Kévin Boulesteix, Miquel Poyatos-Moré, Stephen S. Flint, David M. Hodgson, Kevin T. Taylor, Rufus L. Brunt
Deep-water mudstones overlying basin-floor and slope sandstone-prone deposits are often interpreted as hemipelagic drapes deposited during sand starvation periods. However, mud transport and depositional processes, and resulting facies and architecture of mudstones in deep-water environments, remain poorly understood. This study documents the sedimentology and stratigraphy of basin-floor and slope mudstones intercalated with sandstone-prone deposits of the Laingsburg depocentre (Karoo Basin, South Africa). Sedimentologic and stratigraphic criteria are presented here to distinguish between slope and basin-floor mudstones, which provide a tool to refine palaeogeographical reconstructions of other deep-water successions. Several mudstone units were mapped at outcrop for 2500 km2 and investigated using macroscopic and microscopic core descriptions from two research boreholes. Basin-floor mudstones exhibit a repeated and predictable alternation of bedsets dominated by low-density turbidites, and massive packages dominated by debrites, with evidence of turbulent-to-laminar flow transformations. Slope mudstones exhibit a similar facies assemblage, but the proportion of low-density turbidites is higher, and no repeated or predictable facies organisation is recognised. The well-ordered and predictable facies organisation of basin-floor mudstones suggest local point sources from active slope conduits, responsible for deposition of compensationally stacked muddy lobes. The lack of predictable facies organisation in slope mudstones suggests deposition took place in a more variable range of sub-environments (i.e. ponded accommodation, minor gully/channel-fills, levees). However, regional mapping of three mudstone units evidence basinward tapering and similar thicknesses across depositional strike. This geometry is consistent with the distal part of basin margin clinothems, and suggests laterally extensive mud delivery across the shelf edge combined with along-margin transport processes. Therefore, the sedimentology and geometry of mudstones suggests that mud can be delivered to deep-water dominantly by sediment gravity flows through point source and distributed regionally, during periods of up-dip sand storage. These findings challenge the common attribution of deep-water mudstones to periods of basin-floor sediment starvation.
{"title":"Sedimentologic and stratigraphic criteria to distinguish between basin-floor and slope mudstones: Implications for the delivery of mud to deep-water environments","authors":"Kévin Boulesteix, Miquel Poyatos-Moré, Stephen S. Flint, David M. Hodgson, Kevin T. Taylor, Rufus L. Brunt","doi":"10.1002/dep2.191","DOIUrl":"10.1002/dep2.191","url":null,"abstract":"<p>Deep-water mudstones overlying basin-floor and slope sandstone-prone deposits are often interpreted as hemipelagic drapes deposited during sand starvation periods. However, mud transport and depositional processes, and resulting facies and architecture of mudstones in deep-water environments, remain poorly understood. This study documents the sedimentology and stratigraphy of basin-floor and slope mudstones intercalated with sandstone-prone deposits of the Laingsburg depocentre (Karoo Basin, South Africa). Sedimentologic and stratigraphic criteria are presented here to distinguish between slope and basin-floor mudstones, which provide a tool to refine palaeogeographical reconstructions of other deep-water successions. Several mudstone units were mapped at outcrop for 2500 km<sup>2</sup> and investigated using macroscopic and microscopic core descriptions from two research boreholes. Basin-floor mudstones exhibit a repeated and predictable alternation of bedsets dominated by low-density turbidites, and massive packages dominated by debrites, with evidence of turbulent-to-laminar flow transformations. Slope mudstones exhibit a similar facies assemblage, but the proportion of low-density turbidites is higher, and no repeated or predictable facies organisation is recognised. The well-ordered and predictable facies organisation of basin-floor mudstones suggest local point sources from active slope conduits, responsible for deposition of compensationally stacked muddy lobes. The lack of predictable facies organisation in slope mudstones suggests deposition took place in a more variable range of sub-environments (i.e. ponded accommodation, minor gully/channel-fills, levees). However, regional mapping of three mudstone units evidence basinward tapering and similar thicknesses across depositional strike. This geometry is consistent with the distal part of basin margin clinothems, and suggests laterally extensive mud delivery across the shelf edge combined with along-margin transport processes. Therefore, the sedimentology and geometry of mudstones suggests that mud can be delivered to deep-water dominantly by sediment gravity flows through point source and distributed regionally, during periods of up-dip sand storage. These findings challenge the common attribution of deep-water mudstones to periods of basin-floor sediment starvation.</p>","PeriodicalId":54144,"journal":{"name":"Depositional Record","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2022-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dep2.191","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49201100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lisanne Braat, Harm Jan Pierik, Wout M. van Dijk, Wietse I. van de Lageweg, Muriel Z. M. Brückner, Bas van der Meulen, Maarten G. Kleinhans
Mud plays a pivotal role in estuarine ecology and morphology. However, field data on the lateral and vertical depositional record of mud are rare. Furthermore, numerical morphodynamic models often ignore mud due to long computational times and simplifications of mixed depositional processes. This study aims to understand the spatial distribution, formative conditions and preservation of mud deposits in the intertidal zone of bars in high‐energy sand‐dominated estuaries, and to elucidate the effects of mud on morphology, ecology and stratigraphic architecture. To meet these objectives, field data (historic bathymetry, bio‐morphological maps and sediment cores of the shoal of Walsoorden, Western Scheldt estuary, the Netherlands) were combined with complementary hydro‐morphodynamic numerical modelling (Delft3D). Based on the field observations, two types of mud deposits were distinguished: (1) mudflat deposits, which are thick (>10 cm) mud beds at the surface associated with high elevations and low accumulation rates; and (2) mud drapes, which are thin (millimetre to centimetre) buried laminae that form and preserve at a wide range of elevations and energy conditions. Model results show that deposition on mudflats occurs just after high‐tide slack water in areas shielded from high flood velocities, suggesting that mud accumulation is mostly controlled by elevation, flow velocity and flow direction. Mud accumulation increases shoal elevation, sometimes to supratidal levels. This reduces flow over the shoal, which in turn reduces chute channel formation, stabilises bar morphology and decreases local tidal prism. These effects further promote mud deposition and vegetation settling. Although observations show that mud cover at the surface is relatively high (20%–40% of the intertidal area), mud constitutes only a small percentage of the total estuary volume (ca 5%) revealing that only a small fraction is preserved in the stratigraphy. Due to this mismatch between surface and subsurface expression of mud, interpretations of estuarine stratigraphy risk underestimating the influence of mud at the surface on morphodynamics and habitats.
{"title":"Observed and modelled tidal bar sedimentology reveals preservation bias against mud in estuarine stratigraphy","authors":"Lisanne Braat, Harm Jan Pierik, Wout M. van Dijk, Wietse I. van de Lageweg, Muriel Z. M. Brückner, Bas van der Meulen, Maarten G. Kleinhans","doi":"10.1002/dep2.190","DOIUrl":"10.1002/dep2.190","url":null,"abstract":"Mud plays a pivotal role in estuarine ecology and morphology. However, field data on the lateral and vertical depositional record of mud are rare. Furthermore, numerical morphodynamic models often ignore mud due to long computational times and simplifications of mixed depositional processes. This study aims to understand the spatial distribution, formative conditions and preservation of mud deposits in the intertidal zone of bars in high‐energy sand‐dominated estuaries, and to elucidate the effects of mud on morphology, ecology and stratigraphic architecture. To meet these objectives, field data (historic bathymetry, bio‐morphological maps and sediment cores of the shoal of Walsoorden, Western Scheldt estuary, the Netherlands) were combined with complementary hydro‐morphodynamic numerical modelling (Delft3D). Based on the field observations, two types of mud deposits were distinguished: (1) mudflat deposits, which are thick (>10 cm) mud beds at the surface associated with high elevations and low accumulation rates; and (2) mud drapes, which are thin (millimetre to centimetre) buried laminae that form and preserve at a wide range of elevations and energy conditions. Model results show that deposition on mudflats occurs just after high‐tide slack water in areas shielded from high flood velocities, suggesting that mud accumulation is mostly controlled by elevation, flow velocity and flow direction. Mud accumulation increases shoal elevation, sometimes to supratidal levels. This reduces flow over the shoal, which in turn reduces chute channel formation, stabilises bar morphology and decreases local tidal prism. These effects further promote mud deposition and vegetation settling. Although observations show that mud cover at the surface is relatively high (20%–40% of the intertidal area), mud constitutes only a small percentage of the total estuary volume (ca 5%) revealing that only a small fraction is preserved in the stratigraphy. Due to this mismatch between surface and subsurface expression of mud, interpretations of estuarine stratigraphy risk underestimating the influence of mud at the surface on morphodynamics and habitats.","PeriodicalId":54144,"journal":{"name":"Depositional Record","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2022-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dep2.190","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41713978","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Paul D. Morris, Zoltán Sylvester, Jacob A. Covault, David Mohrig
Interpretation of deep-water channel deposits is challenging because the spatial arrangement of their constituent lithologies is highly variable. This variability is often thought to be a signature of complex interactions between controlling boundary conditions and processes. A three-dimensional forward stratigraphic model of a sinuous meandering channel is used to explore the production of channelised deep-water stratigraphy. This model highlights three stages of stratigraphic evolution for channel belts: (1) an initial phase of rapid growth in mean belt width and variability in belt width driven by increasing channel sinuosity; (2) a subsequent phase of reduced belt-width growth rate because of cutoff processes; and (3) a mature phase during which repeated bend lifecycles act to produce a statistically stable channel-belt width. When a trajectory defining the vertical movement of a channel over time is added to the model, commonly recognised patterns of deep-water channel-belt stratigraphy are produced. These results demonstrate how forward stratigraphic models provide insights into processes governing the evolution of deep-water stratigraphy that elude interpretations of static outcrops and seismic images of subsurface examples.
{"title":"Channel trajectories control deep-water stratigraphic architecture","authors":"Paul D. Morris, Zoltán Sylvester, Jacob A. Covault, David Mohrig","doi":"10.1002/dep2.189","DOIUrl":"10.1002/dep2.189","url":null,"abstract":"<p>Interpretation of deep-water channel deposits is challenging because the spatial arrangement of their constituent lithologies is highly variable. This variability is often thought to be a signature of complex interactions between controlling boundary conditions and processes. A three-dimensional forward stratigraphic model of a sinuous meandering channel is used to explore the production of channelised deep-water stratigraphy. This model highlights three stages of stratigraphic evolution for channel belts: (1) an initial phase of rapid growth in mean belt width and variability in belt width driven by increasing channel sinuosity; (2) a subsequent phase of reduced belt-width growth rate because of cutoff processes; and (3) a mature phase during which repeated bend lifecycles act to produce a statistically stable channel-belt width. When a trajectory defining the vertical movement of a channel over time is added to the model, commonly recognised patterns of deep-water channel-belt stratigraphy are produced. These results demonstrate how forward stratigraphic models provide insights into processes governing the evolution of deep-water stratigraphy that elude interpretations of static outcrops and seismic images of subsurface examples.</p>","PeriodicalId":54144,"journal":{"name":"Depositional Record","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2022-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dep2.189","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41696222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Michael E. Brookfield, Alan G. Stebbins, Jeremy C. Williams, Robyn E. Hannigan
The Permian–Triassic boundary sediments at Ursula Creek accumulated in a continental shelf basin, or on the continental slope of the western Canadian passive margin, at 30°N palaeolatitude along the eastern Panthalassic Ocean margin. The area lay within the cold northerly ocean currents at the junction of westerly and north-easterly trade wind belts, the latter causing summer coastal upwelling. The shift from uppermost Permian grey radiolarian cherts and grey shales to lowermost Triassic grey and black shales and fine-grained dolomites is typical of deep-water Panthalassic sediments. The palaeogeographical situation and palaeoenvironments are comparable to those of the present Canadian north-western Pacific margin. The Ursula Creek section reveals the progressive decline of seafloor oxygen values in the Changhsingian Stage), followed by the persistent development of euxinic conditions in the latest Changhsingian and throughout the Early Triassic; a transition that coincides with the disappearance of a siliceous sponge fauna and the loss of diverse radiolarian populations. Much of the detrital sediment was supplied by summer north-east Trade winds from the deserts of western North America, although variable amounts may have come across the Panthalassic Ocean as dust from contemporary volcanic eruptions. Relative palaeoproductivity changes show no consistent change in productivity across the Permian–Triassic boundary producing results that are comparable with those from the similar Opal Creek section to the south-east. The Ni/Co, Cu/Zn, U/Al and Th/U ratios indicate variable redox conditions in all sections, but with a tendency for oxic conditions to change to dysoxic across the Permian–Triassic boundary. The lack of consistent element geochemical changes across the boundary accompanied by significant isotopic changes, here and elsewhere, suggests that atmospheric and oceanic chemistry rather than physical changes, like provenance and sea-level changes, drove Permian–Triassic environmental changes and extinctions.
{"title":"Palaeoenvironments and elemental geochemistry across the Permian–Triassic boundary at Ursula Creek, British Columbia, Canada, and a comparison with some other deep-water Permian–Triassic boundary shelf/slope sections in western North America","authors":"Michael E. Brookfield, Alan G. Stebbins, Jeremy C. Williams, Robyn E. Hannigan","doi":"10.1002/dep2.187","DOIUrl":"10.1002/dep2.187","url":null,"abstract":"<p>The Permian–Triassic boundary sediments at Ursula Creek accumulated in a continental shelf basin, or on the continental slope of the western Canadian passive margin, at 30°N palaeolatitude along the eastern Panthalassic Ocean margin. The area lay within the cold northerly ocean currents at the junction of westerly and north-easterly trade wind belts, the latter causing summer coastal upwelling. The shift from uppermost Permian grey radiolarian cherts and grey shales to lowermost Triassic grey and black shales and fine-grained dolomites is typical of deep-water Panthalassic sediments. The palaeogeographical situation and palaeoenvironments are comparable to those of the present Canadian north-western Pacific margin. The Ursula Creek section reveals the progressive decline of seafloor oxygen values in the Changhsingian Stage), followed by the persistent development of euxinic conditions in the latest Changhsingian and throughout the Early Triassic; a transition that coincides with the disappearance of a siliceous sponge fauna and the loss of diverse radiolarian populations. Much of the detrital sediment was supplied by summer north-east Trade winds from the deserts of western North America, although variable amounts may have come across the Panthalassic Ocean as dust from contemporary volcanic eruptions. Relative palaeoproductivity changes show no consistent change in productivity across the Permian–Triassic boundary producing results that are comparable with those from the similar Opal Creek section to the south-east. The Ni/Co, Cu/Zn, U/Al and Th/U ratios indicate variable redox conditions in all sections, but with a tendency for oxic conditions to change to dysoxic across the Permian–Triassic boundary. The lack of consistent element geochemical changes across the boundary accompanied by significant isotopic changes, here and elsewhere, suggests that atmospheric and oceanic chemistry rather than physical changes, like provenance and sea-level changes, drove Permian–Triassic environmental changes and extinctions.</p>","PeriodicalId":54144,"journal":{"name":"Depositional Record","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2022-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dep2.187","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42258682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The Cryogenian geological record of Siberia is scarce and ambiguous. Late Neoproterozoic strata of presumed glaciogenic origin of the Marnya Formation, Oselok Group cropping out along the Uda River in the Eastern Sayan Ranges, south-western Siberia has received considerable attention due to the presence of at least three distinctive diamictite units. The lower diamictite unit (Karapchetui Member) is in subvertical contact (previously interpreted as a glacial valley) with stratigraphically older strata of the Tagul and Ipsit formations of the Karagas Group, and is represented by a wedge-shaped unit of breccia that hosts numerous ellipsoidal sandstone bodies (previously thought to be boulders). The boulders are here reinterpreted as early diagenetic quartz and feldspar-cemented sandstone concretions exhumed and redeposited from the Ipsit Formation when the latter was still uncemented and easily erodible. Tectonic compression, reverse faulting and localised continuous syndepositional uplift led to exhumation of the concretions, whereas subsequent extension, reactivation of the fault and ‘negative inversion’ of the basin produced accommodation space for redeposition of the exhumed concretions. In the process of redeposition, exfoliating concretions produced abundant debris that provided clasts for the breccia deposit. The Karapchetui diamictite, therefore, can serve as a sedimentary archive of late Neoproterozoic tectonic activity at the south-western margin of the Siberian Craton.
{"title":"The origin of boulders in the Neoproterozoic of Eastern Sayan Ranges, south-west Siberia: Glacial transport versus winnowed concretions","authors":"Dmitrii Aleksandrov","doi":"10.1002/dep2.188","DOIUrl":"10.1002/dep2.188","url":null,"abstract":"<p>The Cryogenian geological record of Siberia is scarce and ambiguous. Late Neoproterozoic strata of presumed glaciogenic origin of the Marnya Formation, Oselok Group cropping out along the Uda River in the Eastern Sayan Ranges, south-western Siberia has received considerable attention due to the presence of at least three distinctive diamictite units. The lower diamictite unit (Karapchetui Member) is in subvertical contact (previously interpreted as a glacial valley) with stratigraphically older strata of the Tagul and Ipsit formations of the Karagas Group, and is represented by a wedge-shaped unit of breccia that hosts numerous ellipsoidal sandstone bodies (previously thought to be boulders). The boulders are here reinterpreted as early diagenetic quartz and feldspar-cemented sandstone concretions exhumed and redeposited from the Ipsit Formation when the latter was still uncemented and easily erodible. Tectonic compression, reverse faulting and localised continuous syndepositional uplift led to exhumation of the concretions, whereas subsequent extension, reactivation of the fault and ‘negative inversion’ of the basin produced accommodation space for redeposition of the exhumed concretions. In the process of redeposition, exfoliating concretions produced abundant debris that provided clasts for the breccia deposit. The Karapchetui diamictite, therefore, can serve as a sedimentary archive of late Neoproterozoic tectonic activity at the south-western margin of the Siberian Craton.</p>","PeriodicalId":54144,"journal":{"name":"Depositional Record","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2022-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dep2.188","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44399197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shifting palaeoceanographic and palaeoclimatic conditions together with fluctuating eustatic sea levels during the Early Cretaceous Aptian stage led to a globally widespread deposition of organic-rich marine sediments designated Oceanic Anoxic Event 1a. Here a detailed lithostratigraphic and geochemical study is presented for 35.6 m of the Cabó Formation, part of the Organyà Basin, North-east Spain, to assess intermittent periods of enhanced organic carbon preservation in Lower Aptian sediments preceding Oceanic Anoxic Event 1a. The Organyà area contains well-exposed outcrops of Mesozoic black to dark grey marlstones and limestones with variable amount of organic matter (OM) indicative of oxygen-deficient conditions. Previous work in a section near the town of Organyà focussed on lithostratigraphy and biostratigraphy and assigned a Barremian–Aptian age. This study aims to provide an updated age based on carbon isotope correlation established elsewhere, and assess the chemostratigraphic characteristics of the Barremian–Aptian to clarify environmental changes regarding oxygen deficient conditions in the basin at that time. The δ13Corg values fluctuate from −22.1 to −24.4‰ showing concurrence with results at the El Pui section west of the studied section. Chemostratigraphic correlation of the δ13Corg reveals that the section is within segment C2, in the Lower Aptian. Redox-sensitive trace elements (V, Ni, Co, Cr, Cu, Mo) indicate heightened dysoxic conditions at five organic-rich layers, here designated carbonaceous layers (TOC >2%), associated with enhanced terrigenous fluxes coincident with increased major elements (Al, Si and Ti) during these intervals. Biomarkers from six levels showed n-alkane distributions with chain lengths from nC14 to nC34, mostly below nC21 indicating a predominance of marine-derived OM. Climate conditions inferred from variable smectite, and kaolinite content suggests fluctuating humid-warm conditions. The results thus reveal that the Organyà Basin experienced intervals of distinct oxygen-poor conditions prior to the onset of Oceanic Anoxic Event 1a.
{"title":"Chemostratigraphic characteristics of trace elements, biomarkers and clay mineralogy indicating environmental conditions within Aptian sediments of the Organyà Basin, North-east Spain, prior to the onset of OAE 1a","authors":"Carlos Herdocia, Florentin J-M. R. Maurrasse","doi":"10.1002/dep2.186","DOIUrl":"10.1002/dep2.186","url":null,"abstract":"<p>Shifting palaeoceanographic and palaeoclimatic conditions together with fluctuating eustatic sea levels during the Early Cretaceous Aptian stage led to a globally widespread deposition of organic-rich marine sediments designated Oceanic Anoxic Event 1a. Here a detailed lithostratigraphic and geochemical study is presented for 35.6 m of the Cabó Formation, part of the Organyà Basin, North-east Spain, to assess intermittent periods of enhanced organic carbon preservation in Lower Aptian sediments preceding Oceanic Anoxic Event 1a. The Organyà area contains well-exposed outcrops of Mesozoic black to dark grey marlstones and limestones with variable amount of organic matter (OM) indicative of oxygen-deficient conditions. Previous work in a section near the town of Organyà focussed on lithostratigraphy and biostratigraphy and assigned a Barremian–Aptian age. This study aims to provide an updated age based on carbon isotope correlation established elsewhere, and assess the chemostratigraphic characteristics of the Barremian–Aptian to clarify environmental changes regarding oxygen deficient conditions in the basin at that time. The δ<sup>13</sup>C<sub>org</sub> values fluctuate from −22.1 to −24.4‰ showing concurrence with results at the El Pui section west of the studied section. Chemostratigraphic correlation of the δ<sup>13</sup>C<sub>org</sub> reveals that the section is within segment C2, in the Lower Aptian. Redox-sensitive trace elements (V, Ni, Co, Cr, Cu, Mo) indicate heightened dysoxic conditions at five organic-rich layers, here designated carbonaceous layers (TOC >2%), associated with enhanced terrigenous fluxes coincident with increased major elements (Al, Si and Ti) during these intervals. Biomarkers from six levels showed <i>n</i>-alkane distributions with chain lengths from <i>n</i>C<sub>14</sub> to <i>n</i>C<sub>34</sub>, mostly below <i>n</i>C<sub>21</sub> indicating a predominance of marine-derived OM. Climate conditions inferred from variable smectite, and kaolinite content suggests fluctuating humid-warm conditions. The results thus reveal that the Organyà Basin experienced intervals of distinct oxygen-poor conditions prior to the onset of Oceanic Anoxic Event 1a.</p>","PeriodicalId":54144,"journal":{"name":"Depositional Record","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2022-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dep2.186","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46542205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hannah L. Brooks, Makoto Ito, Valentin Zuchuat, Jeff Peakall, David M. Hodgson
Channel-lobe transition zones are dynamic areas located between deepwater channels and lobes. Presented here is a rare example of an exhumed channel-lobe transition zone from an active-margin setting, in the Kazusa forearc Basin, Boso Peninsula, Japan. This Plio-Pleistocene outcrop exposes a thick (tens of metres) channel-lobe transition zone succession with excellent dating control, in contrast to existing poorly dated studies of thinner (metres) deposits in tectonically quiescent settings. This high-resolution outcrop permits the roles of climate and associated relative sea-level changes on stratigraphic architecture to be assessed. Three development stages are recognised with an overall coarsening-upward then fining-upwards trend. Each stage is interpreted to record one obliquity-driven glacioeustatic sea-level fall-then-rise cycle, based on comparison with published data. Deposition of the thickest and coarsest strata, Stage 2, is interpreted to record the end of a period of relative sea-level fall. The thinner and finer strata of Stages 1 and 3 formed during interglacial periods where the stronger Kuroshio Oceanic Current, coupled to increased monsoonally driven tropical cyclone frequency and intensity, likely resulted in inhibited downslope sediment transfer. A key aspect of channel-lobe transition zone deposits in this case is the presence of a diverse range of hybrid beds, in contrast to previous work where they have primarily been associated with lobe fringes. Here hybrid bed characteristics, and grain-size variations, are used to assess the relative importance of longitudinal and vertical segregation processes, and compared to existing models. Compared to channel-lobe transition zones in tectonically quiescent basin-fills, this channel-lobe transition zone shows less evidence of bypassing flows (i.e. thicker stratigraphy, more isolated scour-fills, fewer bypass lags) and has significantly more hybrid beds. These features may be common in active basin channel-lobe transition zones due to: high subsidence rates; high sedimentation rates; and disequilibrium of tectonically active slopes. This disequilibrium could rejuvenate erodible mud-rich substrate, leading to mud-rich flows arriving at the channel-lobe transition zone, and decelerating rapidly, forming hybrid beds.
{"title":"Channel-lobe transition zone development in tectonically active settings: Implications for hybrid bed development","authors":"Hannah L. Brooks, Makoto Ito, Valentin Zuchuat, Jeff Peakall, David M. Hodgson","doi":"10.1002/dep2.180","DOIUrl":"10.1002/dep2.180","url":null,"abstract":"<p>Channel-lobe transition zones are dynamic areas located between deepwater channels and lobes. Presented here is a rare example of an exhumed channel-lobe transition zone from an active-margin setting, in the Kazusa forearc Basin, Boso Peninsula, Japan. This Plio-Pleistocene outcrop exposes a thick (tens of metres) channel-lobe transition zone succession with excellent dating control, in contrast to existing poorly dated studies of thinner (metres) deposits in tectonically quiescent settings. This high-resolution outcrop permits the roles of climate and associated relative sea-level changes on stratigraphic architecture to be assessed. Three development stages are recognised with an overall coarsening-upward then fining-upwards trend. Each stage is interpreted to record one obliquity-driven glacioeustatic sea-level fall-then-rise cycle, based on comparison with published data. Deposition of the thickest and coarsest strata, Stage 2, is interpreted to record the end of a period of relative sea-level fall. The thinner and finer strata of Stages 1 and 3 formed during interglacial periods where the stronger Kuroshio Oceanic Current, coupled to increased monsoonally driven tropical cyclone frequency and intensity, likely resulted in inhibited downslope sediment transfer. A key aspect of channel-lobe transition zone deposits in this case is the presence of a diverse range of hybrid beds, in contrast to previous work where they have primarily been associated with lobe fringes. Here hybrid bed characteristics, and grain-size variations, are used to assess the relative importance of longitudinal and vertical segregation processes, and compared to existing models. Compared to channel-lobe transition zones in tectonically quiescent basin-fills, this channel-lobe transition zone shows less evidence of bypassing flows (i.e. thicker stratigraphy, more isolated scour-fills, fewer bypass lags) and has significantly more hybrid beds. These features may be common in active basin channel-lobe transition zones due to: high subsidence rates; high sedimentation rates; and disequilibrium of tectonically active slopes. This disequilibrium could rejuvenate erodible mud-rich substrate, leading to mud-rich flows arriving at the channel-lobe transition zone, and decelerating rapidly, forming hybrid beds.</p>","PeriodicalId":54144,"journal":{"name":"Depositional Record","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2022-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dep2.180","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49383760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Niels S. Brall, Véronique Gardien, Daniel Ariztegui, Philippe Sorrel, Emmanuel Guillerm, Frédéric Caupin
Interglacial periods are characterised by thick accumulations of halite units in the Dead Sea Basin. During these intervals, small water droplets (fluid inclusions, FIs) were entrapped in the halite crystals which serve as windows to estimate the chemistry and physical properties of the primary lake water conditions. Brillouin spectroscopy is used here to reconstruct annual resolution temperatures from a halite core section in the Dead Sea Basin during the onset of Marine Isotope Stage 5e (ca 130 ka) of the Last Interglacial. Lake bottom temperatures can be inferred based on the occurrence of coarse/fine halite facies, as observed today with the formation of equivalent halite facies during winter/summer seasons in the Dead Sea. A recurring increase in lake bottom temperatures is found along the direction of coarse halite layers in three successive years. Moreover, low FI entrapment temperatures were detected in layers of fine (cumulate) halite facies. These results imply a twofold stronger seasonality in the Dead Sea Basin compared to today, with colder winters at the onset of Marine Isotope Stage 5e. The results therefore highlight the potential of using cyclic salt deposits to reconstruct seasonal temperature variability for numerous evaporitic environments in the geological record.
{"title":"Reconstructing lake bottom water temperatures and their seasonal variability in the Dead Sea Basin during MIS5e","authors":"Niels S. Brall, Véronique Gardien, Daniel Ariztegui, Philippe Sorrel, Emmanuel Guillerm, Frédéric Caupin","doi":"10.1002/dep2.185","DOIUrl":"10.1002/dep2.185","url":null,"abstract":"<p>Interglacial periods are characterised by thick accumulations of halite units in the Dead Sea Basin. During these intervals, small water droplets (fluid inclusions, FIs) were entrapped in the halite crystals which serve as windows to estimate the chemistry and physical properties of the primary lake water conditions. Brillouin spectroscopy is used here to reconstruct annual resolution temperatures from a halite core section in the Dead Sea Basin during the onset of Marine Isotope Stage 5e (<i>ca</i> 130 ka) of the Last Interglacial. Lake bottom temperatures can be inferred based on the occurrence of coarse/fine halite facies, as observed today with the formation of equivalent halite facies during winter/summer seasons in the Dead Sea. A recurring increase in lake bottom temperatures is found along the direction of coarse halite layers in three successive years. Moreover, low FI entrapment temperatures were detected in layers of fine (cumulate) halite facies. These results imply a twofold stronger seasonality in the Dead Sea Basin compared to today, with colder winters at the onset of Marine Isotope Stage 5e. The results therefore highlight the potential of using cyclic salt deposits to reconstruct seasonal temperature variability for numerous evaporitic environments in the geological record.</p>","PeriodicalId":54144,"journal":{"name":"Depositional Record","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2022-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dep2.185","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41971324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Harm Jan Pierik, Jasper R. F. W. Leuven, Freek S. Busschers, Marc P. Hijma, Maarten G. Kleinhans
Estuaries comprise channels vital for economic activity and bars as valuable habitats. They are increasingly under human-induced pressures (e.g. sea-level rise and dredging), resulting in morphological changes that affect navigability, flood safety and ecology. Antecedent geology may strongly steer how estuary channels will adapt to these pressures, but is surprisingly absent in most models. Here geological data and a unique bathymetry dataset covering 200 years from the Ems-Dollard estuary (Netherlands/Germany) were used to demonstrate how local resistant layers force the position and dimensions of confluences and bars on the scale of an entire estuary. These layers limit channel depth and consequently cause widening, resulting in mid-channel bar formation and increased channel curvature. This could lead to unexpected estuary widening and may cause land loss in densely populated areas. With increasing channel volume (as may happen again under future sea-level rise), resistant layers in the estuary's substrate become more exposed, which enhances their effects. Many systems around the world contain shallow resistant layers that potentially constrain estuary channel dimensions and steer bank erosion. This highlights that resistant layer effects are important to consider as part of mixed depositional processes in coastal environments. It is therefore necessary to globally account for the effects of inherited resistant layers in the possible response of estuaries to sea-level rise and increased tidal penetration.
{"title":"Depth-limiting resistant layers restrict dimensions and positions of estuarine channels and bars","authors":"Harm Jan Pierik, Jasper R. F. W. Leuven, Freek S. Busschers, Marc P. Hijma, Maarten G. Kleinhans","doi":"10.1002/dep2.184","DOIUrl":"10.1002/dep2.184","url":null,"abstract":"<p>Estuaries comprise channels vital for economic activity and bars as valuable habitats. They are increasingly under human-induced pressures (e.g. sea-level rise and dredging), resulting in morphological changes that affect navigability, flood safety and ecology. Antecedent geology may strongly steer how estuary channels will adapt to these pressures, but is surprisingly absent in most models. Here geological data and a unique bathymetry dataset covering 200 years from the Ems-Dollard estuary (Netherlands/Germany) were used to demonstrate how local resistant layers force the position and dimensions of confluences and bars on the scale of an entire estuary. These layers limit channel depth and consequently cause widening, resulting in mid-channel bar formation and increased channel curvature. This could lead to unexpected estuary widening and may cause land loss in densely populated areas. With increasing channel volume (as may happen again under future sea-level rise), resistant layers in the estuary's substrate become more exposed, which enhances their effects. Many systems around the world contain shallow resistant layers that potentially constrain estuary channel dimensions and steer bank erosion. This highlights that resistant layer effects are important to consider as part of mixed depositional processes in coastal environments. It is therefore necessary to globally account for the effects of inherited resistant layers in the possible response of estuaries to sea-level rise and increased tidal penetration.</p>","PeriodicalId":54144,"journal":{"name":"Depositional Record","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2022-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dep2.184","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48408055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Thérèse E. Morris, Stephen N. Morris, Peter R.C.S. Fearns, Aditya Chopra, Mehrooz F. Aspandair, Lindsay B. Collins, Micheal J. O'Leary, Pieter T. Visscher
Storm disturbance and recovery of the peritidal benthic microbial ecosystem occurs as part of the natural climate regime in Shark Bay. However, tropical cyclone and winter storm frequency and intensity are known to be changing due to climate forcing. Presented here is an analysis of the biogeomorphic response of the benthic microbial ecosystem within the intertidal to upper subtidal zone and the beach face coquina deposits of Hamelin Pool, to the passage of Category 3 Severe Tropical Cyclone Olwyn (13 March 2015). Storm effects (initial response to 40 days post-event) include: erosional sculpting of sediments, mats and structures; deposition and winnowing of sediments; accumulation of mucilaginous products into flocs, slurries and sludges; along with limited development of new coquina deposits in the beach face. Medium (15 months) term observations include: mat recovery and changes with transformation of mucilage deposits into new subtidal gelatinous mats, intertidal transitional mats and low-elevation microbial structures. Observations suggest that this disturbance had both positive (the floc-to-mat biogeomorphic storm response) and negative feedbacks (enhanced bioturbation), which impact the development of stromatolite forming microbial mats and microbialite structures.
{"title":"Impacts of Severe Tropical Cyclone Olwyn and the biogeomorphic response, Hamelin Pool, Shark Bay, Western Australia","authors":"Thérèse E. Morris, Stephen N. Morris, Peter R.C.S. Fearns, Aditya Chopra, Mehrooz F. Aspandair, Lindsay B. Collins, Micheal J. O'Leary, Pieter T. Visscher","doi":"10.1002/dep2.183","DOIUrl":"10.1002/dep2.183","url":null,"abstract":"<p>Storm disturbance and recovery of the peritidal benthic microbial ecosystem occurs as part of the natural climate regime in Shark Bay. However, tropical cyclone and winter storm frequency and intensity are known to be changing due to climate forcing. Presented here is an analysis of the biogeomorphic response of the benthic microbial ecosystem within the intertidal to upper subtidal zone and the beach face coquina deposits of Hamelin Pool, to the passage of Category 3 Severe Tropical Cyclone Olwyn (13 March 2015). Storm effects (initial response to 40 days post-event) include: erosional sculpting of sediments, mats and structures; deposition and winnowing of sediments; accumulation of mucilaginous products into flocs, slurries and sludges; along with limited development of new coquina deposits in the beach face. Medium (15 months) term observations include: mat recovery and changes with transformation of mucilage deposits into new subtidal gelatinous mats, intertidal transitional mats and low-elevation microbial structures. Observations suggest that this disturbance had both positive (the floc-to-mat biogeomorphic storm response) and negative feedbacks (enhanced bioturbation), which impact the development of stromatolite forming microbial mats and microbialite structures.</p>","PeriodicalId":54144,"journal":{"name":"Depositional Record","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2022-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dep2.183","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47288478","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}