Pub Date : 2024-01-01Epub Date: 2023-12-18DOI: 10.1080/26896583.2023.2293443
Bushra H Shnawa, Parwin J Jalil, Ali Al-Ezzi, Renjbar M Mhamedsharif, Daniyal A Mohammed, Donia M Biro, Mukhtar H Ahmed
Background: Due to their simplicity, eco-friendliness, availability and non-toxicity, the greener fabrication of metal and metal oxide nanoparticles has been a highly attractive research area over the last decade. Aim: This study aimed to assess the antioxidant and antimicrobial activities of the green synthesized zinc oxide nanoparticles (ZnO-NPs) using an aqueous leaf extract of Ziziphus spina-christi. Method: The antioxidant property of ZnO-NPs was analyzed by the α, α-diphenyl-β-picrylhydrazyl (DPPH) and hydrogen peroxide (H2O2). Additionally, the diffusion agar method assessed the antimicrobial activities against bacteria and fungi. Results: ZnO-NPs synthesized by Z. spina-christi had shown promising H2O2 and DPPH free radical scavenging actions compared to vitamin C. The ZnO-NPs exhibited significant antibacterial activity against the tested bacteria with various susceptibility as a concentration-dependent effect. The largest zone of inhibition for Staphylococcus aureus (S. aureus) was observed (36 ± 2 mm) compared to Escherichia coli (E. coli) (15 ± 2 mm) by the same concentration of ZnO-NPs. The ZnO-NPs showed remarkable antifungal activity against Aspergillus niger. Conclusion: It can be concluded that, ZnO-NP have been imposed as suitable antimicrobial agent being able to combat both S. aureus and E. coli in vitro.
{"title":"Evaluation of antimicrobial and antioxidant activity of zinc oxide nanoparticles biosynthesized with Ziziphus spina-christi leaf extracts.","authors":"Bushra H Shnawa, Parwin J Jalil, Ali Al-Ezzi, Renjbar M Mhamedsharif, Daniyal A Mohammed, Donia M Biro, Mukhtar H Ahmed","doi":"10.1080/26896583.2023.2293443","DOIUrl":"10.1080/26896583.2023.2293443","url":null,"abstract":"<p><p><b>Background:</b> Due to their simplicity, eco-friendliness, availability and non-toxicity, the greener fabrication of metal and metal oxide nanoparticles has been a highly attractive research area over the last decade. <b>Aim:</b> This study aimed to assess the antioxidant and antimicrobial activities of the green synthesized zinc oxide nanoparticles (ZnO-NPs) using an aqueous leaf extract of <i>Ziziphus spina-christi</i>. <b>Method:</b> The antioxidant property of ZnO-NPs was analyzed by the α, α-diphenyl-β-picrylhydrazyl (DPPH) and hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>). Additionally, the diffusion agar method assessed the antimicrobial activities against bacteria and fungi. <b>Results:</b> ZnO-NPs synthesized by <i>Z. spina-christi</i> had shown promising H<sub>2</sub>O<sub>2</sub> and DPPH free radical scavenging actions compared to vitamin C. The ZnO-NPs exhibited significant antibacterial activity against the tested bacteria with various susceptibility as a concentration-dependent effect. The largest zone of inhibition for <i>Staphylococcus aureus (S. aureus)</i> was observed (36 ± 2 mm) compared to <i>Escherichia coli (E. coli)</i> (15 ± 2 mm) by the same concentration of ZnO-NPs. The ZnO-NPs showed remarkable antifungal activity against <i>Aspergillus niger</i>. <b>Conclusion:</b> It can be concluded that, ZnO-NP have been imposed as suitable antimicrobial agent being able to combat both <i>S. aureus</i> and <i>E. coli in vitro</i>.</p>","PeriodicalId":53200,"journal":{"name":"Journal of Environmental Science and Health Part C-Toxicology and Carcinogenesis","volume":" ","pages":"93-108"},"PeriodicalIF":2.5,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138799657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-08-29DOI: 10.1080/26896583.2024.2396250
Shaorong Chen, Zijian Li
Disinfecting swimming pool water plays a crucial role in preventing the spread of harmful bacteria. However, the interaction between disinfectants and precursors can lead to the formation of potentially disinfection by-products (DBPs). Prolonged exposure to these DBPs may pose health risks. This review study investigates recent research advancements concerning the formation, exposure, and regulation of DBPs within swimming pools. It also provides an overview of existing models that predict DBPs generation in pools, highlighting their limitations. The review explores the mechanisms behind DBPs formation under different disinfectant and precursor conditions. It specifically discusses two types of models that simulate the production of these by-products. Compared to drinking water, swimming pool water presents unique challenges for model development due to its complex mix of external substances, human activities, and environmental factors. Existing models can be categorized as empirical or mechanistic. Empirical models focus on water quality parameters and operational practices, while mechanistic models delve deeper into the kinetics of DBPs generation and the dynamic nature of these compounds. By employing these models, it becomes possible to minimize DBPs production, optimize equipment design, enhance operational efficiency, and manage mechanical ventilation systems effectively.
{"title":"Understanding the fate of disinfection by-products in swimming pools: current empirical and mechanistic modeling insights.","authors":"Shaorong Chen, Zijian Li","doi":"10.1080/26896583.2024.2396250","DOIUrl":"10.1080/26896583.2024.2396250","url":null,"abstract":"<p><p>Disinfecting swimming pool water plays a crucial role in preventing the spread of harmful bacteria. However, the interaction between disinfectants and precursors can lead to the formation of potentially disinfection by-products (DBPs). Prolonged exposure to these DBPs may pose health risks. This review study investigates recent research advancements concerning the formation, exposure, and regulation of DBPs within swimming pools. It also provides an overview of existing models that predict DBPs generation in pools, highlighting their limitations. The review explores the mechanisms behind DBPs formation under different disinfectant and precursor conditions. It specifically discusses two types of models that simulate the production of these by-products. Compared to drinking water, swimming pool water presents unique challenges for model development due to its complex mix of external substances, human activities, and environmental factors. Existing models can be categorized as empirical or mechanistic. Empirical models focus on water quality parameters and operational practices, while mechanistic models delve deeper into the kinetics of DBPs generation and the dynamic nature of these compounds. By employing these models, it becomes possible to minimize DBPs production, optimize equipment design, enhance operational efficiency, and manage mechanical ventilation systems effectively.</p>","PeriodicalId":53200,"journal":{"name":"Journal of Environmental Science and Health Part C-Toxicology and Carcinogenesis","volume":" ","pages":"366-401"},"PeriodicalIF":1.2,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142114713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Excessive and continuous use of cosmetic products containing heavy metals can lead to harmful effects. International regulations mandate limited quantities of heavy metals contamination in cosmetic preparations to ensure consumer safety. This research aims to evaluate heavy metal and microbial contamination levels in selected cosmetic products available in the Palestinian market. We collected 35 samples randomly from 23 companies, representing four product types, and analyzed them for the presence of seven heavy metals: zinc (Zn), cadmium (Cd), lead (Pb), chromium (Cr), iron (Fe), copper (Cu), and arsenic (As) using an atomic absorption spectrometer. We also interviewed pharmacists who sold these cosmetics to assess their knowledge of allowed limits and toxic effects associated with increased heavy metal content in cosmetics. The results indicated that all tested products exceeded the allowed limit for Cd (9.5 ± 2.3 ppm), Cu (33.8 ± 9.2 ppm), and Zn (151.0 ± 7.4 ppm). However, none of the tested samples showed microbial contamination. These findings underscore the significant heavy metal contamination of cosmetics present in the Palestinian market. Thus, there is a pressing need to register and quality-test all cosmetic products sold in the Palestinian market and to raise the pharmacists' awareness and knowledge regarding heavy metals in cosmetics.
{"title":"Heavy metal and microbial testing of selected cosmetic products in the Palestinian market.","authors":"Murad Abualhasan, Liza Naffa, Ro'a Alarda, Baraa Zahi, Ameed Amireh, Munir Al-Atrash","doi":"10.1080/26896583.2023.2281199","DOIUrl":"10.1080/26896583.2023.2281199","url":null,"abstract":"<p><p>Excessive and continuous use of cosmetic products containing heavy metals can lead to harmful effects. International regulations mandate limited quantities of heavy metals contamination in cosmetic preparations to ensure consumer safety. This research aims to evaluate heavy metal and microbial contamination levels in selected cosmetic products available in the Palestinian market. We collected 35 samples randomly from 23 companies, representing four product types, and analyzed them for the presence of seven heavy metals: zinc (Zn), cadmium (Cd), lead (Pb), chromium (Cr), iron (Fe), copper (Cu), and arsenic (As) using an atomic absorption spectrometer. We also interviewed pharmacists who sold these cosmetics to assess their knowledge of allowed limits and toxic effects associated with increased heavy metal content in cosmetics. The results indicated that all tested products exceeded the allowed limit for Cd (9.5 ± 2.3 ppm), Cu (33.8 ± 9.2 ppm), and Zn (151.0 ± 7.4 ppm). However, none of the tested samples showed microbial contamination. These findings underscore the significant heavy metal contamination of cosmetics present in the Palestinian market. Thus, there is a pressing need to register and quality-test all cosmetic products sold in the Palestinian market and to raise the pharmacists' awareness and knowledge regarding heavy metals in cosmetics.</p>","PeriodicalId":53200,"journal":{"name":"Journal of Environmental Science and Health Part C-Toxicology and Carcinogenesis","volume":" ","pages":"1-15"},"PeriodicalIF":2.5,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138500105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-03-04DOI: 10.1080/26896583.2024.2319009
Johnson C Agbasi, Arinze Longinus Ezugwu, Michael Ekuru Omeka, Ifeanyi Adolphus Ucheana, Chiedozie Chukwuemeka Aralu, Hillary Onyeka Abugu, Johnbosco C Egbueri
Public health concerns on surface and groundwater contamination worldwide have increased. Sachet water contamination has also raised serious concerns across many developing countries. While previous studies attempted to address this issue, this review takes a different approach by utilizing a comprehensive analysis of physicochemical parameters, heavy metals, and microbial loads tested in sachet water across Nigeria's six geopolitical zones, within the period of 2020-2023. In this review study, over 50 articles were carefully analyzed. Collected data unveiled regional variations in the quality of sachet water across Nigeria. Noteworthy concerns revolve around levels of pH, total hardness, magnesium, calcium, nickel, iron, lead, mercury, arsenic, and cadmium. Fecal contamination was also identified as a significant issue, with the prevalence of several pathogens like Escherichia coli, Salmonella typhi, Enterobacter cloacae, Staphylococcus aureus, and Enterococcus faecalis. The manufacturing, delivery, storage, and final sale of sachet water, as well as poor environmental hygiene, were identified as potential contamination sources. The intake of contaminated sachet water exposes the citizens to waterborne and carcinogenic diseases. While the sachet water industry keeps growing and making profits, it is apparent that improvement calls made by previous studies, regarding the quality of water produced, have not been paid serious attention.
{"title":"More about making profits or providing safe drinking water? A state-of-the-art review on sachet water contamination in Nigeria.","authors":"Johnson C Agbasi, Arinze Longinus Ezugwu, Michael Ekuru Omeka, Ifeanyi Adolphus Ucheana, Chiedozie Chukwuemeka Aralu, Hillary Onyeka Abugu, Johnbosco C Egbueri","doi":"10.1080/26896583.2024.2319009","DOIUrl":"10.1080/26896583.2024.2319009","url":null,"abstract":"<p><p>Public health concerns on surface and groundwater contamination worldwide have increased. Sachet water contamination has also raised serious concerns across many developing countries. While previous studies attempted to address this issue, this review takes a different approach by utilizing a comprehensive analysis of physicochemical parameters, heavy metals, and microbial loads tested in sachet water across Nigeria's six geopolitical zones, within the period of 2020-2023. In this review study, over 50 articles were carefully analyzed. Collected data unveiled regional variations in the quality of sachet water across Nigeria. Noteworthy concerns revolve around levels of pH, total hardness, magnesium, calcium, nickel, iron, lead, mercury, arsenic, and cadmium. Fecal contamination was also identified as a significant issue, with the prevalence of several pathogens like <i>Escherichia coli</i>, <i>Salmonella typhi</i>, <i>Enterobacter cloacae</i>, <i>Staphylococcus aureus</i>, and <i>Enterococcus faecalis</i>. The manufacturing, delivery, storage, and final sale of sachet water, as well as poor environmental hygiene, were identified as potential contamination sources. The intake of contaminated sachet water exposes the citizens to waterborne and carcinogenic diseases. While the sachet water industry keeps growing and making profits, it is apparent that improvement calls made by previous studies, regarding the quality of water produced, have not been paid serious attention.</p>","PeriodicalId":53200,"journal":{"name":"Journal of Environmental Science and Health Part C-Toxicology and Carcinogenesis","volume":" ","pages":"255-297"},"PeriodicalIF":1.2,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140029584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-01-19DOI: 10.1080/26896583.2023.2293493
Rose A Willett, Volodymyr P Tryndyak, Frederick A Beland, Igor P Pogribny
The rapidly increasing incidence of nonalcoholic fatty liver disease (NAFLD) is a growing health crisis worldwide. If not detected early, NAFLD progression can lead to irreversible pathological states, including liver fibrosis and cirrhosis. Using in vitro models to understand the molecular pathogenesis has been extremely beneficial; however, most studies have utilized only short-term exposures, highlighting a limitation in current research to model extended fat-induced liver injury. We treated Hep3B cells continuously with a low dose of oleic and palmitic free fatty acids (FFAs) for 7 or 28 days. Transcriptomic analysis identified dysregulated molecular pathways and differential expression of 984 and 917 genes after FFA treatment for 7 and 28 days respectively. DNA methylation analysis of altered DNA methylated regions (DMRs) found 7 DMRs in common. Pathway analysis of differentially expressed genes (DEGs) revealed transcriptomic changes primarily involved in lipid metabolism, small molecule biochemistry, and molecular transport. Western blot analysis revealed changes in PDK4 and CPT1A protein levels, indicative of mitochondrial stress. In line with this, there was mitochondrial morphological change demonstrating breakdown of the mitochondrial network. This in vitro model of human NAFL mimics results observed in human patients and may be used as a pre-clinical model for drug intervention.
{"title":"Cellular and molecular alterations in a human hepatocellular in vitro model of nonalcoholic fatty liver disease development and stratification.","authors":"Rose A Willett, Volodymyr P Tryndyak, Frederick A Beland, Igor P Pogribny","doi":"10.1080/26896583.2023.2293493","DOIUrl":"10.1080/26896583.2023.2293493","url":null,"abstract":"<p><p>The rapidly increasing incidence of nonalcoholic fatty liver disease (NAFLD) is a growing health crisis worldwide. If not detected early, NAFLD progression can lead to irreversible pathological states, including liver fibrosis and cirrhosis. Using <i>in vitro</i> models to understand the molecular pathogenesis has been extremely beneficial; however, most studies have utilized only short-term exposures, highlighting a limitation in current research to model extended fat-induced liver injury. We treated Hep3B cells continuously with a low dose of oleic and palmitic free fatty acids (FFAs) for 7 or 28 days. Transcriptomic analysis identified dysregulated molecular pathways and differential expression of 984 and 917 genes after FFA treatment for 7 and 28 days respectively. DNA methylation analysis of altered DNA methylated regions (DMRs) found 7 DMRs in common. Pathway analysis of differentially expressed genes (DEGs) revealed transcriptomic changes primarily involved in lipid metabolism, small molecule biochemistry, and molecular transport. Western blot analysis revealed changes in PDK4 and CPT1A protein levels, indicative of mitochondrial stress. In line with this, there was mitochondrial morphological change demonstrating breakdown of the mitochondrial network. This <i>in vitro</i> model of human NAFL mimics results observed in human patients and may be used as a pre-clinical model for drug intervention.</p>","PeriodicalId":53200,"journal":{"name":"Journal of Environmental Science and Health Part C-Toxicology and Carcinogenesis","volume":" ","pages":"74-92"},"PeriodicalIF":2.5,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138799437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-07-05DOI: 10.1080/26896583.2024.2370715
Pooja Singh, Gunjan Varshney, Raminder Kaur
Recent discoveries of microplastics in cities, suburbs, and even remote locations, far from microplastic source regions, have raised the possibility of long-distance transmission of microplastics in many ecosystems. A little is known scientifically about the threat that it posed to the environment by microplastics. The problem's apparent size necessitates the rapid development of reliable scientific advice regarding the ecological risks of microplastics. These concerns are brought on by the lack of consistent sample and identification techniques, as well as the limited physical analysis and understanding of microplastic pollution. This review provides insight regarding some unaddressed issues about the occurrence, fate, movement, and impact of microplastics, in general, with special emphasis on primary microplastics. The approaches taken in the earlier investigations have been analyzed and different recommendations for future research have been suggested.
{"title":"Primary Microplastics in the Ecosystem: Ecological Effects, Risks, and Comprehensive Perspectives on Toxicology and Detection Methods.","authors":"Pooja Singh, Gunjan Varshney, Raminder Kaur","doi":"10.1080/26896583.2024.2370715","DOIUrl":"10.1080/26896583.2024.2370715","url":null,"abstract":"<p><p>Recent discoveries of microplastics in cities, suburbs, and even remote locations, far from microplastic source regions, have raised the possibility of long-distance transmission of microplastics in many ecosystems. A little is known scientifically about the threat that it posed to the environment by microplastics. The problem's apparent size necessitates the rapid development of reliable scientific advice regarding the ecological risks of microplastics. These concerns are brought on by the lack of consistent sample and identification techniques, as well as the limited physical analysis and understanding of microplastic pollution. This review provides insight regarding some unaddressed issues about the occurrence, fate, movement, and impact of microplastics, in general, with special emphasis on primary microplastics. The approaches taken in the earlier investigations have been analyzed and different recommendations for future research have been suggested.</p>","PeriodicalId":53200,"journal":{"name":"Journal of Environmental Science and Health Part C-Toxicology and Carcinogenesis","volume":" ","pages":"314-365"},"PeriodicalIF":1.2,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141535903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-03-18DOI: 10.1080/26896583.2024.2327969
Xilin Li, Zemin Wang, Qiangen Wu, James E Klaunig
The mode of action (MOA) underlying perfluorooctanoic acid (PFOA)-induced liver tumors in rats is proposed to involve peroxisome proliferator-activated receptor α (PPARα) agonism. Despite clear PPARα activation evidence in rodent livers, the mechanisms driving cell growth remain elusive. Herein, we used dose-responsive apical endpoints and transcriptomic data to examine the proposed MOA. Male Sprague-Dawley rats were treated with 0, 1, 5, and 15 mg/kg PFOA for 7, 14, and 28 days via oral gavage. We showed PFOA induced hepatomegaly along with hepatocellular hypertrophy in rats. PPARα was activated in a dose-dependent manner. Toxicogenomic analysis revealed six early biomarkers (Cyp4a1, Nr1d1, Acot1, Acot2, Ehhadh, and Vnn1) in response to PPARα activation. A transient rise in hepatocellular DNA synthesis was demonstrated while Ki-67 labeling index showed no change. Transcriptomic analysis indicated no significant enrichment in pathways related to DNA synthesis, apoptosis, or the cell cycle. Key cyclins including Ccnd1, Ccnb1, Ccna2, and Ccne2 were dose-dependently suppressed by PFOA. Oxidative stress and the nuclear factor-κB signaling pathway were unaffected. Overall, evidence for PFOA-induced hepatocellular proliferation was transient within the studied timeframe. Our findings underscore the importance of considering inter-species differences and chemical-specific effects when evaluating the carcinogenic risk of PFOA in humans.
{"title":"Evaluating the mode of action of perfluorooctanoic acid-induced liver tumors in male Sprague-Dawley rats using a toxicogenomic approach.","authors":"Xilin Li, Zemin Wang, Qiangen Wu, James E Klaunig","doi":"10.1080/26896583.2024.2327969","DOIUrl":"10.1080/26896583.2024.2327969","url":null,"abstract":"<p><p>The mode of action (MOA) underlying perfluorooctanoic acid (PFOA)-induced liver tumors in rats is proposed to involve peroxisome proliferator-activated receptor α (PPARα) agonism. Despite clear PPARα activation evidence in rodent livers, the mechanisms driving cell growth remain elusive. Herein, we used dose-responsive apical endpoints and transcriptomic data to examine the proposed MOA. Male Sprague-Dawley rats were treated with 0, 1, 5, and 15 mg/kg PFOA for 7, 14, and 28 days <i>via</i> oral gavage. We showed PFOA induced hepatomegaly along with hepatocellular hypertrophy in rats. PPARα was activated in a dose-dependent manner. Toxicogenomic analysis revealed six early biomarkers (<i>Cyp4a1</i>, <i>Nr1d1</i>, <i>Acot1</i>, <i>Acot2</i>, <i>Ehhadh</i>, and <i>Vnn1</i>) in response to PPARα activation. A transient rise in hepatocellular DNA synthesis was demonstrated while Ki-67 labeling index showed no change. Transcriptomic analysis indicated no significant enrichment in pathways related to DNA synthesis, apoptosis, or the cell cycle. Key cyclins including <i>Ccnd1</i>, <i>Ccnb1</i>, <i>Ccna2</i>, and <i>Ccne2</i> were dose-dependently suppressed by PFOA. Oxidative stress and the nuclear factor-κB signaling pathway were unaffected. Overall, evidence for PFOA-induced hepatocellular proliferation was transient within the studied timeframe. Our findings underscore the importance of considering inter-species differences and chemical-specific effects when evaluating the carcinogenic risk of PFOA in humans.</p>","PeriodicalId":53200,"journal":{"name":"Journal of Environmental Science and Health Part C-Toxicology and Carcinogenesis","volume":" ","pages":"189-213"},"PeriodicalIF":1.2,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140144559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-03-07DOI: 10.1080/26896583.2024.2325851
Suresh K Nagumalli, Joshua T Salley, Jeffrey D Carstens
Echinacea has grown in popularity due to its broad therapeutic benefits. Despite its popularity, comprehensive safety evaluations for three medicinal species are limited. In this study, female Sprague-Dawley rats received oral doses (0, 25, 50, 100, 200 mg/kg/d) of 75% (v/v) ethanol extract from the aerial parts of 9 Echinacea samples of three species - Echinacea purpurea, Echinacea angustifolia, and Echinacea pallida - over a 7-day period. Blood and serum samples, collected twenty-four hours post the final dose, were analyzed for hematology and clinical chemistry parameters. The results revealed varied effects across the tested samples, with many parameters showing no discernible impacts at administered doses. Subtle alterations were observed in parameters such as relative liver weight, alkaline phosphatase (ALP), and platelet count. Parameters like relative spleen weight, alanine transaminase (ALT), glucose, urea, hematocrit, hemoglobin, and RBC count exhibited effects in only one out of the nine samples tested. These findings emphasize the heterogeneity in the effects of Echinacea. While the results suggest that Echinacea samples might be considered relatively safe, potential clinical implications warrant caution and underscore the importance of extended testing. A comprehensive toxicity profile assessment remains paramount to conclusively ascertain the safety of three Echinacea species.
{"title":"Assessment of clinical chemistry and hematological parameters in female Sprague-Dawley rats following a 7-day oral exposure to three different species of <i>Echinacea</i>.","authors":"Suresh K Nagumalli, Joshua T Salley, Jeffrey D Carstens","doi":"10.1080/26896583.2024.2325851","DOIUrl":"10.1080/26896583.2024.2325851","url":null,"abstract":"<p><p><i>Echinacea</i> has grown in popularity due to its broad therapeutic benefits. Despite its popularity, comprehensive safety evaluations for three medicinal species are limited. In this study, female Sprague-Dawley rats received oral doses (0, 25, 50, 100, 200 mg/kg/d) of 75% (v/v) ethanol extract from the aerial parts of 9 <i>Echinacea</i> samples of three species - <i>Echinacea purpurea</i>, <i>Echinacea angustifolia</i>, and <i>Echinacea pallida</i> - over a 7-day period. Blood and serum samples, collected twenty-four hours post the final dose, were analyzed for hematology and clinical chemistry parameters. The results revealed varied effects across the tested samples, with many parameters showing no discernible impacts at administered doses. Subtle alterations were observed in parameters such as relative liver weight, alkaline phosphatase (ALP), and platelet count. Parameters like relative spleen weight, alanine transaminase (ALT), glucose, urea, hematocrit, hemoglobin, and RBC count exhibited effects in only one out of the nine samples tested. These findings emphasize the heterogeneity in the effects of <i>Echinacea</i>. While the results suggest that <i>Echinacea</i> samples might be considered relatively safe, potential clinical implications warrant caution and underscore the importance of extended testing. A comprehensive toxicity profile assessment remains paramount to conclusively ascertain the safety of three <i>Echinacea</i> species.</p>","PeriodicalId":53200,"journal":{"name":"Journal of Environmental Science and Health Part C-Toxicology and Carcinogenesis","volume":" ","pages":"154-171"},"PeriodicalIF":2.5,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140061259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-04-15DOI: 10.1080/26896583.2024.2340391
Leihong Wu, Joshua Xu, Weida Tong
In the rapidly evolving field of artificial intelligence (AI), explainability has been traditionally assessed in a post-modeling process and is often subjective. In contrary, many quantitative metrics have been routinely used to assess a model's performance. We proposed a unified formular named PERForm, by incorporating explainability as a weight into the existing statistical metrics to provide an integrated and quantitative measure of both predictivity and explainability to guide model selection, application, and evaluation. PERForm was designed as a generic formula and can be applied to any data types. We applied PERForm on a range of diverse datasets, including DILIst, Tox21, and three MAQC-II benchmark datasets, using various modeling algorithms to predict a total of 73 distinct endpoints. For example, AdaBoost algorithms exhibited superior performance (PERForm AUC for AdaBoost is 0.129 where Linear regression is 0) in DILIst prediction, where linear regression outperformed other models in the majority of Tox21 endpoints (PERForm AUC for linear regression is 0.301 where AdaBoost is 0.283 in average). This research marks a significant step toward comprehensively evaluating the utility of an AI model to advance transparency and interpretability, where the tradeoff between a model's performance and its interpretability can have profound implications.
{"title":"PERform: assessing model performance with predictivity and explainability readiness formula.","authors":"Leihong Wu, Joshua Xu, Weida Tong","doi":"10.1080/26896583.2024.2340391","DOIUrl":"10.1080/26896583.2024.2340391","url":null,"abstract":"<p><p>In the rapidly evolving field of artificial intelligence (AI), explainability has been traditionally assessed in a post-modeling process and is often subjective. In contrary, many quantitative metrics have been routinely used to assess a model's performance. We proposed a unified formular named PERForm, by incorporating explainability as a weight into the existing statistical metrics to provide an integrated and quantitative measure of both predictivity and explainability to guide model selection, application, and evaluation. PERForm was designed as a generic formula and can be applied to any data types. We applied PERForm on a range of diverse datasets, including DILIst, Tox21, and three MAQC-II benchmark datasets, using various modeling algorithms to predict a total of 73 distinct endpoints. For example, AdaBoost algorithms exhibited superior performance (PERForm AUC for AdaBoost is 0.129 where Linear regression is 0) in DILIst prediction, where linear regression outperformed other models in the majority of Tox21 endpoints (PERForm AUC for linear regression is 0.301 where AdaBoost is 0.283 in average). This research marks a significant step toward comprehensively evaluating the utility of an AI model to advance transparency and interpretability, where the tradeoff between a model's performance and its interpretability can have profound implications.</p>","PeriodicalId":53200,"journal":{"name":"Journal of Environmental Science and Health Part C-Toxicology and Carcinogenesis","volume":" ","pages":"298-313"},"PeriodicalIF":1.2,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11664459/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140873784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-01-17DOI: 10.1080/26896583.2024.2301899
Anish Alur, John Phillips, Dazhong Xu
Hexavalent chromium (Cr(VI)) is a well-known occupational and environmental human carcinogen. The cellular effect of Cr(VI) is complex and often nonspecific due to its ability to modulate multiple cellular targets. The toxicity of Cr(VI) is strongly linked to the generation of reactive oxygen species (ROS) during its reduction process. ROS can cause oxidation of cellular macromolecules, such as proteins, lipids, and DNA, thereby altering their functions. A major genotoxic effect of Cr(VI) that contributes to carcinogenesis is the formation of DNA adducts, which can lead to DNA damage. Modulations of cellular signaling pathways and epigenetics may also contribute to the carcinogenic effects of Cr(VI). Cr(VI) has a major impact on many aspects of mitochondrial biology, including oxidative phosphorylation, mitophagy, and mitochondrial biogenesis. These effects have the potential to alter the trajectory of Cr(VI)-induced carcinogenic process. This perspective article summarizes current understandings of the effect of Cr(VI) on mitochondria and discusses the future directions of research in this area, particularly with regard to carcinogenesis.
六价铬(Cr(VI))是一种众所周知的职业和环境致癌物质。由于六价铬能够调节多个细胞靶点,因此它对细胞的影响非常复杂,而且往往是非特异性的。六价铬的毒性与其还原过程中产生的活性氧(ROS)密切相关。ROS 可导致蛋白质、脂质和 DNA 等细胞大分子氧化,从而改变它们的功能。六价铬的一个主要致癌基因毒性作用是形成 DNA 加合物,从而导致 DNA 损伤。细胞信号传导途径和表观遗传学的改变也可能导致六价铬的致癌作用。六价铬对线粒体生物学的许多方面都有重大影响,包括氧化磷酸化、有丝分裂和线粒体生物生成。这些影响有可能改变六价铬诱导的致癌过程的轨迹。这篇透视文章总结了目前人们对六价铬对线粒体影响的认识,并讨论了这一领域未来的研究方向,特别是在致癌方面。
{"title":"Effects of hexavalent chromium on mitochondria and their implications in carcinogenesis.","authors":"Anish Alur, John Phillips, Dazhong Xu","doi":"10.1080/26896583.2024.2301899","DOIUrl":"10.1080/26896583.2024.2301899","url":null,"abstract":"<p><p>Hexavalent chromium (Cr(VI)) is a well-known occupational and environmental human carcinogen. The cellular effect of Cr(VI) is complex and often nonspecific due to its ability to modulate multiple cellular targets. The toxicity of Cr(VI) is strongly linked to the generation of reactive oxygen species (ROS) during its reduction process. ROS can cause oxidation of cellular macromolecules, such as proteins, lipids, and DNA, thereby altering their functions. A major genotoxic effect of Cr(VI) that contributes to carcinogenesis is the formation of DNA adducts, which can lead to DNA damage. Modulations of cellular signaling pathways and epigenetics may also contribute to the carcinogenic effects of Cr(VI). Cr(VI) has a major impact on many aspects of mitochondrial biology, including oxidative phosphorylation, mitophagy, and mitochondrial biogenesis. These effects have the potential to alter the trajectory of Cr(VI)-induced carcinogenic process. This perspective article summarizes current understandings of the effect of Cr(VI) on mitochondria and discusses the future directions of research in this area, particularly with regard to carcinogenesis.</p>","PeriodicalId":53200,"journal":{"name":"Journal of Environmental Science and Health Part C-Toxicology and Carcinogenesis","volume":" ","pages":"109-125"},"PeriodicalIF":1.2,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139478766","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}