This paper presents a theoretical investigation of a functionally graded hydro-poroelastic semiconductor material subjected to photo-thermoelasticity theory. The material properties, including thermal conductivity, elasticity, and porosity, are assumed to vary spatially following a functionally graded distribution. A one-dimensional problem is formulated to analyze the coupled interactions between the hydro-semiconductor medium’s thermal, mechanical, and electronic transport phenomena. The governing equations incorporate hydrodynamic effects, poroelasticity, and semiconductor carrier transport under the influence of thermal and photonic excitation. The Laplace transform technique is employed to obtain analytical solutions in main physical fields. Numerical results are derived using inverse Laplace transformation, and the effects of functionally graded parameters on wave propagation and heat transport are examined. Graphical analysis illustrates the impact of grading index and porosity on the material’s response. The results highlight the significance of functional grading in tailoring the behavior of hydro-poroelastic semiconductors for advanced technological applications, including optoelectronic devices, photodetectors, and thermal management systems.
扫码关注我们
求助内容:
应助结果提醒方式:
