Pub Date : 2025-06-01DOI: 10.1016/j.bcra.2024.100272
Xuanming Liu , Jiawen Zhang , Yinghao Wang , Xinpeng Yang , Xiaohu Yang
The trading of data is becoming increasingly important as it holds substantial value. A blockchain-based data marketplace can provide a secure and transparent platform for data exchange. To facilitate this, developing a fair data exchange protocol for digital goods has garnered considerable attention in recent decades. The Zero Knowledge Contingent Payment (ZKCP) protocol enables trustless fair exchanges with the aid of blockchain and zero-knowledge proofs. However, applying this protocol in a practical data marketplace is not trivial.
In this paper, several potential attacks are identified when applying the ZKCP protocol in a practical public data marketplace. To address these issues, we propose SmartZKCP, an enhanced solution that offers improved security measures and increased performance. The protocol is formalized to ensure fairness and secure against potential attacks. Moreover, SmartZKCP offers efficiency optimizations and minimized communication costs. Evaluation results show that SmartZKCP is both practical and efficient, making it applicable in a data exchange marketplace.
{"title":"SmartZKCP: Towards practical data exchange marketplace against active attacks","authors":"Xuanming Liu , Jiawen Zhang , Yinghao Wang , Xinpeng Yang , Xiaohu Yang","doi":"10.1016/j.bcra.2024.100272","DOIUrl":"10.1016/j.bcra.2024.100272","url":null,"abstract":"<div><div>The trading of data is becoming increasingly important as it holds substantial value. A blockchain-based data marketplace can provide a secure and transparent platform for data exchange. To facilitate this, developing a fair data exchange protocol for digital goods has garnered considerable attention in recent decades. The Zero Knowledge Contingent Payment (ZKCP) protocol enables trustless fair exchanges with the aid of blockchain and zero-knowledge proofs. However, applying this protocol in a practical data marketplace is not trivial.</div><div>In this paper, several potential attacks are identified when applying the ZKCP protocol in a practical public data marketplace. To address these issues, we propose SmartZKCP, an enhanced solution that offers improved security measures and increased performance. The protocol is formalized to ensure fairness and secure against potential attacks. Moreover, SmartZKCP offers efficiency optimizations and minimized communication costs. Evaluation results show that SmartZKCP is both practical and efficient, making it applicable in a data exchange marketplace.</div></div>","PeriodicalId":53141,"journal":{"name":"Blockchain-Research and Applications","volume":"6 2","pages":"Article 100272"},"PeriodicalIF":6.9,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144270707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-01DOI: 10.1016/j.bcra.2024.100263
Yuan Zhou , Yaoyao Zhang , Qinglin Yang , Yuan Liu , Chunming Rong , Zhihong Tian
The Cyber Threat Intelligence (CTI) marketplace is an emerging platform for CTI service requesters to countermeasure advanced cyber attacks, where CTI service providers are employed on payment. To create a trustworthy CTI marketplace environment, consortium-blockchain-based CTI service platforms have been widely proposed, where the blockchain system becomes the third role, crucially impacting the CTI service quality. How to sustainably promote CTI service quality in this tripartite marketplace is a challenging issue, which has not been well investigated in the literature. In this study, we propose a two-stage tripartite dynamic game-model-based incentive mechanism, where the participation incentives of the three parties are promoted under the constraints of Individual Rationality (IR) and Incentive Compatibility (IC). The sustainability of CTI service is quantitatively formalized through the CTI market demand, which impacts the future profits of the three parties. The Nash equilibrium of the proposed incentive mechanism is solved, where the CTI requester offers an optimal price to achieve effective defense against cyber attacks, and the blockchain platform and CTI service providers collaboratively contribute high-quality CTI services. Empirical experimental results show that the higher the quality of CTI services provided in the marketplace, the greater the market demand for CTI, resulting in a sustainable CTI marketplace.
{"title":"A blockchain based efficient incentive mechanism in tripartite cyber threat intelligence service marketplace","authors":"Yuan Zhou , Yaoyao Zhang , Qinglin Yang , Yuan Liu , Chunming Rong , Zhihong Tian","doi":"10.1016/j.bcra.2024.100263","DOIUrl":"10.1016/j.bcra.2024.100263","url":null,"abstract":"<div><div>The Cyber Threat Intelligence (CTI) marketplace is an emerging platform for CTI service requesters to countermeasure advanced cyber attacks, where CTI service providers are employed on payment. To create a trustworthy CTI marketplace environment, consortium-blockchain-based CTI service platforms have been widely proposed, where the blockchain system becomes the third role, crucially impacting the CTI service quality. How to sustainably promote CTI service quality in this tripartite marketplace is a challenging issue, which has not been well investigated in the literature. In this study, we propose a two-stage tripartite dynamic game-model-based incentive mechanism, where the participation incentives of the three parties are promoted under the constraints of Individual Rationality (IR) and Incentive Compatibility (IC). The sustainability of CTI service is quantitatively formalized through the CTI market demand, which impacts the future profits of the three parties. The Nash equilibrium of the proposed incentive mechanism is solved, where the CTI requester offers an optimal price to achieve effective defense against cyber attacks, and the blockchain platform and CTI service providers collaboratively contribute high-quality CTI services. Empirical experimental results show that the higher the quality of CTI services provided in the marketplace, the greater the market demand for CTI, resulting in a sustainable CTI marketplace.</div></div>","PeriodicalId":53141,"journal":{"name":"Blockchain-Research and Applications","volume":"6 2","pages":"Article 100263"},"PeriodicalIF":6.9,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144307966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Decentralized finance (DeFi) is a rapidly evolving blockchain technology that offers a new perspective on financial services through Web3 applications. DeFi offers developers the flexibility to create financial services using smart contracts, leading to a lack of standardized protocols and challenges in applying traditional finance models for risk assessment, especially in the early stages of adoption. The Maker protocol is a prominent DeFi platform known for its diverse functionalities, including loan services. This study focuses on analyzing the risk associated with Maker's loan portfolio by developing a risk model based on multiple Brownian motions and passage levels, with Brownian motions representing different collateral types and passage levels representing users' collateralization ratios. Through numerical experiments using artificial and real data, we evaluate the model's effectiveness in assessing risk within the loan portfolio. While our findings demonstrate the model's potential for assessing risk within a single DeFi project, it is important to acknowledge that the model's assumptions may not be fully applicable to real-world data. This research underscores the importance of developing project-specific risk assessment models for individual DeFi projects and encourages further exploration of other DeFi protocols.
{"title":"DeFi risk assessment: MakerDAO loan portfolio case","authors":"Ignat Melnikov , Irina Lebedeva , Artem Petrov , Yury Yanovich","doi":"10.1016/j.bcra.2024.100259","DOIUrl":"10.1016/j.bcra.2024.100259","url":null,"abstract":"<div><div>Decentralized finance (DeFi) is a rapidly evolving blockchain technology that offers a new perspective on financial services through Web3 applications. DeFi offers developers the flexibility to create financial services using smart contracts, leading to a lack of standardized protocols and challenges in applying traditional finance models for risk assessment, especially in the early stages of adoption. The Maker protocol is a prominent DeFi platform known for its diverse functionalities, including loan services. This study focuses on analyzing the risk associated with Maker's loan portfolio by developing a risk model based on multiple Brownian motions and passage levels, with Brownian motions representing different collateral types and passage levels representing users' collateralization ratios. Through numerical experiments using artificial and real data, we evaluate the model's effectiveness in assessing risk within the loan portfolio. While our findings demonstrate the model's potential for assessing risk within a single DeFi project, it is important to acknowledge that the model's assumptions may not be fully applicable to real-world data. This research underscores the importance of developing project-specific risk assessment models for individual DeFi projects and encourages further exploration of other DeFi protocols.</div></div>","PeriodicalId":53141,"journal":{"name":"Blockchain-Research and Applications","volume":"6 2","pages":"Article 100259"},"PeriodicalIF":6.9,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144190436","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-01DOI: 10.1016/j.bcra.2024.100262
Mengyan Li, Maoning Wang, Meijiao Duan
Blockchain-based digital assets have increasingly emerged in recent years, necessitating cross-chain swaps. Hash Time-Lock Contract (HTLC) is a widely used protocol for such swaps; however, simple hash time locks can allow attackers to analyze transaction paths, thereby causing privacy breaches and financial loss to users in some sensitive scenarios. To prevent payment path leakage, a privacy-preserving cyclic cross-chain protocol is proposed herein. This protocol primarily uses the Chameleon Hash (CH) protocol to obscure the correlation between users in the path, ensuring the privacy of cross-chain swaps. The protocol is divided into pre-swap, commit, and decommit phases. The pre-swap phase is firstly executed to determine the swap order. Then, users ensure atomicity via serial asset locking in the commit phase, and each receiver obtains swap assets from the corresponding sender via CH collision in the decommit phase. The security proof under the Universally Composable (UC) system demonstrates the correctness and usability of the protocol. In summary, the entire protocol ensures the atomicity and privacy of cross-chain swaps, providing a new principle and method to solve the privacy leakage problem caused by transaction path analysis.
{"title":"Atomic and privacy-preserving cyclic cross-chain protocol based on chameleon hash function","authors":"Mengyan Li, Maoning Wang, Meijiao Duan","doi":"10.1016/j.bcra.2024.100262","DOIUrl":"10.1016/j.bcra.2024.100262","url":null,"abstract":"<div><div>Blockchain-based digital assets have increasingly emerged in recent years, necessitating cross-chain swaps. Hash Time-Lock Contract (HTLC) is a widely used protocol for such swaps; however, simple hash time locks can allow attackers to analyze transaction paths, thereby causing privacy breaches and financial loss to users in some sensitive scenarios. To prevent payment path leakage, a privacy-preserving cyclic cross-chain protocol is proposed herein. This protocol primarily uses the Chameleon Hash (CH) protocol to obscure the correlation between users in the path, ensuring the privacy of cross-chain swaps. The protocol is divided into pre-swap, commit, and decommit phases. The pre-swap phase is firstly executed to determine the swap order. Then, users ensure atomicity via serial asset locking in the commit phase, and each receiver obtains swap assets from the corresponding sender via CH collision in the decommit phase. The security proof under the Universally Composable (UC) system demonstrates the correctness and usability of the protocol. In summary, the entire protocol ensures the atomicity and privacy of cross-chain swaps, providing a new principle and method to solve the privacy leakage problem caused by transaction path analysis.</div></div>","PeriodicalId":53141,"journal":{"name":"Blockchain-Research and Applications","volume":"6 2","pages":"Article 100262"},"PeriodicalIF":6.9,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144307954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-01DOI: 10.1016/j.bcra.2024.100261
Yue Pei , Mengxiao Zhu , Chen Zhu , Weihu Song , Yi Sun , Lei Li , Haogang Zhu
The evolution of blockchain technology across various areas has highlighted the importance of optimizing blockchain systems' performance, especially in fluctuating network bandwidth conditions. We observe that the performance of blockchain systems exhibits variations, and the optimal parameter configuration shifts accordingly when changes in network bandwidth occur. Current methods in blockchain optimization require establishing fixed mappings between various environments and their optimal parameters. However, this process exhibits poor sample efficiency and lacks the ability for fast adaptation to novel bandwidth environments. In this paper, we propose MetaTune, a meta-Reinforcement-Learning (meta-RL)-based dynamic tuning method for blockchain systems. MetaTune can quickly adapt to unknown bandwidth changes and automatically configure optimized parameters. Through empirical evaluations of a real-world blockchain system, ChainMaker, we demonstrate that MetaTune significantly reduces the training samples needed for generalization across different bandwidth environments compared to non-adaptive methods. Our findings suggest that MetaTune offers a promising approach for efficiently optimizing blockchain systems in dynamic network environments.
{"title":"Meta reinforcement learning based dynamic tuning for blockchain systems in diverse network environments","authors":"Yue Pei , Mengxiao Zhu , Chen Zhu , Weihu Song , Yi Sun , Lei Li , Haogang Zhu","doi":"10.1016/j.bcra.2024.100261","DOIUrl":"10.1016/j.bcra.2024.100261","url":null,"abstract":"<div><div>The evolution of blockchain technology across various areas has highlighted the importance of optimizing blockchain systems' performance, especially in fluctuating network bandwidth conditions. We observe that the performance of blockchain systems exhibits variations, and the optimal parameter configuration shifts accordingly when changes in network bandwidth occur. Current methods in blockchain optimization require establishing fixed mappings between various environments and their optimal parameters. However, this process exhibits poor sample efficiency and lacks the ability for fast adaptation to novel bandwidth environments. In this paper, we propose MetaTune, a meta-Reinforcement-Learning (meta-RL)-based dynamic tuning method for blockchain systems. MetaTune can quickly adapt to unknown bandwidth changes and automatically configure optimized parameters. Through empirical evaluations of a real-world blockchain system, ChainMaker, we demonstrate that MetaTune significantly reduces the training samples needed for generalization across different bandwidth environments compared to non-adaptive methods. Our findings suggest that MetaTune offers a promising approach for efficiently optimizing blockchain systems in dynamic network environments.</div></div>","PeriodicalId":53141,"journal":{"name":"Blockchain-Research and Applications","volume":"6 2","pages":"Article 100261"},"PeriodicalIF":6.9,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144338980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-01DOI: 10.1016/j.bcra.2024.100268
Kai Ma , Jintao Huang , Ningyu He , Zhuo Wang , Haoyu Wang
Non-Fungible Tokens (NFTs) drive the prosperity of the Web3 ecosystem. By May 2024, the total market value of NFT projects reached approximately $69 billion. Accompanying the success of NFTs are various security issues, i.e., attacks and scams are prevalent in the ecosystem. While NFTs have attracted significant attention from both industry and academia, there is a lack of understanding of the kinds of NFT security issues. The discovery, in-depth analysis, and systematic categorization of these security issues are of significant importance for the prosperous development of the NFT ecosystem. To fill this gap, we perform a systematic literature review related to NFT security and identify 176 incidents from 248 security reports and 35 academic papers until May 1st, 2024. Through manual analysis of the compiled security incidents, we classify them into 12 major categories. Then, we explore potential solutions and mitigation strategies. Drawing from these analyses, we establish the first NFT security reference frame. In addition, we extract the characteristics of NFT security issues, i.e., the prevalence, severity, and intractability. We highlight the gap between industry and academia for NFT security and provide further research directions for the community. This paper, as the first Systematization of Knowledge (SoK) of NFT security, systematically explores security issues within the NFT ecosystem, shedding light on their root causes, real-world attacks, and potential ways to address them. Our findings will contribute to future research on NFT security.
{"title":"SoK: On the security of non-fungible tokens","authors":"Kai Ma , Jintao Huang , Ningyu He , Zhuo Wang , Haoyu Wang","doi":"10.1016/j.bcra.2024.100268","DOIUrl":"10.1016/j.bcra.2024.100268","url":null,"abstract":"<div><div>Non-Fungible Tokens (NFTs) drive the prosperity of the Web3 ecosystem. By May 2024, the total market value of NFT projects reached approximately $69 billion. Accompanying the success of NFTs are various security issues, i.e., attacks and scams are prevalent in the ecosystem. While NFTs have attracted significant attention from both industry and academia, there is a lack of understanding of the kinds of NFT security issues. The discovery, in-depth analysis, and systematic categorization of these security issues are of significant importance for the prosperous development of the NFT ecosystem. To fill this gap, we perform a systematic literature review related to NFT security and identify 176 incidents from 248 security reports and 35 academic papers until May 1st, 2024. Through manual analysis of the compiled security incidents, we classify them into 12 major categories. Then, we explore potential solutions and mitigation strategies. Drawing from these analyses, we establish the first NFT security reference frame. In addition, we extract the characteristics of NFT security issues, i.e., the prevalence, severity, and intractability. We highlight the gap between industry and academia for NFT security and provide further research directions for the community. This paper, as the first Systematization of Knowledge (SoK) of NFT security, systematically explores security issues within the NFT ecosystem, shedding light on their root causes, real-world attacks, and potential ways to address them. Our findings will contribute to future research on NFT security.</div></div>","PeriodicalId":53141,"journal":{"name":"Blockchain-Research and Applications","volume":"6 2","pages":"Article 100268"},"PeriodicalIF":6.9,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144470084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-01DOI: 10.1016/j.bcra.2024.100265
Zening Zhao , Jinsong Wang , Jiajia Wei
Public blockchain has outstanding performance in transaction privacy protection because of its anonymity. The data openness brings feasibility to transaction behavior analysis. At present, the transaction data of the public chain are huge, including complex trading objects and relationships. It is difficult to extract attributes and predict transaction behavior by traditional methods. To solve these problems, we extract transaction features to construct an Ethereum transaction heterogeneous information network (HIN) and propose a graph neural network (GNN)-based transaction prediction method for public blockchains in HINs, which can divide the network into subgraphs according to connectivity and increase the accuracy of the prediction results of transaction behavior. Experiments show that the execution time consumption of the proposed transaction subgraph division method is reduced by 70.61% on average compared with that of the search method. The accuracy of the proposed behavior prediction method also improves compared with that of the traditional random walk method, with an average accuracy of 83.82%.
{"title":"Graph neural network-based transaction link prediction method for public blockchain in heterogeneous information networks","authors":"Zening Zhao , Jinsong Wang , Jiajia Wei","doi":"10.1016/j.bcra.2024.100265","DOIUrl":"10.1016/j.bcra.2024.100265","url":null,"abstract":"<div><div>Public blockchain has outstanding performance in transaction privacy protection because of its anonymity. The data openness brings feasibility to transaction behavior analysis. At present, the transaction data of the public chain are huge, including complex trading objects and relationships. It is difficult to extract attributes and predict transaction behavior by traditional methods. To solve these problems, we extract transaction features to construct an Ethereum transaction heterogeneous information network (HIN) and propose a graph neural network (GNN)-based transaction prediction method for public blockchains in HINs, which can divide the network into subgraphs according to connectivity and increase the accuracy of the prediction results of transaction behavior. Experiments show that the execution time consumption of the proposed transaction subgraph division method is reduced by 70.61% on average compared with that of the search method. The accuracy of the proposed behavior prediction method also improves compared with that of the traditional random walk method, with an average accuracy of 83.82%.</div></div>","PeriodicalId":53141,"journal":{"name":"Blockchain-Research and Applications","volume":"6 2","pages":"Article 100265"},"PeriodicalIF":6.9,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144307967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-05-21DOI: 10.1016/j.bcra.2025.100311
Tianqi Zhou , Kai Zhao , Wenying Zheng
Blockchain, as a rapidly developing technology nowadays, involves multi-party collaboration scenarios. However, as the number of users grows, security issues in blockchain systems also increase, driving the need for features such as collusion resistance and traceability. To meet the needs of multi-party collaboration on the blockchain, we propose a blockchain-based collusion-resistant and a traceable broadcast encryption scheme. On the one hand, the traitor tracing scheme is adopted to effectively enable accountability for malicious users. On the other hand, the SM2 public key encryption algorithm is deployed to satisfy high security requirements with relatively low computational costs. Security analysis demonstrates that the proposed scheme has the same level of security as the SM2 algorithm. Performance evaluation shows that the proposed scheme is superior to the relevant schemes and maintains functionalities such as collusion-resistant and traitor tracing.
{"title":"A blockchain-based collusion-resistant and traceable broadcast encryption scheme","authors":"Tianqi Zhou , Kai Zhao , Wenying Zheng","doi":"10.1016/j.bcra.2025.100311","DOIUrl":"10.1016/j.bcra.2025.100311","url":null,"abstract":"<div><div>Blockchain, as a rapidly developing technology nowadays, involves multi-party collaboration scenarios. However, as the number of users grows, security issues in blockchain systems also increase, driving the need for features such as collusion resistance and traceability. To meet the needs of multi-party collaboration on the blockchain, we propose a blockchain-based collusion-resistant and a traceable broadcast encryption scheme. On the one hand, the traitor tracing scheme is adopted to effectively enable accountability for malicious users. On the other hand, the SM2 public key encryption algorithm is deployed to satisfy high security requirements with relatively low computational costs. Security analysis demonstrates that the proposed scheme has the same level of security as the SM2 algorithm. Performance evaluation shows that the proposed scheme is superior to the relevant schemes and maintains functionalities such as collusion-resistant and traitor tracing.</div></div>","PeriodicalId":53141,"journal":{"name":"Blockchain-Research and Applications","volume":"7 1","pages":"Article 100311"},"PeriodicalIF":5.6,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145947937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-05-19DOI: 10.1016/j.bcra.2025.100299
Samuel Akwasi Frimpong , Mu Han , Emmanuel Kwame Effah , Joseph Kwame Adjei , Isaac Hanson , Percy Brown
{"title":"Erratum to “A deep decentralized privacy-preservation framework for online social networks”","authors":"Samuel Akwasi Frimpong , Mu Han , Emmanuel Kwame Effah , Joseph Kwame Adjei , Isaac Hanson , Percy Brown","doi":"10.1016/j.bcra.2025.100299","DOIUrl":"10.1016/j.bcra.2025.100299","url":null,"abstract":"","PeriodicalId":53141,"journal":{"name":"Blockchain-Research and Applications","volume":"6 2","pages":"Article 100299"},"PeriodicalIF":6.9,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144084293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-30DOI: 10.1016/j.bcra.2025.100300
Hua Wang , Jinjing Liu , Jian Zhao
Financial derivatives are widely recognized for their effectiveness in managing interest rate risk, demonstrating the principle of comparative advantage in finance. However, traditional financial derivative transactions are often complex and can expose participants to market and credit risks. To mitigate these risks, reduce transaction costs, and enhance liquidity, this paper proposes a blockchain-based matching mechanism for financial derivatives that uses smart contracts for decentralized counterparty matching and settlement. Smart contracts facilitate secure data sharing among participants, ensuring the integrity and immutability of transaction data. We design a transaction pool mechanism-based smart contracts for counterparty matching and automatic settlement of financial derivatives involving real fiat currencies and introduce an efficient peer-to-peer counterparty matching method, where the entire trading process is conducted on a decentralized blockchain, ensuring greater security and transparency. A prototype implementation based on Ethereum smart contracts validates the effectiveness of our proposed model, demonstrating its potential to streamline and secure financial derivative transactions.
{"title":"Blockchain smart contracts for decentralized matching of counterparties and automatic settlement of financial derivatives","authors":"Hua Wang , Jinjing Liu , Jian Zhao","doi":"10.1016/j.bcra.2025.100300","DOIUrl":"10.1016/j.bcra.2025.100300","url":null,"abstract":"<div><div>Financial derivatives are widely recognized for their effectiveness in managing interest rate risk, demonstrating the principle of comparative advantage in finance. However, traditional financial derivative transactions are often complex and can expose participants to market and credit risks. To mitigate these risks, reduce transaction costs, and enhance liquidity, this paper proposes a blockchain-based matching mechanism for financial derivatives that uses smart contracts for decentralized counterparty matching and settlement. Smart contracts facilitate secure data sharing among participants, ensuring the integrity and immutability of transaction data. We design a transaction pool mechanism-based smart contracts for counterparty matching and automatic settlement of financial derivatives involving real fiat currencies and introduce an efficient peer-to-peer counterparty matching method, where the entire trading process is conducted on a decentralized blockchain, ensuring greater security and transparency. A prototype implementation based on Ethereum smart contracts validates the effectiveness of our proposed model, demonstrating its potential to streamline and secure financial derivative transactions.</div></div>","PeriodicalId":53141,"journal":{"name":"Blockchain-Research and Applications","volume":"6 4","pages":"Article 100300"},"PeriodicalIF":5.6,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145468052","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}