Multi-scale transgressive–regressive cycles from the mid-Jurassic were recognised in the Central Lusitanian Basin, Portugal. These cycles allow the depositional evolution of the basin to be better understood and aid in the construction of stratigraphic sequences composed of three hierarchies. The stacking pattern of high-frequency transgressive–regressive sequences forms larger clusters that define medium-frequency transgressive–regressive sequences. Likewise, the stacking pattern of medium-frequency transgressive–regressive sequences generates two Bathonian–early Callovian low-frequency transgressive–regressive sequences. Integration of several methods supported the interpretation of facies associations representing clastic deposition in offshore to shoreface environments and carbonate sediments in outer to inner ramp settings. New data from calcareous nannofossils and dinoflagellate assemblages constrained the interval's Bathonian–early Callovian age, thus unveiling the Middle–Upper Jurassic disconformity and filling the Middle Jurassic stratigraphic record gap in the Central Lusitanian Basin. This study may be helpful for similar successions in Tethyan domains and comparable depositional settings elsewhere.
A detailed sedimentological analysis of the Palaeocene Lockhart Limestone has been conducted to evaluate the depositional environment, diagenetic processes and hydrocarbon potential of the eastern margin of the Upper Indus Basin. From bottom to top, there are three microfacies recorded. The lower microfacies, composed of fine-grained micrite and some diagenetic dolomite, reflect the low energy and calm palaeo-current in the shallower section (1–2 m) of the inner shelf close to shore. The middle microfacies contain algae that suggest 5–15 m of water depth, especially along the inner-middle shelf, but fractured and mixed bioclasts in micrite material indicate calm to moderately active water close to the wave base. Progressing from the lower microfacies to the middle microfacies, a gradual shift from orthochem to allochem components is observed. The top microfacies is dominated by massive benthic microfossils, indicating moderate energy-water conditions with normal salinity. However, the presence of limestone intraclasts surrounded by microspar, miliolids and nummulites at the top indicates a high-energy environment with increasing salinity and water depths from 20 to 130 m. These findings show that the Lockhart Limestone was deposited in a shallow shelf environment, spanning the inner-mid shelf. Diagenetic processes observed include micritisation, cementation, dissolution, replacement, physical and chemical compaction, and fracture filling by calcite cement. The Lockhart Limestone represents a deepening upward sequence deposited below the shelf margin system tract and highstand systems tract in a regressive environment that could reflect good reservoir characteristics, has the potential to serve as an excellent hydrocarbon reservoir rock, and could be a primary target for future hydrocarbon exploration.
Exceptionally well-preserved tufas located west of Calama, Atacama Desert, Chile, designated Santa Juana tufas, record episodic wetter conditions, relative to today, over the past 500,000 years. Globally, tufa architecture and depositional details are poorly understood as most described tufas have been degraded by weathering and erosion. In the hyperarid Atacama, post-depositional alteration is negligible, therefore, the exceptional preservation of Santa Juana tufas documented in this study provides new information about tufa facies and their complex interactions. Santa Juana facies include microbial stromatolites, phytoherms, cascadestone, flowstone and porous limestone. Phytoherms, consisting of former plant stems coated with calcite, developed in channels, within pools, and along spring discharge aprons. Cascadestone, representing former waterfalls, preserves microbial filaments and delicate V-shaped calcite crystals. Flowstone lines shallow subvertical to subhorizontal channels, representing sites of rapidly sluicing water flow. Porous limestone, containing sparse calcite and/or gypsum and anhydrite cement crystals, represents detrital accumulations. Stable isotope results, coupled with U/Th ages, show that by the Quaternary, relative to the Neogene, groundwater was less supercharged with volcanogenic CO2 so degassing was moderated. The δ18O ratios from Miocene–Pliocene palustrine and lacustrine freshwater carbonates that underlie Santa Juana tufas indicate significant evaporation, but the tufa δ18O signal indicates a less evaporative trend due to shorter atmosphere exposure time. Biological fractionation in δ13C is largely masked by the region's volcanogenic carbon footprint, although tufa petrography shows well-preserved microbial filaments and laminations. The range of tufa ages in this study shows that there were wetter time periods within the drainage basin headwater area in the Quaternary, but that by the late Pleistocene to early Holocene, aridity to hyperaridity became established. The lack of diagenesis or alteration within the Santa Juana tufas indicates that there has been minimal rainfall since their deposition.
Sequential analyses of δ13C, δ18O and Δ47 values of calcite and dolomite deposited in millimetre-sized cavities are reported from the Ronaldsway Member packstones, Isle of Man. The Ronaldsway brachiopods have δ13C values of ca +2.3‰ and δ18O values of ca −7.2‰; carbon is like predicted Carboniferous values, while oxygen values are more negative. The brachiopods show preserved microstructure but have marginal alteration and a streaky cathodoluminescence pattern. Crinoid ossicles have δ13C values of ca +2.3‰ and one with a δ18O value of ca −3.1‰, compatible with Carboniferous marine precipitates; three samples have δ18O values of ca −6.5‰ and are 18O-depleted. Calcite stages 1 and 2 have δ13C values ca +3.2‰ and δ18O values ca −2.5‰, compatible with Carboniferous sea water. Stage 1 and 2 have non-luminescent to orange CL zones. Stage 1 and early stage 2 contain red luminescent dolomite micro crystals generated during Mg calcite stabilisation. The Δ47 values for stage 1 and 2 cements indicate temperatures of 86 and 105°C that occurred after the stabilisation of Mg calcite. Stage 3–8 zoned cements preserve their original growth surfaces and their δ13C and δ18O values suggest precipitation during burial and exhumation. The Δ47 values of the brachiopods and crinoids indicate temperatures between 85 and 140°C indicating they were either recrystallised at high temperatures or affected by solid state reordering. To evaluate these alternatives two quantitative models, water–rock reaction and reordering models are performed. The allochems and cements are progressively altered by porewater towards the fluid-buffered behaviour. The quantitative evaluation of calcite and dolomite solid-state reordering suggests the elevated clumped isotopic temperatures are produced by interaction with hydrothermal fluids. This study improves understanding by applying previously untried techniques; further Δ47 data and quantifying elemental variations would help further interpretation but the poorly documented post-depositional history is a drawback.
An enigmatic transition from the storm-dominated, offshore to lower shoreface deposits of the Redwater Shale Member (Sundance Formation) to the overlying mixed tidal and aeolian Windy Hill Sandstone (Morrison Formation) in the Oxfordian of the North American Western Interior has long been a source of intrigue. Previously proposed drivers include the progradation of a large, tide-dominated delta onto a storm-dominated shelf, a complete reorganisation of the basin's hydrodynamics and climate, or the development of a regional unconformity (termed the J-5). In south-eastern Wyoming, the Redwater Shale is characterised as an offshore to distal shoreface deposit with glauconitic siltstones and sandstones punctuated by coquinoid and sandy tempestites and hosting a Cruziana Ichnofacies. The Windy Hill Sandstone, a time-transgressive, sand-rich, intertidal succession with classic Pteraichnus and stressed Skolithos Ichnofacies, sharply overlies the Redwater Shale and records an abrupt basinward shift in facies that accompanied at least tens of metres of sea-level fall. New, detailed sedimentological, ichnological and architectural data collected across this transition in the study area provide fresh insights into the depositional history of these units and demonstrates the existence locally of a composite J-5 unconformity. The unconformity developed as tectonically driven, prograding shoreline trajectories of the Redwater Shale gave way to degrading trajectories of the Windy Hill Sandstone, leading to a forced regression and formation of a regressive surface of marine erosion. The sharp juxtaposition of intertidal flat facies (Pteraichnus Ichnofacies) directly upon offshore to lower shoreface deposits (Cruziana Ichnofacies) is the key to recognising the unconformity and proves the value of the previously underutilised ichnological data.
In natural deltaic settings, mixed hydrodynamic forcings and sediment properties are known to influence the preserved delta deposits. One process that has not received much attention yet is syn-sedimentary compaction of clastic sediment on millennial-scale delta evolution. To study how compaction interacts with delta morphodynamics and preserved sediment, a modelling approach is proposed. A 1D grain-size dependent compaction model was implemented into Delft3D-FLOW, which provides an opportunity to understand the underexplored connection between grain sizes supplied to the deltas and sediment compaction. The compaction model allows deposited sediment to decrease in volume due to the accumulation of newly deposited sediments above or the elapsed time. Differences in morphological trends are presented for scenarios defined by the composition of sediment supply (mud rich and sand rich) and the maximum allowed compaction rate in the model (0–10 mm year−1). The resultant deposits are classified into sub-environments: delta top, delta front and pro delta. The delta top geometry (e.g. area increase, rugosity and aspect ratio), sediment distribution alongshore and across sub-environments, and delta top accommodation (e.g. volume reduction and average water depth) are compared. The modelling results show that compaction of the underlying delta front and pro delta deposits increases the average water depth at the delta top, driving morphological variability observed in the mud-rich and sand-rich deltas. The morphological changes are more prominent in the mud-rich deltas, which experience larger compaction-induced volume reduction for the same scenario. Moreover, higher compaction rates further increase the delta top accommodation, resulting in more deposition and evenly distributed sediment at the delta top. This leads to a less significant area increase and a wider delta top with a smoother coastline. The presented modelling results bridge the knowledge gap on the influence of syn-sedimentary compaction on long-term delta morphodynamics and preserved sediment. These findings can be applied to unravel the controlling processes in ancient delta deposits and predict the evolution of modern systems under changing climates.
The dynamic inter-relationships between marine and freshwater carbonate depositional environments are illustrated in the Sian Ka'an Wetlands, a 5 280 km2 complex of groundwater-fed freshwater marshes, lakes and brackish coastal lagoons in the South-East Yucatán Peninsula (Mexico). The Yucatán Platform was subaerially emergent and extensively karstified during the last glacial maximum at 18, 000 yr bp. The Late Holocene transgression has caused progressive reflooding of the continental margin, backstepping of the MesoAmerican Reef and encroachment of coastal environments into the platform interior as rising groundwaters flood an interconnected cave and sinkhole system and feed seasonal marshes above. The Sian Ka'an Wetlands form a vast palustrine carbonate factory which is directly juxtaposed and dynamically linked with the marine carbonate factory to seaward. Continuing sea-level rise has caused synchronous landward migration of marginal marine and freshwater environments as beach barriers were breached and palustrine sloughs flooded to form marginal marine seagrass lagoons. The Rio Hondo Fault conditions fluid inflow while the sub-environments of the Sian Ka'an Wetlands reflect tectonic controls on microtopography and hydroperiod. Modern analogues for the Sian Ka'an Wetlands include the Florida Everglades, formed during transgression of the Florida Platform, and relict marsh environments preserved on leeward shores of Andros, Abaco and other Bahama islands. A wide range of ancient examples deposited in coastal and continental interior settings similarly reflect seasonal aquifer rise in response to marine transgression and/or onlap of late-stage basin fill onto a karstified pediment. Freshwater palustrine carbonate factories on carbonate platforms are transient deposystems, controlled by subtle water depth, climate, vegetation and hydrological factors while being critically sensitive to sea-level changes and tectonics. The preservation potential of palustrine carbonates may be relatively low in coastal settings due to erosion or shallow marine overprinting, while greater further inland where marine flooding is rarer and in tectonically subsident continental interior basins where accommodation space is continuously created.
The Niobrara Formation of north-east Colorado, USA, has anomalously negative δ18O values compared to all other Cretaceous chalks. These unique δ18O values have been attributed to elevated heat flow and/or freshening of the Cretaceous Western Interior Seaway. This work utilises clumped isotopes of calcite (Δ47), peak burial temperatures estimated from pyrolysis data, and strontium and neodymium isotopes of carbonate to re-evaluate the origin of the calcite's 18O-depletion. Peak temperatures indicate lateral variability in geothermal gradients of ca 20°C/km at the tens of kilometre scale, and corroborate prior studies proposing locally elevated palaeotemperatures. Greater insight is provided by numerical models of calcite recrystallisation and oxygen isotope evolution that are constrained by measured Δ47-derived temperatures, calcite δ18O values and inferences from the 87Sr/86Sr and εNd values. The models indicate that (1) sea water in the seaway had normal marine δ18O values of −1 (VSMOW) except on the eastern margin of the basin where some freshwater dilution yielded −2 to −3‰ (VSMOW) water, and (2) the main driver of the anonymously negative calcite δ18O values was a semi-open hydrologic system that provided a few percent by pore volume of meteoric groundwater derived from post-Laramide recharge into the basin. Minor contributions were a Laramide-aged heat pulse related to the underlying Colorado Mineral Belt, the thermal insulating effects of now eroded coals, and a small flux of compaction-driven Cretaceous sea water evolved by smectite dehydration. However, those three factors alone were insufficient drivers of the calcites' 18O depletion. High burial temperatures are interpreted to have caused clumped isotope reordering in at least one well, but those temperatures cannot yield the observed calcite δ18O values. The study illustrates the unique attributes of the Niobrara's diagenetic system that results in its anomalous δ18O values, and reaffirms the value of clumped isotopes in unravelling the diagenetic history of chalk systems.
Cenozoic limestones from Hawaii and Enewetak were studied to characterise diagenesis in deep sea water. Hawaii samples were from subsea outcrops of drowned Pleistocene reefs 150–1,505 m deep (maximum age 550–600 ka). Most samples had early fibrous aragonite and high-magnesium calcite cements precipitated in shallow sea water. Partial dissolution of aragonite (including coral) and high-magnesium calcite were significant at 412 m and increased to 1,505 m. Crusts of ‘stubby’ sparry calcite cement (2–8 mol.% MgCO3; ‘lower Mg calcite’) precipitated on early aragonite and high-magnesium calcite cements at 473–1,358 m. Dissolution of aragonite and high-magnesium calcite was incomplete. Aragonite and high-magnesium calcite were not neomorphosed to low-magnesium calcite ( <5 mol.% MgCO3). Enewetak well samples came from 3 to 1,400 m (Holocene to Upper Eocene). Lower Miocene to Upper Eocene carbonates at 380–1,380 m near the atoll margin showed pervasive dissolution of aragonite and conversion of high-magnesium calcite fossils to low-magnesium calcite. Their lower-Mg calcite cements (380–820 m; mainly radiaxial) were associated with aragonite dissolution. The lower-Mg calcite cements and bulk limestones below 500 m had geochemistry indicating precipitation or stabilisation in sea water at 10–27°C. Data indicate Enewetak dolomitisation (1,250–1,320 m) in cold sea water during burial >1,000 m. Coralline algae showed little petrographic alteration, but Mg decreased downward from 15 to 1.5 mol.% MgCO3. In both areas, aragonite dissolution, alteration of high-magnesium calcite, and precipitation of lower-Mg calcite cements occurred in deep sea water (>300 m) undersaturated for aragonite, but supersaturated for low-magnesium calcite. Original high-magnesium calcite was partially dissolved in Hawaii samples, but converted to low-magnesium calcite in deep Enewetak cores, possibly due to gradual deepening at Enewetak. Dolomitisation and low-magnesium calcite dissolution occurred below the calcite saturation depth (approximately 1,000 m) in Enewetak, but not deep Hawaii samples, possibly because dolomitisation is slower. Temporal variations in carbonate saturation, especially related to pCO2, are interpreted as the main control on mineralogy during marine diagenesis now and in many ancient oceans.