首页 > 最新文献

Current Pollution Reports最新文献

英文 中文
Contemporary Drift in Emerging Micro(nano)plastics Removal and Upcycling Technologies from Municipal Wastewater Sludge: Strategic Innovations and Prospects 新兴微(纳米)塑料去除和城市污水污泥升级回收技术的当代漂移:战略创新和前景
IF 7.3 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Pub Date : 2023-05-22 DOI: 10.1007/s40726-023-00261-y
Vinay, Deepti Surana, Pooja Ghosh, Manish Kumar, Sunita Varjani, Vivek Kumar, Giorgio Mannina

Purpose of Review

Annually, huge amounts of microplastics (MPs) are added to farmlands through sewage sludge (SS)/biosolid applications as a fertilizer. Most research emphasizes the enormity of the problem and demonstrates the fate, impacts, and toxicity of MPs during SS treatment processes and land applications. None has addressed the management strategies. To address the gaps, the current review evaluates the performance analysis of conventional and advanced sludge treatment methods in eliminating MPs from sludge.

Recent Findings

The review uncovers that the occurrence and characteristics of MPs in SS are highly governed by factors such as population density, speed and level of urbanization, citizens’ daily habits, and treatment units in wastewater treatment plants (WWTPs). Furthermore, conventional sludge treatment processes are ineffective in eliminating MPs from SS and are accountable for the increased small-sized MPs or micro(nano)plastics (MNPs) along with altered surface morphology facilitating more co-contaminant adsorption. Simultaneously, MPs can influence the operation of these treatment processes depending on their size, type, shape, and concentration. The review reveals that research to develop advanced technology to remove MPs efficiently from SS is still at a nascent stage.

Summary

This review provides a comprehensive analysis of MPs in the SS, by corroborating state-of-the-knowledge, on different aspects, including the global occurrence of MPs in WWTP sludge, impacts of different conventional sludge treatment processes on MPs and vice versa, and efficiency of advanced sludge treatment and upcycling technologies to eliminate MPs, which will facilitate the development of mitigation measures from the systematic and holistic level.

Graphical Abstract

每年,大量的微塑料(MPs)通过污水污泥(SS)/生物固体作为肥料被添加到农田中。大多数研究都强调了问题的严重性,并展示了在SS处理过程和土地应用过程中MPs的命运、影响和毒性。没有人讨论过管理策略。为了解决这些差距,本综述评估了传统和先进污泥处理方法在消除污泥中MPs方面的性能分析。研究发现,人口密度、城市化速度和水平、居民日常生活习惯、污水处理厂(WWTPs)的处理单位等因素高度制约着MPs在SS中的发生和特征。此外,传统的污泥处理工艺在从SS中去除MPs方面是无效的,并且会导致小型MPs或微(纳米)塑料(MNPs)的增加,以及表面形态的改变,从而促进更多的共污染物吸附。同时,MPs可以影响这些处理过程的操作,这取决于它们的大小、类型、形状和浓度。研究表明,开发先进技术以有效地从SS中去除MPs的研究仍处于初级阶段。本综述通过验证现有知识,从不同方面对SS中的MPs进行了全面分析,包括全球污水处理厂污泥中MPs的发生率,不同传统污泥处理工艺对MPs的影响,以及先进污泥处理和升级回收技术消除MPs的效率,这将有助于从系统和整体层面制定缓解措施。图形抽象
{"title":"Contemporary Drift in Emerging Micro(nano)plastics Removal and Upcycling Technologies from Municipal Wastewater Sludge: Strategic Innovations and Prospects","authors":"Vinay,&nbsp;Deepti Surana,&nbsp;Pooja Ghosh,&nbsp;Manish Kumar,&nbsp;Sunita Varjani,&nbsp;Vivek Kumar,&nbsp;Giorgio Mannina","doi":"10.1007/s40726-023-00261-y","DOIUrl":"10.1007/s40726-023-00261-y","url":null,"abstract":"<div><h3>Purpose of Review</h3><p>Annually, huge amounts of microplastics (MPs) are added to farmlands through sewage sludge (SS)/biosolid applications as a fertilizer. Most research emphasizes the enormity of the problem and demonstrates the fate, impacts, and toxicity of MPs during SS treatment processes and land applications. None has addressed the management strategies. To address the gaps, the current review evaluates the performance analysis of conventional and advanced sludge treatment methods in eliminating MPs from sludge.</p><h3>Recent Findings</h3><p>The review uncovers that the occurrence and characteristics of MPs in SS are highly governed by factors such as population density, speed and level of urbanization, citizens’ daily habits, and treatment units in wastewater treatment plants (WWTPs). Furthermore, conventional sludge treatment processes are ineffective in eliminating MPs from SS and are accountable for the increased small-sized MPs or micro(nano)plastics (MNPs) along with altered surface morphology facilitating more co-contaminant adsorption. Simultaneously, MPs can influence the operation of these treatment processes depending on their size, type, shape, and concentration. The review reveals that research to develop advanced technology to remove MPs efficiently from SS is still at a nascent stage.</p><h3>Summary</h3><p>This review provides a comprehensive analysis of MPs in the SS, by corroborating state-of-the-knowledge, on different aspects, including the global occurrence of MPs in WWTP sludge, impacts of different conventional sludge treatment processes on MPs and vice versa, and efficiency of advanced sludge treatment and upcycling technologies to eliminate MPs, which will facilitate the development of mitigation measures from the systematic and holistic level.</p><h3>Graphical Abstract</h3>\u0000 <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\u0000 </div>","PeriodicalId":528,"journal":{"name":"Current Pollution Reports","volume":"9 2","pages":"174 - 197"},"PeriodicalIF":7.3,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40726-023-00261-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4875125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Biodegradation of Neonicotinoids: Current Trends and Future Prospects 新烟碱类生物降解:当前趋势和未来展望
IF 7.3 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Pub Date : 2023-05-20 DOI: 10.1007/s40726-023-00265-8
Pallavi Gautam, Suresh Kumar Dubey

Purpose of Review

Neonicotinoids are synthetic insecticides, and among all agrochemicals, they rank second in consumption. The unparalleled use of neonicotinoids in various sectors including agriculture has currently reintroduced them as emerging pollutants/hazards due to their endocrine-disrupting nature. High water solubility, low volatility, and persistent nature have resulted in their accumulation in the environment. Thus, investigating efficient and sustainable methods for the remediation of contaminated environments due to this pollutant is imperative.

Recent Findings.

Bioremediation provides a cost-effective and environment-friendly option over conventional physicochemical techniques that produce toxic byproducts. The microbial route for degradation has the potential to completely mineralize neonicotinoids by virtue of their adaptive and diverse metabolic machinery. Potent microbes such as Ensifer, Phanerochaete, Bacillus, Ochrobactrum, Trametes, Rhodococcus, Sphingobacterium, and Pseudomonas have been isolated and screened for their immense degradation potential, and the metabolites, degradative enzymes, and transformation pathways have been elucidated. The incorporation of modern tools/techniques such as metabolic engineering, microbial biotechnology, omics-based database approaches or systems biology, artificial intelligence, and machine learning can fasten and give better bioremediation results.

Summary

This study has aimed to summarize the processes employed to date to degrade neonicotinoids and present a comprehensive report reflecting past efforts, advances, and future prospects. Therefore, this report will be beneficial in strengthening the understanding of the extent of efforts made for neonicotinoid degradation and how conventional approaches such as bioaugmentation, biostimulation, and biofiltration can be accelerated by advanced technologies viz., omics and machine learning.

综述目的新烟碱类杀虫剂是一种人工合成杀虫剂,在所有农用化学品中用量居第二位。新烟碱类在包括农业在内的各个部门的空前使用,由于其干扰内分泌的性质,目前已将其作为新出现的污染物/危害重新引入。高水溶性、低挥发性和持久性使其在环境中积累。因此,研究有效和可持续的方法来修复由于这种污染物而污染的环境是势在必行的。最近的发现。与产生有毒副产品的传统物理化学技术相比,生物修复提供了一种成本效益高、环境友好的选择。微生物降解途径凭借其适应性和多样化的代谢机制,具有完全矿化新烟碱的潜力。因其巨大的降解潜力,对Ensifer、Phanerochaete、Bacillus、Ochrobactrum、Trametes、Rhodococcus、Sphingobacterium和Pseudomonas等有效微生物进行了分离和筛选,并对其代谢产物、降解酶和转化途径进行了阐明。结合现代工具/技术,如代谢工程、微生物生物技术、基于组学的数据库方法或系统生物学、人工智能和机器学习,可以加快并提供更好的生物修复结果。本研究旨在总结迄今为止用于降解新烟碱类的工艺,并提出一份反映过去努力、进展和未来前景的综合报告。
{"title":"Biodegradation of Neonicotinoids: Current Trends and Future Prospects","authors":"Pallavi Gautam,&nbsp;Suresh Kumar Dubey","doi":"10.1007/s40726-023-00265-8","DOIUrl":"10.1007/s40726-023-00265-8","url":null,"abstract":"<div><h3>Purpose of Review</h3><p>Neonicotinoids are synthetic insecticides, and among all agrochemicals, they rank second in consumption. The unparalleled use of neonicotinoids in various sectors including agriculture has currently reintroduced them as emerging pollutants/hazards due to their endocrine-disrupting nature. High water solubility, low volatility, and persistent nature have resulted in their accumulation in the environment. Thus, investigating efficient and sustainable methods for the remediation of contaminated environments due to this pollutant is imperative.</p><h3>Recent Findings.</h3><p>Bioremediation provides a cost-effective and environment-friendly option over conventional physicochemical techniques that produce toxic byproducts. The microbial route for degradation has the potential to completely mineralize neonicotinoids by virtue of their adaptive and diverse metabolic machinery. Potent microbes such as <i>Ensifer</i>, <i>Phanerochaete</i>, <i>Bacillus</i>, <i>Ochrobactrum</i>, <i>Trametes</i>, <i>Rhodococcus</i>, <i>Sphingobacterium</i>, and <i>Pseudomonas</i> have been isolated and screened for their immense degradation potential, and the metabolites, degradative enzymes, and transformation pathways have been elucidated. The incorporation of modern tools/techniques such as metabolic engineering, microbial biotechnology, omics-based database approaches or systems biology, artificial intelligence, and machine learning can fasten and give better bioremediation results.</p><h3>Summary</h3><p>This study has aimed to summarize the processes employed to date to degrade neonicotinoids and present a comprehensive report reflecting past efforts, advances, and future prospects. Therefore, this report will be beneficial in strengthening the understanding of the extent of efforts made for neonicotinoid degradation and how conventional approaches such as bioaugmentation, biostimulation, and biofiltration can be accelerated by advanced technologies viz., omics and machine learning.\u0000</p></div>","PeriodicalId":528,"journal":{"name":"Current Pollution Reports","volume":"9 3","pages":"410 - 432"},"PeriodicalIF":7.3,"publicationDate":"2023-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40726-023-00265-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"6713740","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Photosynthetic Algal Microbial Fuel Cell (PAMFC) for Wastewater Removal and Energy Recovery: A Review 光合藻类微生物燃料电池(PAMFC)用于废水去除和能量回收的研究进展
IF 7.3 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Pub Date : 2023-05-18 DOI: 10.1007/s40726-023-00267-6
Xiaoyan Wang, Yu Hong, Yuewen Zhang

Purpose of Review

Microalgae-based photosynthetic algal biofuel cells (PAMFCs) are effective devices for purifying wastewater and fixing carbon, nitrogen, and phosphorus, converting light energy into electricity for integrated bioelectricity, biodiesel feedstock, and more. This paper reviewed the great potential of PAMFC for wastewater treatment and energy utilization, providing new ideas for wastewater treatment and green energy development.

Recent Findings

The concept of the PAMFC is to convert pollutants into bioelectricity by using the metabolic activity of microbial populations in the wastewater, and the microalgae at the cathode make it possible to convert solar energy into green energy. The construction and type of PAMFC, biotic and abiotic factors all have an impact on its wastewater treatment and energy production. Considering the above facts, the drawbacks of PAMFC were summarized and the future development for its application in wastewater treatment and energy use was prospected.

Summary

This paper reviewed the use of PAMFC systems to recover resources in the form of nutrients, bioelectricity, and biodiesel feedstock in wastewater treatment. The selection of reactor configuration, cathode and anode materials, electrogenic microorganisms, and system optimization conditions were analyzed. The limitations of PAMFC in terms of reactor performance and scale in practical production applications were discussed and future directions for PAMFC were proposed.

基于微藻的光合藻类生物燃料电池(pamfc)是净化废水和固定碳、氮、磷,将光能转化为电能的有效装置,可用于综合生物电、生物柴油原料等。本文综述了PAMFC在污水处理和能源利用方面的巨大潜力,为污水处理和绿色能源发展提供了新的思路。PAMFC的概念是利用废水中微生物种群的代谢活动将污染物转化为生物电,而阴极的微藻使太阳能转化为绿色能源成为可能。PAMFC的结构和类型、生物和非生物因素都对其废水处理和能源生产产生影响。总结了PAMFC存在的不足,并对其在污水处理和能源利用方面的应用前景进行了展望。本文综述了PAMFC系统在废水处理中回收营养物、生物电和生物柴油原料等方面的应用。分析了反应器配置、正极材料、产电微生物的选择以及系统优化条件。讨论了PAMFC在反应器性能和实际生产应用规模方面的局限性,并提出了PAMFC的未来发展方向。
{"title":"Photosynthetic Algal Microbial Fuel Cell (PAMFC) for Wastewater Removal and Energy Recovery: A Review","authors":"Xiaoyan Wang,&nbsp;Yu Hong,&nbsp;Yuewen Zhang","doi":"10.1007/s40726-023-00267-6","DOIUrl":"10.1007/s40726-023-00267-6","url":null,"abstract":"<div><h3>Purpose of Review</h3><p>Microalgae-based photosynthetic algal biofuel cells (PAMFCs) are effective devices for purifying wastewater and fixing carbon, nitrogen, and phosphorus, converting light energy into electricity for integrated bioelectricity, biodiesel feedstock, and more. This paper reviewed the great potential of PAMFC for wastewater treatment and energy utilization, providing new ideas for wastewater treatment and green energy development.</p><h3>Recent Findings</h3><p>The concept of the PAMFC is to convert pollutants into bioelectricity by using the metabolic activity of microbial populations in the wastewater, and the microalgae at the cathode make it possible to convert solar energy into green energy. The construction and type of PAMFC, biotic and abiotic factors all have an impact on its wastewater treatment and energy production. Considering the above facts, the drawbacks of PAMFC were summarized and the future development for its application in wastewater treatment and energy use was prospected.</p><h3>Summary</h3><p>This paper reviewed the use of PAMFC systems to recover resources in the form of nutrients, bioelectricity, and biodiesel feedstock in wastewater treatment. The selection of reactor configuration, cathode and anode materials, electrogenic microorganisms, and system optimization conditions were analyzed. The limitations of PAMFC in terms of reactor performance and scale in practical production applications were discussed and future directions for PAMFC were proposed.</p></div>","PeriodicalId":528,"journal":{"name":"Current Pollution Reports","volume":"9 3","pages":"359 - 373"},"PeriodicalIF":7.3,"publicationDate":"2023-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"6713747","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Source, Occurrence, and Risk Assessment of Antineoplastic Medicines in Aquatic Environments: A Comprehensive Review 水生环境中抗肿瘤药物的来源、发生及风险评估综述
IF 7.3 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Pub Date : 2023-05-17 DOI: 10.1007/s40726-023-00266-7
Ankush Yadav, Eldon R. Rene, Manisha Sharma, Vinod Kumar, Mrinal Kanti Mandal, Kashyap Kumar Dubey

Purpose of Review

This review article focuses to fulfill the gaps in the available literature on cancer incidence, antineoplastic drug consumption, environmental persistence, and toxicity assessment and provides a better understanding of the evaluation of the risk and difficulties resulting from the emergence of anticancer medications.

Recent Findings

Large amounts of antineoplastic drugs present in water bodies have adverse effects on the environment and human health. As the number of cancer patients continues to grow exponentially, the prevalence of antineoplastic chemicals in aquatic environments is steadily increasing worldwide. The oncology wards at hospitals, pharmaceutical firms, and municipal garbage (from outpatients) are the biggest contributors to the presence of antineoplastic drugs in aquatic environments. When released into the environment, the unmetabolized fraction/derivatives and free radicals of these medicines are more toxic.

Summary

It is evident from the review that the ecotoxicity, mutagenicity, and cytotoxicity are a result of the persistence of antineoplastic drug residual in water bodies. Thus, the presence of such substances in water bodies is detrimental to the health of both aquatic species and humans. The fate of antineoplastic drugs in the environment will also cause an adverse effect on agricultural crops and the soil microflora if the treated wastewater would be used for irrigation purposes.

本文旨在弥补现有文献在肿瘤发病率、抗肿瘤药物消费、环境持久性和毒性评价等方面的空白,使人们更好地了解抗癌药物的出现所带来的风险和困难。最新发现水体中大量存在的抗肿瘤药物对环境和人体健康有不良影响。随着癌症患者的数量呈指数级增长,世界范围内水生环境中抗肿瘤化学物质的使用也在稳步增加。医院的肿瘤病房、制药公司和城市垃圾(来自门诊病人)是水生环境中抗肿瘤药物存在的最大贡献者。当释放到环境中时,这些药物的未代谢部分/衍生物和自由基的毒性更大。综述表明,抗肿瘤药物残留在水体中具有生态毒性、致突变性和细胞毒性。因此,这些物质在水体中的存在对水生物种和人类的健康都是有害的。如果处理后的废水用于灌溉,抗肿瘤药物在环境中的命运也会对农作物和土壤微生物群造成不利影响。
{"title":"Source, Occurrence, and Risk Assessment of Antineoplastic Medicines in Aquatic Environments: A Comprehensive Review","authors":"Ankush Yadav,&nbsp;Eldon R. Rene,&nbsp;Manisha Sharma,&nbsp;Vinod Kumar,&nbsp;Mrinal Kanti Mandal,&nbsp;Kashyap Kumar Dubey","doi":"10.1007/s40726-023-00266-7","DOIUrl":"10.1007/s40726-023-00266-7","url":null,"abstract":"<div><h3>Purpose of Review</h3><p>This review article focuses to fulfill the gaps in the available literature on cancer incidence, antineoplastic drug consumption, environmental persistence, and toxicity assessment and provides a better understanding of the evaluation of the risk and difficulties resulting from the emergence of anticancer medications.</p><h3>Recent Findings</h3><p>Large amounts of antineoplastic drugs present in water bodies have adverse effects on the environment and human health. As the number of cancer patients continues to grow exponentially, the prevalence of antineoplastic chemicals in aquatic environments is steadily increasing worldwide. The oncology wards at hospitals, pharmaceutical firms, and municipal garbage (from outpatients) are the biggest contributors to the presence of antineoplastic drugs in aquatic environments. When released into the environment, the unmetabolized fraction/derivatives and free radicals of these medicines are more toxic.</p><h3>Summary</h3><p>It is evident from the review that the ecotoxicity, mutagenicity, and cytotoxicity are a result of the persistence of antineoplastic drug residual in water bodies. Thus, the presence of such substances in water bodies is detrimental to the health of both aquatic species and humans. The fate of antineoplastic drugs in the environment will also cause an adverse effect on agricultural crops and the soil microflora if the treated wastewater would be used for irrigation purposes.</p></div>","PeriodicalId":528,"journal":{"name":"Current Pollution Reports","volume":"9 3","pages":"391 - 409"},"PeriodicalIF":7.3,"publicationDate":"2023-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40726-023-00266-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"6713801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bioaccumulation of Metals in Various Tissues of Fish Species in Relation to Fish Size and Gender and Health Risk Assessment 鱼类不同组织中金属的生物积累与鱼的大小、性别及健康风险评估
IF 7.3 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Pub Date : 2023-05-17 DOI: 10.1007/s40726-023-00263-w
Memet Varol, Emel Kaçar

Purpose of Review

This study was aimed at identifying the differences in the levels of 17 metals and elements (MEs) between fish species (Capoeta tinca and Squalius pursakensis) and fish tissues (muscle, gills, and liver), at identifying the effect of fish gender and fish size (length and weight) on bioaccumulation of MEs in tissues, at assessing both health risks and benefits of MEs in fish muscle, and at defining safe fish consumption quantities for consumers.

Recent Findings

The levels of most MEs in tissues did not differ significantly between both fish species. The gills had higher levels of most MEs than the liver and muscle. Only a few MEs in the tissues of both fish species demonstrated significant associations with fish length or weight. There were no significant differences between male and female fish in terms of the levels of most metals in tissues. The estimated daily intake (EDI) values of metals were below the reference doses. Target hazard quotient (THQ) and hazard index (HI) values were less than 1. Carcinogenic risk (CR) values were within or below the acceptable range. Also, maximum safe fish consumption quantities (MSCQs) were established for consumers.

Summary

Because both fish species were collected from the same water body and had the same habitat preferences, the levels of most MEs did not differ significantly in the tissues of both fish species. Because the gills and liver are metabolically active organs, they had higher levels of MEs than the muscle. The relationships between the levels of MEs in the tissues and fish size were both unclear and inconsistent. The results indicated that ME accumulation in tissues of individuals within the same species was not significantly influenced by gender. The THQ, HI, CR, and EDI values indicated that no adverse health consequences are expected for consumers. It was established that daily consumption of less than 50 g of C. tinca or 80 g of S. pursakensis would not be harmful to consumers’ health. Nutritional evaluation results indicated that both fish species are good sources of essential MEs. Therefore, consumption of the fish species would bring tremendous health benefits.

本研究的目的是确定17种金属和元素(MEs)在鱼类(卡波塔(Capoeta tinca)和普萨卡(Squalius pursakensis)和鱼类组织(肌肉、鳃和肝脏)之间的水平差异,确定鱼类性别和鱼类大小(长度和重量)对MEs在组织中生物积累的影响,评估鱼类肌肉中MEs的健康风险和益处,并确定消费者的安全鱼类消费量。最近的发现在两种鱼类的组织中,大多数MEs的水平没有显著差异。与肝脏和肌肉相比,鱼鳃中大多数MEs的含量更高。在两种鱼类的组织中,只有少数MEs与鱼的长度或体重有显著的关联。就组织中大多数金属的含量而言,雄鱼和雌鱼之间没有显著差异。估计每日金属摄入量(EDI)值低于参考剂量。目标危害商(THQ)和危害指数(HI)值均小于1。致癌风险(CR)值在可接受范围内或以下。此外,还为消费者制定了最大安全鱼类消费量(MSCQs)。由于两种鱼类来自同一水体,具有相同的生境偏好,因此两种鱼类组织中大多数MEs的水平差异不显著。由于鳃和肝脏是代谢活跃的器官,它们的MEs水平高于肌肉。组织中MEs水平与鱼的大小之间的关系既不清楚也不一致。结果表明,同一物种内个体组织中ME积累不受性别的显著影响。THQ、HI、CR和EDI值表明,预计不会对消费者的健康造成不良后果。结果表明,每天摄入少于50克的天麻或少于80克的紫苏对消费者的健康是无害的。营养评价结果表明,这两种鱼类都是必需微量元素的良好来源。因此,食用这些鱼类将带来巨大的健康益处。
{"title":"Bioaccumulation of Metals in Various Tissues of Fish Species in Relation to Fish Size and Gender and Health Risk Assessment","authors":"Memet Varol,&nbsp;Emel Kaçar","doi":"10.1007/s40726-023-00263-w","DOIUrl":"10.1007/s40726-023-00263-w","url":null,"abstract":"<div><h3>Purpose of Review</h3><p>This study was aimed at identifying the differences in the levels of 17 metals and elements (MEs) between fish species (<i>Capoeta tinca</i> and <i>Squalius pursakensis</i>) and fish tissues (muscle, gills, and liver), at identifying the effect of fish gender and fish size (length and weight) on bioaccumulation of MEs in tissues, at assessing both health risks and benefits of MEs in fish muscle, and at defining safe fish consumption quantities for consumers.</p><h3>Recent Findings</h3><p>The levels of most MEs in tissues did not differ significantly between both fish species. The gills had higher levels of most MEs than the liver and muscle. Only a few MEs in the tissues of both fish species demonstrated significant associations with fish length or weight. There were no significant differences between male and female fish in terms of the levels of most metals in tissues. The estimated daily intake (EDI) values of metals were below the reference doses. Target hazard quotient (THQ) and hazard index (HI) values were less than 1. Carcinogenic risk (CR) values were within or below the acceptable range. Also, maximum safe fish consumption quantities (MSCQs) were established for consumers.</p><h3>Summary</h3><p>Because both fish species were collected from the same water body and had the same habitat preferences, the levels of most MEs did not differ significantly in the tissues of both fish species. Because the gills and liver are metabolically active organs, they had higher levels of MEs than the muscle. The relationships between the levels of MEs in the tissues and fish size were both unclear and inconsistent. The results indicated that ME accumulation in tissues of individuals within the same species was not significantly influenced by gender. The THQ, HI, CR, and EDI values indicated that no adverse health consequences are expected for consumers. It was established that daily consumption of less than 50 g of <i>C. tinca</i> or 80 g of <i>S. pursakensis</i> would not be harmful to consumers’ health. Nutritional evaluation results indicated that both fish species are good sources of essential MEs. Therefore, consumption of the fish species would bring tremendous health benefits.</p></div>","PeriodicalId":528,"journal":{"name":"Current Pollution Reports","volume":"9 3","pages":"327 - 337"},"PeriodicalIF":7.3,"publicationDate":"2023-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40726-023-00263-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"6713800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Occurrence, Degradation Pathways, and Potential Synergistic Degradation Mechanism of Microplastics in Surface Water: A Review 微塑料在地表水中的存在、降解途径及潜在的协同降解机制综述
IF 7.3 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Pub Date : 2023-05-13 DOI: 10.1007/s40726-023-00262-x
Lihua Niu, Yingjie Wang, Yi Li, Li Lin, Yamei Chen, Jiayan Shen

Purpose of Review

As the initial acceptor of terrigenous microplastics and the primary transporter of marine microplastics, the migration and degradation characteristics of microplastics in surface water need to be better understood. This review aims to summarize the migration and accumulation rules of microplastics in different types of surface water; analyze typical microplastic degradation pathways, and discuss the potential synergistic degradation mechanisms of microplastics in surface water.

Recent Findings

Microplastics was detected in almost all of the surface water. Some significant accumulation of microplastics occurred in local reaches of rivers, lakes, and reservoirs, which was influenced by different environment factors. Though petroleum-based plastics were defined as non-degradable plastics, physical, chemical, and biological degradation pathways of microplastics were constantly verified to occur widely in surface waters. More and more microplastics-degrading microbes, including bacteria, fungi, and even virus, were identified or speculated to directly or indirectly take part in the biodegradation of microplastics. Synergistic degradation processes of microplastics were continuously found in some natural waters, and the mechanisms were explored.

Summary

Multiple sinks of microplastics occurred in the sediments of surface water, such as urban rivers, the mouth of the lake, and reservoirs. The diversity of microplastics-degrading microbes may be much more than what we know previously. This review highlights that there are two scales of synergistic degradation of microplastics, which couple different microbes in the plastispheres and couple biophysical chemical actions in surface water separately. In all, the true degradation potential of microplastics needs to be deeply explored in surface water.

Graphical Abstract

Title: Migration, distribution, and synergistic degradation of microplastics in surface water.

Description: After entering the surface water, microplastics produced by human activities accumulate in different areas through longitudinal, lateral, and vertical migration. At the same time, the synergistic degradation of physical, chemical, and biological microplastics is also taking place, which affects the occurrence of microplastics.

摘要作为陆源微塑料的初始受体和海洋微塑料的主要转运体,地表水中微塑料的迁移和降解特性有待进一步研究。本文综述了微塑料在不同类型地表水中的迁移和积累规律;分析了典型的微塑料降解途径,探讨了微塑料在地表水中潜在的协同降解机制。最近的发现:在几乎所有的地表水中都检测到微塑料。微塑料在河流、湖泊和水库的局部河段出现了明显的积累,这受到不同环境因素的影响。虽然石油基塑料被定义为不可降解塑料,但微塑料的物理、化学和生物降解途径不断被证实在地表水中广泛存在。越来越多的微塑料降解微生物,包括细菌、真菌,甚至病毒,被发现或推测直接或间接地参与微塑料的生物降解。在一些天然水体中不断发现微塑料的协同降解过程,并对其机理进行了探讨。城市河流、河口、水库等地表水沉积物中存在多个微塑料汇。微塑料降解微生物的多样性可能比我们以前所知道的要多得多。本文综述了微塑料协同降解的两个尺度,即塑料球中不同微生物的协同降解和地表水中生物物理化学作用的协同降解。总之,微塑料在地表水中的真正降解潜力需要深入探索。题目:微塑料在地表水中的迁移、分布和协同降解。描述:人类活动产生的微塑料进入地表水后,通过纵向、横向和垂直迁移在不同区域积累。同时,物理、化学、生物微塑料的协同降解也在发生,影响着微塑料的发生。
{"title":"Occurrence, Degradation Pathways, and Potential Synergistic Degradation Mechanism of Microplastics in Surface Water: A Review","authors":"Lihua Niu,&nbsp;Yingjie Wang,&nbsp;Yi Li,&nbsp;Li Lin,&nbsp;Yamei Chen,&nbsp;Jiayan Shen","doi":"10.1007/s40726-023-00262-x","DOIUrl":"10.1007/s40726-023-00262-x","url":null,"abstract":"<div><h3>Purpose of Review</h3><p>As the initial acceptor of terrigenous microplastics and the primary transporter of marine microplastics, the migration and degradation characteristics of microplastics in surface water need to be better understood. This review aims to summarize the migration and accumulation rules of microplastics in different types of surface water; analyze typical microplastic degradation pathways, and discuss the potential synergistic degradation mechanisms of microplastics in surface water.</p><h3>Recent Findings</h3><p>Microplastics was detected in almost all of the surface water. Some significant accumulation of microplastics occurred in local reaches of rivers, lakes, and reservoirs, which was influenced by different environment factors. Though petroleum-based plastics were defined as non-degradable plastics, physical, chemical, and biological degradation pathways of microplastics were constantly verified to occur widely in surface waters. More and more microplastics-degrading microbes, including bacteria, fungi, and even virus, were identified or speculated to directly or indirectly take part in the biodegradation of microplastics. Synergistic degradation processes of microplastics were continuously found in some natural waters, and the mechanisms were explored.</p><h3>Summary</h3><p>Multiple sinks of microplastics occurred in the sediments of surface water, such as urban rivers, the mouth of the lake, and reservoirs. The diversity of microplastics-degrading microbes may be much more than what we know previously. This review highlights that there are two scales of synergistic degradation of microplastics, which couple different microbes in the plastispheres and couple biophysical chemical actions in surface water separately. In all, the true degradation potential of microplastics needs to be deeply explored in surface water.</p><h3>Graphical Abstract</h3><p>Title: Migration, distribution, and synergistic degradation of microplastics in surface water.</p><p>Description: After entering the surface water, microplastics produced by human activities accumulate in different areas through longitudinal, lateral, and vertical migration. At the same time, the synergistic degradation of physical, chemical, and biological microplastics is also taking place, which affects the occurrence of microplastics.</p>\u0000 <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\u0000 </div>","PeriodicalId":528,"journal":{"name":"Current Pollution Reports","volume":"9 2","pages":"312 - 326"},"PeriodicalIF":7.3,"publicationDate":"2023-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4842510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Research Progress on Structural Characteristics, Structure-Application Relationships, and Environmental Application of Biochar-Supported Zero Valent Iron (ZVI-BC) 生物炭负载零价铁(ZVI-BC)的结构特性、结构-应用关系及环境应用研究进展
IF 7.3 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Pub Date : 2023-04-20 DOI: 10.1007/s40726-023-00260-z
Fengmin Li, Xiao Wang, Chunhua Xu

Purpose of Review

The biochar-supported zero valent iron (ZVI-BC) can effectively prevent oxidation and agglomeration of ZVI, and improve the utilization rate of ZVI. Recent reviews of ZVI-BC mainly focus on the preparation methods, characterization techniques, and reaction mechanism with pollutants. Since the structural characteristics of biochar have a great impact on Fe0 loading, a comprehensive review of the structural characteristics of biochar is needed to explain its influence on ZVI formation during preparation. And in application of ZVI-BC, the environmental effects on organisms need to be considered. This review of recent research results provides a perspective for understanding the structural characteristics, preparation factors, and ecotoxicity of ZVI-BC.

Recent Findings

The adsorption capacity of ZVI-BC prepared by conventional methods still needs to be improved. The surface-area-normalized reaction rate constant (kSA) of ZVI-BC can be increased to about 180 times by surface modification, adding a stabilizer, element doping, and other modification methods. Recent research on ecotoxicity has shown mostly positive effects of ZVI-BC on microorganisms, animals, and plants during environmental remediation.

Summary

This work reviews the effect of biochar as a support matrix on Fe0 production. The pollutant removal performance is summarized considering the elemental composition, phase components, and surface chemical properties. Also, we discuss the effect of ZVI-BC preparation on contaminant removal and propose methods to optimize the performance of ZVI-BC. The kSA was used to conduct a meta-analysis of kinetic data to illustrate the properties of ZVI-BC. In addition, we evaluate the ecotoxicity of using ZVI-BC in environmental remediation.

Graphical Abstract

生物炭负载的零价铁(ZVI- bc)能有效防止ZVI的氧化和结块,提高ZVI的利用率。近年来对ZVI-BC的研究进展主要集中在制备方法、表征技术以及与污染物的反应机理等方面。由于生物炭的结构特性对Fe0负载有很大影响,因此需要对生物炭的结构特性进行全面的综述,以解释其在制备过程中对ZVI形成的影响。在ZVI-BC的应用中,需要考虑对生物的环境影响。本文综述了近年来的研究成果,为进一步了解ZVI-BC的结构特征、制备因素和生态毒性提供了一个新的视角。常规方法制备的ZVI-BC吸附性能有待提高。通过表面改性、添加稳定剂、元素掺杂等改性方法,ZVI-BC的表面积归一化反应速率常数(kSA)可提高到180倍左右。最近的生态毒性研究表明,在环境修复过程中,ZVI-BC对微生物、动物和植物的影响主要是积极的。本文综述了生物炭作为载体基质对制备Fe0的影响。从元素组成、相组成和表面化学性质等方面对污染物的去除性能进行了总结。讨论了制备ZVI-BC对污染物去除的影响,并提出了优化ZVI-BC性能的方法。使用kSA对动力学数据进行meta分析,以说明ZVI-BC的特性。此外,我们还对ZVI-BC在环境修复中的生态毒性进行了评价。图形抽象
{"title":"Research Progress on Structural Characteristics, Structure-Application Relationships, and Environmental Application of Biochar-Supported Zero Valent Iron (ZVI-BC)","authors":"Fengmin Li,&nbsp;Xiao Wang,&nbsp;Chunhua Xu","doi":"10.1007/s40726-023-00260-z","DOIUrl":"10.1007/s40726-023-00260-z","url":null,"abstract":"<div><h3>Purpose of Review</h3><p>The biochar-supported zero valent iron (ZVI-BC) can effectively prevent oxidation and agglomeration of ZVI, and improve the utilization rate of ZVI. Recent reviews of ZVI-BC mainly focus on the preparation methods, characterization techniques, and reaction mechanism with pollutants. Since the structural characteristics of biochar have a great impact on Fe<sup>0</sup> loading, a comprehensive review of the structural characteristics of biochar is needed to explain its influence on ZVI formation during preparation. And in application of ZVI-BC, the environmental effects on organisms need to be considered. This review of recent research results provides a perspective for understanding the structural characteristics, preparation factors, and ecotoxicity of ZVI-BC.</p><h3>Recent Findings</h3><p>The adsorption capacity of ZVI-BC prepared by conventional methods still needs to be improved. The surface-area-normalized reaction rate constant (<i>k</i><sub><i>SA</i></sub>) of ZVI-BC can be increased to about 180 times by surface modification, adding a stabilizer, element doping, and other modification methods. Recent research on ecotoxicity has shown mostly positive effects of ZVI-BC on microorganisms, animals, and plants during environmental remediation.</p><h3>Summary</h3><p>This work reviews the effect of biochar as a support matrix on Fe<sup>0</sup> production. The pollutant removal performance is summarized considering the elemental composition, phase components, and surface chemical properties. Also, we discuss the effect of ZVI-BC preparation on contaminant removal and propose methods to optimize the performance of ZVI-BC. The <i>k</i><sub><i>SA</i></sub> was used to conduct a meta-analysis of kinetic data to illustrate the properties of ZVI-BC. In addition, we evaluate the ecotoxicity of using ZVI-BC in environmental remediation.</p><h3>Graphical Abstract</h3>\u0000 <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\u0000 </div>","PeriodicalId":528,"journal":{"name":"Current Pollution Reports","volume":"9 2","pages":"292 - 311"},"PeriodicalIF":7.3,"publicationDate":"2023-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5076688","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Recent Advances on Using Functional Materials to Increase the Pollutant Removal Capabilities of Microalgae and Bacteria: Especially for Their Symbiotic Systems 利用功能材料提高微藻和细菌对污染物去除能力的研究进展:特别是对它们共生系统的研究
IF 7.3 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Pub Date : 2023-04-19 DOI: 10.1007/s40726-023-00259-6
Yuewen Zhang, Yu Hong, Xiaoyan Wang

Purpose of Review

The purpose of this review is to summarize the current interactions between functional materials and microalgae, bacteria, and algal-bacterial symbioses in the environment, to analyze the mechanism of interaction between materials and the three, and to explore the development potential of functional materials in the application of algal-bacterial symbioses for better pollutant removal.

Recent Findings

Algal-bacterial symbioses were a more promising means of wastewater treatment, but the efficiency of the treatment needed to be enhanced. Pollutant removal relies mainly on oxidative decomposition nutrient uptake by algal-bacterial symbioses. Some functional materials enhanced the biomass of microalgae by supplementing them with trace elements for growth, regulating their photosynthesis (material conversion spectrum, light capture, and carbon sequestration), stimulating their metabolism, enhancing pigment accumulation, and lipid accumulation, thus indirectly removing pollutants. In addition, the hybrids formed by bacteria and light-absorbing materials were used in the algal-bacterial symbioses via performing artificial photosynthesis for indirect pollutant removal. Thus, the combination of materials with microalgae and bacteria has broader application prospects.

Summary

The introduction of functional materials increased the efficiency of algal-bacterial symbioses in treating pollutants, which was mainly facilitated by increasing microalgal biomass to convert pollutants to algal-bacterial symbioses. This paper reviewed the research process of algal-bacterial symbioses for pollutants treatment and investigated the reaction mechanism of materials with microalgae, bacteria, and algal-bacterial symbioses, respectively. Overall, this review focuses on the development trend of functional materials in algal-bacterial symbioses and provides a reference for their application in algal-bacterial symbiotic system for wastewater treatment.

本文综述了当前环境中功能材料与微藻、细菌、藻-菌共生相互作用的研究现状,分析了材料与三者相互作用的机理,探讨了功能材料在应用藻-菌共生更好地去除污染物方面的发展潜力。盐-细菌共生是一种更有前途的污水处理方法,但处理效率有待提高。污染物的去除主要依靠藻-菌共生的氧化分解和营养吸收。一些功能材料通过补充微藻生长所需的微量元素,调节其光合作用(物质转换光谱、光捕获、固碳),刺激微藻代谢,促进色素积累、脂质积累,间接去除污染物,从而提高微藻生物量。此外,细菌与吸光材料形成的杂交种通过人工光合作用间接去除污染物,用于藻-细菌共生。因此,材料与微藻和细菌的结合具有更广阔的应用前景。功能材料的引入提高了藻-菌共生处理污染物的效率,主要是通过增加微藻生物量将污染物转化为藻-菌共生来实现。本文综述了藻-菌共生处理污染物的研究进展,并分别探讨了材料与微藻、细菌和藻-菌共生的反应机理。综上所述,本文综述了藻-菌共生功能材料的发展趋势,为其在藻-菌共生废水处理系统中的应用提供参考。
{"title":"Recent Advances on Using Functional Materials to Increase the Pollutant Removal Capabilities of Microalgae and Bacteria: Especially for Their Symbiotic Systems","authors":"Yuewen Zhang,&nbsp;Yu Hong,&nbsp;Xiaoyan Wang","doi":"10.1007/s40726-023-00259-6","DOIUrl":"10.1007/s40726-023-00259-6","url":null,"abstract":"<div><h3>Purpose of Review</h3><p>The purpose of this review is to summarize the current interactions between functional materials and microalgae, bacteria, and algal-bacterial symbioses in the environment, to analyze the mechanism of interaction between materials and the three, and to explore the development potential of functional materials in the application of algal-bacterial symbioses for better pollutant removal.</p><h3>Recent Findings</h3><p>Algal-bacterial symbioses were a more promising means of wastewater treatment, but the efficiency of the treatment needed to be enhanced. Pollutant removal relies mainly on oxidative decomposition nutrient uptake by algal-bacterial symbioses. Some functional materials enhanced the biomass of microalgae by supplementing them with trace elements for growth, regulating their photosynthesis (material conversion spectrum, light capture, and carbon sequestration), stimulating their metabolism, enhancing pigment accumulation, and lipid accumulation, thus indirectly removing pollutants. In addition, the hybrids formed by bacteria and light-absorbing materials were used in the algal-bacterial symbioses via performing artificial photosynthesis for indirect pollutant removal. Thus, the combination of materials with microalgae and bacteria has broader application prospects.</p><h3>Summary</h3><p>The introduction of functional materials increased the efficiency of algal-bacterial symbioses in treating pollutants, which was mainly facilitated by increasing microalgal biomass to convert pollutants to algal-bacterial symbioses. This paper reviewed the research process of algal-bacterial symbioses for pollutants treatment and investigated the reaction mechanism of materials with microalgae, bacteria, and algal-bacterial symbioses, respectively. Overall, this review focuses on the development trend of functional materials in algal-bacterial symbioses and provides a reference for their application in algal-bacterial symbiotic system for wastewater treatment.</p></div>","PeriodicalId":528,"journal":{"name":"Current Pollution Reports","volume":"9 2","pages":"272 - 291"},"PeriodicalIF":7.3,"publicationDate":"2023-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4739976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sustainable Bioconversion of Industrial Wastes into Bacterial Cellulose for Diverse Applications: A Way Towards Pollution Control and Abatement 工业废物可持续生物转化为多种用途的细菌纤维素:一条控制和减少污染的途径
IF 7.3 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Pub Date : 2023-04-17 DOI: 10.1007/s40726-023-00257-8
Ajay Patel, Payal Patel, Arpit Shukla, Jonathan W. C. Wong, Sunita Varjani, Haren Gosai

Socio-economic and environmental factors have led scientific community to find alternative approaches for management of agro-industrial wastes. An integrated approach, i.e., clean biotechnology, could be used for the conversion of agro-industrial wastes into industrial important and less toxic end products. Bacterial cellulose (BC) is an incredibly multifaceted biomaterial with desirable attributes including biodegradability, biocompatibility, great tensile strength, cellulose purity, and porosity. An economical BC production is difficult to owing to the cost of expensive synthetic media. By utilizing processed agro-industrial wastes as media substrate, a sustainable large-scale BC production can be achieved along with an effective waste management strategy. Various types of industrial wastes including crop residues, food industry by-products, distillery effluents, and kitchen wastes are used to produce BC. This review is centered on various aspects of cost-effective BC production using industrial wastes and a wide range of probable substrates with alternative methods for enhanced BC production. Novel applications involving BC in the field of environment, wound healing, drug delivery, dental treatment, etc., with an emphasis on new economic opportunities are also discussed. Overall, this study suggests that integrating different methods and techno-economic analysis would be advantageous to researchers in finding way for sustainable production of BC with reduced environmental pollution for diverse applications.

社会经济和环境因素促使科学界寻找管理农工废物的替代办法。一种综合办法,即清洁生物技术,可用于将农工废料转化为重要的工业和毒性较小的最终产品。细菌纤维素(BC)是一种令人难以置信的多方面的生物材料,具有理想的属性,包括可生物降解性,生物相容性,高拉伸强度,纤维素纯度和孔隙率。由于昂贵的合成介质的成本,经济的BC生产是困难的。通过利用处理过的农业工业废物作为媒介基质,可以实现可持续的大规模BC生产以及有效的废物管理策略。各种类型的工业废物,包括作物残余物、食品工业副产品、酿酒厂废水和厨房废物被用来生产BC。本文综述了利用工业废物和各种可能的基材生产具有成本效益的BC的各个方面,以及提高BC生产的替代方法。本文还讨论了BC在环境、伤口愈合、药物输送、牙科治疗等领域的新应用,并强调了新的经济机会。综上所述,本研究表明,整合不同的方法和技术经济分析将有利于研究人员寻找可持续生产的途径,减少环境污染,以实现多样化的应用。
{"title":"Sustainable Bioconversion of Industrial Wastes into Bacterial Cellulose for Diverse Applications: A Way Towards Pollution Control and Abatement","authors":"Ajay Patel,&nbsp;Payal Patel,&nbsp;Arpit Shukla,&nbsp;Jonathan W. C. Wong,&nbsp;Sunita Varjani,&nbsp;Haren Gosai","doi":"10.1007/s40726-023-00257-8","DOIUrl":"10.1007/s40726-023-00257-8","url":null,"abstract":"<div><p>Socio-economic and environmental factors have led scientific community to find alternative approaches for management of agro-industrial wastes. An integrated approach, i.e., clean biotechnology, could be used for the conversion of agro-industrial wastes into industrial important and less toxic end products. Bacterial cellulose (BC) is an incredibly multifaceted biomaterial with desirable attributes including biodegradability, biocompatibility, great tensile strength, cellulose purity, and porosity. An economical BC production is difficult to owing to the cost of expensive synthetic media. By utilizing processed agro-industrial wastes as media substrate, a sustainable large-scale BC production can be achieved along with an effective waste management strategy. Various types of industrial wastes including crop residues, food industry by-products, distillery effluents, and kitchen wastes are used to produce BC. This review is centered on various aspects of cost-effective BC production using industrial wastes and a wide range of probable substrates with alternative methods for enhanced BC production. Novel applications involving BC in the field of environment, wound healing, drug delivery, dental treatment, etc., with an emphasis on new economic opportunities are also discussed. Overall, this study suggests that integrating different methods and techno-economic analysis would be advantageous to researchers in finding way for sustainable production of BC with reduced environmental pollution for diverse applications.\u0000</p></div>","PeriodicalId":528,"journal":{"name":"Current Pollution Reports","volume":"9 2","pages":"226 - 242"},"PeriodicalIF":7.3,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4666610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Removal of Toxic Metals from Water by Nanocomposites through Advanced Remediation Processes and Photocatalytic Oxidation 纳米复合材料对水中有毒金属的高级修复及光催化氧化研究
IF 7.3 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Pub Date : 2023-04-11 DOI: 10.1007/s40726-023-00253-y
Ahmad Farhan, Misbah Zulfiqar,  Samiah, Ehsan Ullah Rashid, Shahid Nawaz, Hafiz M.N. Iqbal, Teofil Jesionowski, Muhammad Bilal, Jakub Zdarta

Purpose of Review

Heavy and toxic metals are becoming more prevalent in the water sources of the globe, which has detrimental repercussions for both human health and the health of ecosystems. The summary of recent findings on treatment possibilities of toxic metal species by nanomaterials should facilitate the development of more advanced techniques of their removal.

Recent Findings

The high concentrations of chromium, mercury, and arsenic identified in wastewater cause a hazard to human health. There is a wide variety of nanoadsorbents and nanophotocatalysts used for heavy/hazardous metal removal. Recent research has resulted in the production of advanced nanostructures that exhibit extraordinary heavy/hazardous metal adsorption effectiveness and photocatalytic diminution of metal ions. These nanostructures have physically and chemically tunable features.

Summary

In this review article, the use of carbon-based nanomaterials, polymer-based nanomaterials, and semiconductor-based nanomaterials are extensively discussed to remove mercury, chromium, and arsenic ions from wastewater by the adsorption process. Advanced nanomaterials involved in photocatalytic reduction are also comprehensively discussed.

审查目的重金属和有毒金属在全球水源中越来越普遍,这对人类健康和生态系统的健康都产生了有害影响。对纳米材料处理有毒金属的可能性的最新发现的总结应有助于开发更先进的去除技术。最近的发现废水中高浓度的铬、汞和砷对人体健康造成危害。有各种各样的纳米吸附剂和纳米光催化剂用于重金属/有害金属的去除。最近的研究已经产生了先进的纳米结构,这些纳米结构表现出非凡的重金属/有害金属吸附效果和金属离子的光催化减少。这些纳米结构具有物理和化学可调的特点。综述了碳基纳米材料、聚合物基纳米材料和半导体基纳米材料在废水中汞、铬、砷离子的吸附去除中的应用。本文还全面讨论了用于光催化还原的先进纳米材料。
{"title":"Removal of Toxic Metals from Water by Nanocomposites through Advanced Remediation Processes and Photocatalytic Oxidation","authors":"Ahmad Farhan,&nbsp;Misbah Zulfiqar,&nbsp; Samiah,&nbsp;Ehsan Ullah Rashid,&nbsp;Shahid Nawaz,&nbsp;Hafiz M.N. Iqbal,&nbsp;Teofil Jesionowski,&nbsp;Muhammad Bilal,&nbsp;Jakub Zdarta","doi":"10.1007/s40726-023-00253-y","DOIUrl":"10.1007/s40726-023-00253-y","url":null,"abstract":"<div><h3>Purpose of Review</h3><p>Heavy and toxic metals are becoming more prevalent in the water sources of the globe, which has detrimental repercussions for both human health and the health of ecosystems. The summary of recent findings on treatment possibilities of toxic metal species by nanomaterials should facilitate the development of more advanced techniques of their removal.</p><h3>Recent Findings</h3><p>The high concentrations of chromium, mercury, and arsenic identified in wastewater cause a hazard to human health. There is a wide variety of nanoadsorbents and nanophotocatalysts used for heavy/hazardous metal removal. Recent research has resulted in the production of advanced nanostructures that exhibit extraordinary heavy/hazardous metal adsorption effectiveness and photocatalytic diminution of metal ions. These nanostructures have physically and chemically tunable features.</p><h3>Summary</h3><p>In this review article, the use of carbon-based nanomaterials, polymer-based nanomaterials, and semiconductor-based nanomaterials are extensively discussed to remove mercury, chromium, and arsenic ions from wastewater by the adsorption process. Advanced nanomaterials involved in photocatalytic reduction are also comprehensively discussed.</p></div>","PeriodicalId":528,"journal":{"name":"Current Pollution Reports","volume":"9 3","pages":"338 - 358"},"PeriodicalIF":7.3,"publicationDate":"2023-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40726-023-00253-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"6713791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
期刊
Current Pollution Reports
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1