out under these conditions can also increase the amount of cellulose from 33.33% to 49.00%.","PeriodicalId":52562,"journal":{"name":"Jurnal Teknik Kimia dan Lingkungan","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49204776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Thermal Energy Conversion in Making Biochar from Jengkok Tobacco Waste Using Pyrolysis Extrusion Model 利用热裂解挤压模型将长角烟叶废渣转化为生物炭
Pub Date : 2022-10-31 DOI: 10.33795/jtkl.v6i2.341
Taufik Iskandar, Ayu Chandra Kartika Fitri
Proses pirolisis mempunyai banyak model dengan karakteristik dan spesifikasi yang berbeda. Masing-masing model memberikan nilai konversi yang berbeda pada penggunaan temperatur, waktu dan bahan baku yang digunakan. Limbah Jengkok Tembakau yang berbahaya karena kandungan Arsen (As) akan dimanfaatkan menjadi produk biochar yang mempunyai nilai ekonomis dan strategis melalui proses pirolisis model extrusion. Tujuan dari penelitian ini adalah menentukan konversi thermal (% Yield) proses pirolisis bahan limbah jengkok tembakau menjadi biochar terhadap temperatur dan waktu proses yang optimal. Variabel yang ditentukan terdiri dari temperatur proses (400, 450, 500, 550, dan 600°C) dan waktu proses (30, 35, dan 40 menit). Produk hasil proses akan dilakukan analisa statistik menggunakan uji korelasi rank spearman dan dilanjut dengan minitab untuk menghasilkan nilai optimal. Hasil penelitian menunjukkan bahwa nilai konversi thermal pada proses pembuatan biochar dengan bahan baku limbah jengkok tembakau adalah sebesar 29,476% (»30%) pada temperatur proses 500°C dan waktu proses 30 menit.The pyrolysis process has many models with different characteristics and specifications. Each model provides a different conversion value depending on the temperature value, length of time, and the number of raw materials used. Jengkok Tobacco waste was dangerous because it contains Arsenic (As), and was used as a biochar product with economic and strategic value through the extrusion model pyrolysis process. The purpose of this study was to determine the thermal conversion value (yield percentage) of the pyrolysis process of tobacco waste material into biochar at the optimal temperature and processing time. The specified variables consist of process temperatures (400, 450, 500, 550, and 600°C) and processing times (30, 35, and 40 minutes). The product of the process will be analyzed statistically using the Spearman rank correlation test and followed by Minitab to produce the optimal value. The results showed that the thermal conversion value in making biochar was 29.476% (»30%) at a process temperature of 500°C and a processing time of 30 minutes.
热解过程有许多具有不同特征和规格的模型。每个模型为使用的温度、时间和默认材质提供不同的转换值。通过挤压模型的热解过程,危险烟碗中的砷含量将被用作具有经济和战略价值的生物炭产品。本研究的目的是确定垃圾焚烧曲线转化为生物炭的热解过程在最佳温度和过程时间下的热转化率(%产率)。指定的变量包括工艺温度(400、450、500、550和600°C)和工艺时间(30、35和40分钟)。过程结果将使用spearman秩相关检验进行统计分析,并继续使用minitabs产生最佳值。研究表明,在工艺温度500°C、工艺时间30分钟的条件下,含有烟草电弧残余物的生物炭工艺的热转化率为29476%(»30%)。热解过程有许多具有不同特征和规格的模型。根据温度值、时间长度和使用的原材料数量,每个型号都提供不同的转换值。烟草废料是危险的,因为它含有砷(As),并且通过挤压模型热解过程被用作具有经济和战略价值的生物炭产品。本研究的目的是确定在最佳温度和处理时间下,烟草废料热解成生物炭过程的热转化值(产率百分比)。指定的变量包括工艺温度(400、450、500、550和600°C)和工艺时间(30、35和40分钟)。该过程的结果将使用Spearman秩相关检验进行统计分析,然后使用Minitab产生最佳值。结果表明,在500°C的工艺温度和30分钟的工艺时间下,制备生物炭的热转化率为29.476%(»30%)。
{"title":"Thermal Energy Conversion in Making Biochar from Jengkok Tobacco Waste Using Pyrolysis Extrusion Model","authors":"Taufik Iskandar, Ayu Chandra Kartika Fitri","doi":"10.33795/jtkl.v6i2.341","DOIUrl":"https://doi.org/10.33795/jtkl.v6i2.341","url":null,"abstract":"Proses pirolisis mempunyai banyak model dengan karakteristik dan spesifikasi yang berbeda. Masing-masing model memberikan nilai konversi yang berbeda pada penggunaan temperatur, waktu dan bahan baku yang digunakan. Limbah Jengkok Tembakau yang berbahaya karena kandungan Arsen (As) akan dimanfaatkan menjadi produk biochar yang mempunyai nilai ekonomis dan strategis melalui proses pirolisis model extrusion. Tujuan dari penelitian ini adalah menentukan konversi thermal (% Yield) proses pirolisis bahan limbah jengkok tembakau menjadi biochar terhadap temperatur dan waktu proses yang optimal. Variabel yang ditentukan terdiri dari temperatur proses (400, 450, 500, 550, dan 600°C) dan waktu proses (30, 35, dan 40 menit). Produk hasil proses akan dilakukan analisa statistik menggunakan uji korelasi rank spearman dan dilanjut dengan minitab untuk menghasilkan nilai optimal. Hasil penelitian menunjukkan bahwa nilai konversi thermal pada proses pembuatan biochar dengan bahan baku limbah jengkok tembakau adalah sebesar 29,476% (»30%) pada temperatur proses 500°C dan waktu proses 30 menit.The pyrolysis process has many models with different characteristics and specifications. Each model provides a different conversion value depending on the temperature value, length of time, and the number of raw materials used. Jengkok Tobacco waste was dangerous because it contains Arsenic (As), and was used as a biochar product with economic and strategic value through the extrusion model pyrolysis process. The purpose of this study was to determine the thermal conversion value (yield percentage) of the pyrolysis process of tobacco waste material into biochar at the optimal temperature and processing time. The specified variables consist of process temperatures (400, 450, 500, 550, and 600°C) and processing times (30, 35, and 40 minutes). The product of the process will be analyzed statistically using the Spearman rank correlation test and followed by Minitab to produce the optimal value. The results showed that the thermal conversion value in making biochar was 29.476% (»30%) at a process temperature of 500°C and a processing time of 30 minutes.","PeriodicalId":52562,"journal":{"name":"Jurnal Teknik Kimia dan Lingkungan","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45003354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Techno-Economic Analysis of Extractive Butanol Fermentation by Immobilized Cells with Large Extractant Volume 固定化细胞大萃取量萃取丁醇发酵的技术经济分析
Pub Date : 2022-10-31 DOI: 10.33795/jtkl.v6i2.337
Rizki Fitria Darmayanti, M. Muharja, Tao Zhao, Ming Gao, Y. Tashiro, K. Sakai, K. Sonomoto
Terdapat beberapa tantangan fermentasi Acetone-Butanol-Ethanol (ABE) untuk digunakan dalam skala industri antara lain rendahnya rendemen butanol, tingginya kebutuhan energi untuk pemisahan dan pemurnian, dan persaingan gula dengan kebutuhan pangan sebagai substrat. Penelitian ini mempelajari aspek teknik dan ekonomi dari fermentasi ABE menggunakan sel amobil dengan volum ekstraktan besar. Keseluruhan proses produksi dirancang menggunakan bahan baku jerami padi yang dihidrolisis tak sempurna untuk menghasilkan campuran selobiosa, glukosa, xilosa, dan arabinosa. Gula konsentrat kemudian diumpankan ke fermentasi fed-batch ekstraktif menggunakan sel amobil. Akhirnya, ekstraktan diperoleh kembali dan produk dimurnikan dengan kolom distilasi. Dengan mengevaluasi desain proses ini untuk kapasitas skala kecil 238 kg-butanol dan aseton/hari, kebutuhan energi adalah 41,3 MJ/kg-butanol dan aseton dan biayanya adalah 1,91 $/kg-butanol dan aseton. Meskipun biayanya lebih tinggi daripada butanol yang dihasilkan oleh proses petrokimia sebesar 1,08 $/kg-butanol, biayanya dapat berkurang jika skalanya ditingkatkan.There are several challenges for ABE fermentation to be used in an industrial scale including the low of butanol yield, the high energy requirement for separation and purification, and the competeness of sugar with food demand as substrat. In this study, techno-economical aspects of ABE fermentation by using immobilized cells with large extractant volume were studied. Overall production process was designed using rice straw as raw material which is semi-hydrolyzed to produce cellobiose, glucose, xylose, and arabinose mixture. Concentrated sugar was then fed to extractive fed-batch fermentation using immobilized cells. Finally, extractant was recovered and products were purified by distillation column. By evaluating this process design for the small scale capacity of 238 kg-butanol and acetone/day, the energy requirement was 41.3 MJ/kg-butanol and acetone and the cost was 1.91 $/kg-butanol and acetone. Although the cost was higher than butanol produced by petrochemical process of 1.08 $/kg-butanol, it may reduce if the scale is increased.
将乙醇(ABE)用于工业规模的发酵挑战包括缺乏方可醇,高度的能源对分离和净化的需求,以及糖对食物需求的竞争。本研究研究了ABE发酵的技术和经济方面,使用acarb细胞和大量萃取volum。整个生产过程是用不完美的姜黄制成的,用于生成胶质、葡萄糖、木质和阿拉比诺萨混合。浓缩糖然后用乙烷细胞将提取的fed-批发酵。最后,萃取物通过蒸馏柱重新获得和净化产品。通过评估这一过程的设计,以每天238千克丁醇和丙酮的小量,能源需求为41.3个MJ/kg-丁醇和丙酮,成本为1.91美元/kg-丁醇和丙酮。尽管其成本比石油化学生产的丁醇高出1.08美元/kg-丁醇,但如果规模增加,成本可能会降低。对亚伯·费拉斯(ABE fermentation)来说,在一个农作物市场中使用低分级、高能量分配分配,以及以食物需求为基层糖的强制要求,存在着几个挑战。在这项研究中,通过使用大量体外受精的细胞进行的技术经济学评估被卡住。生产过程中,所有的生产过程都是通过大米设计的集中的糖然后美联储用冷冻的细胞进行联邦批次发酵。最后,提取结果被哥伦比亚的不确定确定。根据对238千克丁醇和丙酮电路局的小规模设计,能量要求为41.3 MJ/kg-butanol和acetone,成本为1.91美元/kg-butanol和acetone。尽管成本比石油化学生产过程高出1.08美元/千兆丁醇,但如果规模增加,可能会减少。
{"title":"Techno-Economic Analysis of Extractive Butanol Fermentation by Immobilized Cells with Large Extractant Volume","authors":"Rizki Fitria Darmayanti, M. Muharja, Tao Zhao, Ming Gao, Y. Tashiro, K. Sakai, K. Sonomoto","doi":"10.33795/jtkl.v6i2.337","DOIUrl":"https://doi.org/10.33795/jtkl.v6i2.337","url":null,"abstract":"Terdapat beberapa tantangan fermentasi Acetone-Butanol-Ethanol (ABE) untuk digunakan dalam skala industri antara lain rendahnya rendemen butanol, tingginya kebutuhan energi untuk pemisahan dan pemurnian, dan persaingan gula dengan kebutuhan pangan sebagai substrat. Penelitian ini mempelajari aspek teknik dan ekonomi dari fermentasi ABE menggunakan sel amobil dengan volum ekstraktan besar. Keseluruhan proses produksi dirancang menggunakan bahan baku jerami padi yang dihidrolisis tak sempurna untuk menghasilkan campuran selobiosa, glukosa, xilosa, dan arabinosa. Gula konsentrat kemudian diumpankan ke fermentasi fed-batch ekstraktif menggunakan sel amobil. Akhirnya, ekstraktan diperoleh kembali dan produk dimurnikan dengan kolom distilasi. Dengan mengevaluasi desain proses ini untuk kapasitas skala kecil 238 kg-butanol dan aseton/hari, kebutuhan energi adalah 41,3 MJ/kg-butanol dan aseton dan biayanya adalah 1,91 $/kg-butanol dan aseton. Meskipun biayanya lebih tinggi daripada butanol yang dihasilkan oleh proses petrokimia sebesar 1,08 $/kg-butanol, biayanya dapat berkurang jika skalanya ditingkatkan.There are several challenges for ABE fermentation to be used in an industrial scale including the low of butanol yield, the high energy requirement for separation and purification, and the competeness of sugar with food demand as substrat. In this study, techno-economical aspects of ABE fermentation by using immobilized cells with large extractant volume were studied. Overall production process was designed using rice straw as raw material which is semi-hydrolyzed to produce cellobiose, glucose, xylose, and arabinose mixture. Concentrated sugar was then fed to extractive fed-batch fermentation using immobilized cells. Finally, extractant was recovered and products were purified by distillation column. By evaluating this process design for the small scale capacity of 238 kg-butanol and acetone/day, the energy requirement was 41.3 MJ/kg-butanol and acetone and the cost was 1.91 $/kg-butanol and acetone. Although the cost was higher than butanol produced by petrochemical process of 1.08 $/kg-butanol, it may reduce if the scale is increased.","PeriodicalId":52562,"journal":{"name":"Jurnal Teknik Kimia dan Lingkungan","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48660466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Comparison of Oil Palm Empty Fruit Bunch Delignification at Room and Mild Temperature 油棕空果串室温与常温脱木质素之比较
Pub Date : 2022-10-31 DOI: 10.33795/jtkl.v6i2.322
L. Elizabeth, E. Widyanti, B. Soeswanto, Dini Sri Wahyuni, Kartika Dian Pratiwi
Tandan Kosong Kelapa Sawit (TKKS) merupakan salah satu limbah berjenis padatan dari industri pengolahan minyak kelapa sawit yang dapat dimanfaatkan untuk bahan produksi pupuk, kertas, filler, dan komposit karena mengandung lignoselulosa yang tinggi yaitu sekitar 81-89%. Metode pemisahan lignoselulosa menjadi selulosa, lignin, dan hemiselulosa dilakukan dengan delignifikasi menggunakan H2O2 dan penambahan katalis MnSO4.H2O yang dilakukan dengan dua percobaan yaitu dengan refluks pada suhu 36oC dan tanpa refluks pada suhu ruang (±25oC). Rancangan percobaan dibuat menggunakan metode Response Surface Methodology (RSM) pada program Minitab 21. Tujuan dari penelitian ini adalah mengetahui kondisi optimum delignifikasi menggunakan katalis MnSO4.H2O untuk menurunkan kadar lignin dengan memvariasikan waktu serta komposisi katalis. Hasil penelitian menunjukkan kadar lignin terendah pada delignifikasi dengan dan tanpa refluks berturut-turut sebesar 19,71% (b/b) dan 18,24% (b/b). Kondisi optimum yang didapatkan dengan pengolahan RSM untuk delignifikasi refluks adalah pada waktu 6,83 jam dengan rasio katalis terhadap TKKS 11,03% (b/b). Sedangkan untuk delignifikasi tanpa refluks memiliki kondisi optimum pada waktu 3,38 hari dengan rasio katalis terhadap TKKS sebesar 3,76%(b/b).Oil palm empty fruit bunches (OPEFB) is one kind of palm oil industry solid waste. OPEFB contains high lignocellulose for about 81-89% that can be used for production of fertilizer, paper, filler, and composite. The separating method of lignocellulose into cellulose, lignin, and hemicellulose can be carried out by delignification using H2O2 and MnSO4.H2O as catalyst. Two experimental designs were performed using the Minitab 21 program with Response Surface Methodology (RSM). Both designs have temperature as their dependent variable. The processes are carried out at 36oC and room temperature with the same variable independent, such as delignification time and concentration of the catalyst. The difference between these two designs is in their stirring process. Delignification that occured at 36oC is processed under constant stirring, while delignification that occured at room temperature is processed without stirring. This experiment aims to determine the optimum conditions for using Mn-catalyst in delignification by varying the time and catalyst concentration. The results show that the lowest lignin content in delignification with reflux is 19.71% (w/w), and for delignification without reflux is 18.24% (w/w). The optimum condition obtained by RSM for reflux delignification was at 6,83 hours with use of 11,03% (w/w) catalyst. Meanwhile, without reflux delignification, the optimum condition was at 3,38 days with a 3.76% (w/w) catalyst.
空油棕(TKKS)是油棕加工行业的一种固体废物,可以用于化肥、纸张、过滤和复合材料,因为它们含有高浓度的脂肪素,约81-89%。用h2氧气和催化剂MnSO4进行稀释纤维素到纤维素、褐红色和半空纤维素的分离。做两个实验就是用的水回流温度在室温下36oC而回流(±25oC)。在Minitab 21项目中,设计了一种使用表面响应方法(RSM)的实验设计。本研究的目的是利用MnSO4催化剂确定最佳状态。h20通过改变时间和催化剂的组成来降低褐煤的水平。研究表明,褐煤的摄入量最低,连续19.71% (b/b)和18.24% (b/b)。通过RSM处理反流消除所获得的最佳状态是6.83小时,催化剂与TKKS 11.03% (b/b)的比例。另一方面,无反流消除在3.38天内具有最佳状态,催化剂与TKKS的比例为3.76% (b/b)。油棕榈果实果实果实是一种棕榈油固体废物。高淀粉样蛋白种子供应量约为81-89%,用于制造肥料、纸张、过滤器和合成物。将二氧核糖核酸与二氧核糖核酸分开的方法可以用H2O2和MnSO4进行去除。加泰罗尼亚的H2O。两名实验设计师使用Minitab 21项目的响应面卫理公会(RSM)表现出来。双方都认为自己受到了不可预测的影响。条件是36年的,房间里的温度和独立的温度是一样的,这就像加泰罗尼亚的时机和专注。这两个机构之间的不同之处在于他们正在处理。被起诉的36个小时正在进行中,而被起诉的房间温度没有stirring也在进行。这是一种通过流动时间和加泰罗尼亚同步使用mn加泰罗尼亚的最佳条件的实验。推荐的显示,回流的lognin淀粉稀释率为19.71% (w/w),而不回流解析的delignification是18.24% (w/w)。由RSM恢复递粒的最佳状况为6.83小时,加泰罗尼亚的11.03%。目前,没有逆转谵gnification,最佳情况是在3.38天,具有catalyst 3.76% (w/w)。
{"title":"Comparison of Oil Palm Empty Fruit Bunch Delignification at Room and Mild Temperature","authors":"L. Elizabeth, E. Widyanti, B. Soeswanto, Dini Sri Wahyuni, Kartika Dian Pratiwi","doi":"10.33795/jtkl.v6i2.322","DOIUrl":"https://doi.org/10.33795/jtkl.v6i2.322","url":null,"abstract":"Tandan Kosong Kelapa Sawit (TKKS) merupakan salah satu limbah berjenis padatan dari industri pengolahan minyak kelapa sawit yang dapat dimanfaatkan untuk bahan produksi pupuk, kertas, filler, dan komposit karena mengandung lignoselulosa yang tinggi yaitu sekitar 81-89%. Metode pemisahan lignoselulosa menjadi selulosa, lignin, dan hemiselulosa dilakukan dengan delignifikasi menggunakan H2O2 dan penambahan katalis MnSO4.H2O yang dilakukan dengan dua percobaan yaitu dengan refluks pada suhu 36oC dan tanpa refluks pada suhu ruang (±25oC). Rancangan percobaan dibuat menggunakan metode Response Surface Methodology (RSM) pada program Minitab 21. Tujuan dari penelitian ini adalah mengetahui kondisi optimum delignifikasi menggunakan katalis MnSO4.H2O untuk menurunkan kadar lignin dengan memvariasikan waktu serta komposisi katalis. Hasil penelitian menunjukkan kadar lignin terendah pada delignifikasi dengan dan tanpa refluks berturut-turut sebesar 19,71% (b/b) dan 18,24% (b/b). Kondisi optimum yang didapatkan dengan pengolahan RSM untuk delignifikasi refluks adalah pada waktu 6,83 jam dengan rasio katalis terhadap TKKS 11,03% (b/b). Sedangkan untuk delignifikasi tanpa refluks memiliki kondisi optimum pada waktu 3,38 hari dengan rasio katalis terhadap TKKS sebesar 3,76%(b/b).Oil palm empty fruit bunches (OPEFB) is one kind of palm oil industry solid waste. OPEFB contains high lignocellulose for about 81-89% that can be used for production of fertilizer, paper, filler, and composite. The separating method of lignocellulose into cellulose, lignin, and hemicellulose can be carried out by delignification using H2O2 and MnSO4.H2O as catalyst. Two experimental designs were performed using the Minitab 21 program with Response Surface Methodology (RSM). Both designs have temperature as their dependent variable. The processes are carried out at 36oC and room temperature with the same variable independent, such as delignification time and concentration of the catalyst. The difference between these two designs is in their stirring process. Delignification that occured at 36oC is processed under constant stirring, while delignification that occured at room temperature is processed without stirring. This experiment aims to determine the optimum conditions for using Mn-catalyst in delignification by varying the time and catalyst concentration. The results show that the lowest lignin content in delignification with reflux is 19.71% (w/w), and for delignification without reflux is 18.24% (w/w). The optimum condition obtained by RSM for reflux delignification was at 6,83 hours with use of 11,03% (w/w) catalyst. Meanwhile, without reflux delignification, the optimum condition was at 3,38 days with a 3.76% (w/w) catalyst.","PeriodicalId":52562,"journal":{"name":"Jurnal Teknik Kimia dan Lingkungan","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45063184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Jurnal Teknik Kimia dan Lingkungan
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1