Although research on microplastic (MP) pollution in freshwater has increased, much remains unknown about the fate and distribution of this pollutant in sediments. This review provides a global perspective on how research efforts and data collection are distributed, also exploring recent studies on factors that play a key role in MPs transport and influence MP distribution in freshwater sediments worldwide.
The role of human activities, precipitation and stormwater run-off, water flow, sediment grain size, and land use on the spatial and temporal distribution of MPs in sediments has been demonstrated, highlighting the complex interactions between these factors and MP pollution. MPs have been found in sediments of rivers, tributaries, and lakes, from urbanized to remote areas, with variations across regions, ecosystems, and temporal scales. To date, most studies are concentrated in Asia, with limited representativeness of other continents. In addition, limitations remain, as data variations between studies may result from different scales or analytical methods.
This review provides an overview of the spatiotemporal variation of MP pollution in freshwater sediments, highlighting knowledge gaps and challenges. Future research should aim to more geographically balanced studies, addressing both temporal and spatial aspects to better assess the long-term environmental and ecological impacts of MPs in freshwater systems.
Seagrass meadows, essential yet vulnerable marine ecosystems, display complex dual responses to eutrophication. These impacts are especially concerning in seagrass meadows due to the higher frequency and intensity of eutrophication. This review was aimed at summarizing stress responses and adaptive mechanisms of seagrass from the view of eutrophication.
Moderate nitrogen and phosphorus inputs initially enhance photosynthesis and biomass accumulation in nutrient-poor environments by increasing chlorophyll synthesis and photosynthetic efficiency. However, prolonged exposure leads to detrimental effects, including light attenuation from algal blooms, ammonium toxicity impairing electron transport rates, and competitive exclusion by fast-growing algae. Species-specific tolerance varies significantly: resilient seagrasses like Halodule wrightii upregulate antioxidant enzymes (e.g., superoxide dismutase and catalase) and accumulate non-enzymatic flavonoids to mitigate oxidative stress, while sensitive species such as Syringodium filiforme suffer metabolic imbalances and biomass loss. Adaptive mechanisms span multiple scales. At the molecular level, stress-responsive transcription factors (e.g., WRKY transcription factor gene and MYB proto-oncogene transcription factor gene) regulate antioxidant and carbon metabolism genes in Posidonia oceanica under nutrient excess. Physiologically, seagrasses reallocate carbon to belowground tissues under shading and suppress algal competitors via allelochemicals. Ecologically, herbivory-mediated algal control indirectly reduces oxidative stress. Despite these adaptations, chronic eutrophication degrades ecosystem services and destabilizes fishery habitats.
This review summarized the stress responses and adaptive mechanisms of seagrass under eutrophication. Future research must address climate–eutrophication synergies and leverage omics technologies to decode epigenetic resilience mechanisms. Such interdisciplinary efforts are critical to preserving seagrass meadows as blue carbon hubs and biodiversity refuges in rapidly changing coastal ecosystems.
As fossil fuel–related emissions gradually decline, agriculture has become a major source of reactive nitrogen (Nr) in regions such as China, the USA, and Europe, significantly contributing to air pollution, including particulate matter (PM) and surface ozone (O3), as well as climate change. Despite this, agriculture has historically been underrepresented in air quality management and climate policy. Without effective mitigation, agricultural Nr emissions are expected to rise, driven by growing food demand and climate change, further exacerbating their negative impacts on air quality and the climate. This review provides a process-level overview of the current understanding of agricultural Nr emissions and their effects on atmospheric chemistry, with a focus on the underlying mechanisms, and also highlights research gaps and proposes future research directions.
Agricultural Nr emissions are influenced by a variety of factors and released through multiple biotic and abiotic pathways, resulting in significant spatial and temporal variability. Our understanding of the underlying mechanisms driving agricultural Nr emissions remains incomplete, and current emission estimates are associated with substantial uncertainties. Agriculture contributes to ambient PM pollution primarily through ammonia (NH3) emissions and to surface O3 pollution via oxidized Nr species, including nitrous acid (HONO) and nitrogen oxides (NOx). Although the chemistry of PM and surface O3 is highly nonlinear, with sensitivities to their precursors varying widely, agricultural Nr is gradually becoming a key contributor, particularly in regions where fossil fuel emissions are declining, such as China, the USA, and Europe. Agricultural Nr is estimated to exert a net cooling effect, with warming contributions from nitrous oxide (N2O) emissions and cooling from aerosols generated by Nr, although this estimate remains highly uncertain.
Our understanding of the underlying mechanisms driving agricultural Nr emissions remains limited, particularly when it comes to episodic pulses during extreme weather events. A knowledge-guided machine learning approach that integrates ground and airborne observations with process-based agroecosystem models could offer new opportunities for more accurate emission estimations. Further research is essential to fully understand the role of both reduced and oxidized reactive nitrogen in influencing air quality and climate.
Harmful algal blooms (HABs) present a growing threat to seagrass ecosystems, significantly impacting their ecological functions and blue carbon potential. Understanding the complex interactions between HABs and seagrasses is crucial for developing adaptive management strategies to protect seagrass ecosystems.
Recent studies reveal that global HAB events have significantly expanded both geographically and in frequency over the past two decades. The geomorphological processes and depositional environments of seagrass meadows, along with the effects of climate change, act as contemporary drivers that influence algal invasion, presence, and retention within seagrass ecosystems. Emerging research demonstrates that macroalgal blooms can significantly accelerate seagrass carbon loss by enhancing decomposition rates and increasing greenhouse gas emissions from blue carbon stocks. Seagrass allelopathy and associated algicidal bacteria play crucial roles in natural HAB control. Advanced monitoring techniques combining artificial intelligence with remote sensing have achieved significant improvements in detecting and tracking HAB events and seagrass ecosystems.
This review provides a comprehensive analysis of HAB-seagrass interactions, documenting diverse types of HABs affecting seagrass beds, including macroalgal and microalgal blooms. We examine key environmental factors contributing to HABs in seagrass ecosystems, particularly eutrophication, global warming, and ocean acidification, and analyze their complex impact mechanisms, including light limitation, resource competition, biogeochemical alterations, and toxin effects. Natural defense mechanisms of seagrasses, particularly allelopathy and algicidal bacteria, offer potential solutions for HAB control. Effective protection of these valuable blue carbon resources requires integrated adaptive management strategies, combining advanced monitoring technologies, water quality improvement measures, and community-based conservation approaches.
Effective management of aquaculture wastewater is essential for maintaining ecosystem health, ensuring the safety of aquatic products, and protecting human health. Despite advancements in aquaculture practices and wastewater treatment technologies, a comprehensive review addressing the risks associated with various pollutants is lacking. This review aims to fill that gap by examining the risks and regeneration technologies related to aquaculture wastewater.
This systematic review analyzes the risk profiles of different pollutants in aquaculture wastewater, highlighting the complexity of these contaminants. It reviews the characteristics and mechanisms of physical, chemical, and biological regeneration technologies employed in wastewater treatment. The findings indicate that the sources, composition, and hazardous properties of key pollutants vary, and the existing reuse technologies provide differing treatment advantages.
The review identifies limitations in current treatment methods and proposes future research directions, emphasizing the need to investigate the synergistic effects of pollutants, particularly emerging contaminants. It also suggests establishing clear criteria for acceptable contaminant levels and optimizing integrated treatment approaches. These insights will enhance aquaculture wastewater management and contribute to the sustainable development of the aquaculture industry.