首页 > 最新文献

Journal of Mathematics最新文献

英文 中文
Thermal Analysis of a Casson Boundary Layer Flow over a Penetrable Stretching Porous Wedge 可穿透拉伸多孔楔上卡松边界层流的热分析
IF 1.4 4区 数学 Q1 MATHEMATICS Pub Date : 2024-03-18 DOI: 10.1155/2024/1666959
Dur-e-Shehwar Sagheer, Mohammad Alqudah, Nawal A. Alshehri, M. Sabeel Khan, M. Asif Memon, R. Shehzad, Amsalu Fenta
This work aims to analyze the Casson thermal boundary layer flow over an expanding wedge in a porous medium with convective boundary conditions and ohmic heating. Moreover, the effects of porosity and viscous dissipation are studied in detail and included in the analysis. The importance of this study is due to its applications in biomedical engineering where the analysis of behavior of non-Newtonian blood flow in arteries and veins is desired. Within the context of blood flow, it is also applicable to many other fields, for instance, radiative therapy, MHD generators, soil machines, melt-spinning, and insulation processes. The modeled problem is a set of PDEs, which is nondimensionalized to derive a nonlinear boundary value problem (BVP). The obtained BVP is solved using the shooting technique, endowed with the order four Runge-Kutta and Newton methods. The impact of different parameters on the momentum and temperature fields is investigated along with two important parameters of physical significance, i.e., the Nusselt number and the surface drag force. Results are validated, and an excellent agreement is seen for the parameters of interest using MATLAB built-in function bvp4c. A significant finding is that by increasing the Casson liquid parameter, the velocity decreases as the wedge expands quicker than the free stream velocity at <span><svg height="8.8423pt" style="vertical-align:-0.2064009pt" version="1.1" viewbox="-0.0498162 -8.6359 19.414 8.8423" width="19.414pt" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><g transform="matrix(.013,0,0,-0.013,0,0)"></path></g><g transform="matrix(.013,0,0,-0.013,11.783,0)"></path></g></svg><span></span><span><svg height="8.8423pt" style="vertical-align:-0.2064009pt" version="1.1" viewbox="22.9961838 -8.6359 6.422 8.8423" width="6.422pt" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><g transform="matrix(.013,0,0,-0.013,23.046,0)"></path></g></svg>.</span></span> However, the velocity increases for the case when <span><svg height="8.8423pt" style="vertical-align:-0.2064009pt" version="1.1" viewbox="-0.0498162 -8.6359 19.414 8.8423" width="19.414pt" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><g transform="matrix(.013,0,0,-0.013,0,0)"><use xlink:href="#g113-83"></use></g><g transform="matrix(.013,0,0,-0.013,11.783,0)"><use xlink:href="#g117-34"></use></g></svg><span></span><span><svg height="8.8423pt" style="vertical-align:-0.2064009pt" version="1.1" viewbox="22.9961838 -8.6359 15.66 8.8423" width="15.66pt" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><g transform="matrix(.013,0,0,-0.013,23.046,0)"></path></g><g transform="matrix(.013,0,0,-0.013,29.286,0)"></path></g><g transform="matrix(.013,0,0,-0.013,32.25,0)"></path></g></svg>.</span></span> A decrease in the Darcy number increases the temperature profile. Furthermore, the convective parameter accelerated the heat transmissi
本研究旨在分析多孔介质中膨胀楔上的卡松热边界层流动,该流动具有对流边界条件和欧姆加热。此外,还详细研究了多孔性和粘性耗散的影响,并将其纳入分析中。这项研究的重要性在于其在生物医学工程中的应用,因为生物医学工程需要分析动脉和静脉中的非牛顿血流行为。在血流方面,它也适用于许多其他领域,例如放射治疗、多流体发电机、土壤机械、熔融纺丝和绝缘过程。所模拟的问题是一组 PDEs,通过对其进行无维度化处理,得出一个非线性边界值问题(BVP)。所得到的 BVP 采用射击技术、四阶 Runge-Kutta 和牛顿方法进行求解。研究了不同参数对动量场和温度场的影响,以及两个重要的物理参数,即努塞尔特数和表面阻力。使用 MATLAB 内置函数 bvp4c 对结果进行了验证,结果与相关参数非常吻合。一个重要发现是,随着卡松液体参数的增加,速度会减小,因为在......时,楔形体的膨胀速度快于自由流速度。 然而,在......时,速度会增加。达西数减小会增加温度曲线。此外,对流参数加快了热传递速度,而普朗特数的增加则增厚了热边界层。这一研究结果有助于解决流体动力学和热传递问题,这些问题涉及研究具有卡松流变特性的非牛顿流体在固体多孔楔形表面附近的行为。
{"title":"Thermal Analysis of a Casson Boundary Layer Flow over a Penetrable Stretching Porous Wedge","authors":"Dur-e-Shehwar Sagheer, Mohammad Alqudah, Nawal A. Alshehri, M. Sabeel Khan, M. Asif Memon, R. Shehzad, Amsalu Fenta","doi":"10.1155/2024/1666959","DOIUrl":"https://doi.org/10.1155/2024/1666959","url":null,"abstract":"This work aims to analyze the Casson thermal boundary layer flow over an expanding wedge in a porous medium with convective boundary conditions and ohmic heating. Moreover, the effects of porosity and viscous dissipation are studied in detail and included in the analysis. The importance of this study is due to its applications in biomedical engineering where the analysis of behavior of non-Newtonian blood flow in arteries and veins is desired. Within the context of blood flow, it is also applicable to many other fields, for instance, radiative therapy, MHD generators, soil machines, melt-spinning, and insulation processes. The modeled problem is a set of PDEs, which is nondimensionalized to derive a nonlinear boundary value problem (BVP). The obtained BVP is solved using the shooting technique, endowed with the order four Runge-Kutta and Newton methods. The impact of different parameters on the momentum and temperature fields is investigated along with two important parameters of physical significance, i.e., the Nusselt number and the surface drag force. Results are validated, and an excellent agreement is seen for the parameters of interest using MATLAB built-in function bvp4c. A significant finding is that by increasing the Casson liquid parameter, the velocity decreases as the wedge expands quicker than the free stream velocity at &lt;span&gt;&lt;svg height=\"8.8423pt\" style=\"vertical-align:-0.2064009pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 19.414 8.8423\" width=\"19.414pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,0,0)\"&gt;&lt;/path&gt;&lt;/g&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,11.783,0)\"&gt;&lt;/path&gt;&lt;/g&gt;&lt;/svg&gt;&lt;span&gt;&lt;/span&gt;&lt;span&gt;&lt;svg height=\"8.8423pt\" style=\"vertical-align:-0.2064009pt\" version=\"1.1\" viewbox=\"22.9961838 -8.6359 6.422 8.8423\" width=\"6.422pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,23.046,0)\"&gt;&lt;/path&gt;&lt;/g&gt;&lt;/svg&gt;.&lt;/span&gt;&lt;/span&gt; However, the velocity increases for the case when &lt;span&gt;&lt;svg height=\"8.8423pt\" style=\"vertical-align:-0.2064009pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 19.414 8.8423\" width=\"19.414pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,0,0)\"&gt;&lt;use xlink:href=\"#g113-83\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,11.783,0)\"&gt;&lt;use xlink:href=\"#g117-34\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;/svg&gt;&lt;span&gt;&lt;/span&gt;&lt;span&gt;&lt;svg height=\"8.8423pt\" style=\"vertical-align:-0.2064009pt\" version=\"1.1\" viewbox=\"22.9961838 -8.6359 15.66 8.8423\" width=\"15.66pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,23.046,0)\"&gt;&lt;/path&gt;&lt;/g&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,29.286,0)\"&gt;&lt;/path&gt;&lt;/g&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,32.25,0)\"&gt;&lt;/path&gt;&lt;/g&gt;&lt;/svg&gt;.&lt;/span&gt;&lt;/span&gt; A decrease in the Darcy number increases the temperature profile. Furthermore, the convective parameter accelerated the heat transmissi","PeriodicalId":54214,"journal":{"name":"Journal of Mathematics","volume":"20 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140146456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Second-Order Finite-Difference Method for Derivative-Free Optimization 无衍生优化的二阶有限差分法
IF 1.4 4区 数学 Q1 MATHEMATICS Pub Date : 2024-03-15 DOI: 10.1155/2024/1947996
Qian Chen, Peng Wang, Detong Zhu
In this paper, a second-order finite-difference method is proposed for finding the second-order stationary point of derivative-free nonconvex unconstrained optimization problems. The forward-difference or the central-difference technique is used to approximate the gradient and Hessian matrix of objective function, respectively. The traditional trust-region framework is used, and we minimize the approximation trust region subproblem to obtain the search direction. The global convergence of the algorithm is given without the fully quadratic assumption. Numerical results show the effectiveness of the algorithm using the forward-difference and central-difference approximations.
本文提出了一种二阶有限差分法,用于寻找无导数非凸无约束优化问题的二阶静止点。采用前向差分或中心差分技术分别逼近目标函数的梯度和黑森矩阵。采用传统的信任区域框架,最小化近似信任区域子问题,从而获得搜索方向。给出了算法的全局收敛性,而无需全二次假设。数值结果表明了算法使用前向差分和中心差分近似的有效性。
{"title":"A Second-Order Finite-Difference Method for Derivative-Free Optimization","authors":"Qian Chen, Peng Wang, Detong Zhu","doi":"10.1155/2024/1947996","DOIUrl":"https://doi.org/10.1155/2024/1947996","url":null,"abstract":"In this paper, a second-order finite-difference method is proposed for finding the second-order stationary point of derivative-free nonconvex unconstrained optimization problems. The forward-difference or the central-difference technique is used to approximate the gradient and Hessian matrix of objective function, respectively. The traditional trust-region framework is used, and we minimize the approximation trust region subproblem to obtain the search direction. The global convergence of the algorithm is given without the fully quadratic assumption. Numerical results show the effectiveness of the algorithm using the forward-difference and central-difference approximations.","PeriodicalId":54214,"journal":{"name":"Journal of Mathematics","volume":"39 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140146382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study of Nonlinear Second-Order Differential Inclusion Driven by a Laplacian Operator Using the Lower and Upper Solutions Method 用上下解法研究拉普拉斯算子驱动的非线性二阶微分包容
IF 1.4 4区 数学 Q1 MATHEMATICS Pub Date : 2024-03-14 DOI: 10.1155/2024/2258546
Droh Arsène Béhi, Assohoun Adjé, Konan Charles Etienne Goli
In this paper, we study a second-order differential inclusion under boundary conditions governed by maximal monotone multivalued operators. These boundary conditions incorporate the classical Dirichlet, Neumann, and Sturm–Liouville problems. Our method of study combines the method of lower and upper solutions, the analysis of multivalued functions, and the theory of monotone operators. We show the existence of solutions when the lower solution and the upper solution are well ordered. Next, we show how our arguments of proof can be easily exploited to establish the existence of extremal solutions in the functional interval . We also show that our method can be applied to the periodic case.
本文研究了由最大单调多值算子支配的边界条件下的二阶微分包含问题。这些边界条件包含经典的迪里夏特、诺伊曼和斯特姆-利乌维尔问题。我们的研究方法结合了下解和上解方法、多值函数分析和单调算子理论。我们证明了当下解和上解有序时,解的存在性。接下来,我们将展示如何利用我们的证明论证轻松地建立函数区间中极值解的存在性。我们还证明了我们的方法可以应用于周期情况。
{"title":"Study of Nonlinear Second-Order Differential Inclusion Driven by a Laplacian Operator Using the Lower and Upper Solutions Method","authors":"Droh Arsène Béhi, Assohoun Adjé, Konan Charles Etienne Goli","doi":"10.1155/2024/2258546","DOIUrl":"https://doi.org/10.1155/2024/2258546","url":null,"abstract":"In this paper, we study a second-order differential inclusion under boundary conditions governed by maximal monotone multivalued operators. These boundary conditions incorporate the classical Dirichlet, Neumann, and Sturm–Liouville problems. Our method of study combines the method of lower and upper solutions, the analysis of multivalued functions, and the theory of monotone operators. We show the existence of solutions when the lower solution <svg height=\"6.34998pt\" style=\"vertical-align:-0.2063899pt\" version=\"1.1\" viewbox=\"-0.0498162 -6.14359 7.47218 6.34998\" width=\"7.47218pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g></svg> and the upper solution <svg height=\"9.39034pt\" style=\"vertical-align:-3.42943pt\" version=\"1.1\" viewbox=\"-0.0498162 -5.96091 6.63704 9.39034\" width=\"6.63704pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g></svg> are well ordered. Next, we show how our arguments of proof can be easily exploited to establish the existence of extremal solutions in the functional interval <span><svg height=\"12.7178pt\" style=\"vertical-align:-3.42947pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 14.796 12.7178\" width=\"14.796pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,4.485,0)\"><use xlink:href=\"#g113-240\"></use></g><g transform=\"matrix(.013,0,0,-0.013,11.832,0)\"></path></g></svg><span></span><span><svg height=\"12.7178pt\" style=\"vertical-align:-3.42947pt\" version=\"1.1\" viewbox=\"16.925183800000003 -9.28833 11.192 12.7178\" width=\"11.192pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,16.975,0)\"><use xlink:href=\"#g113-225\"></use></g><g transform=\"matrix(.013,0,0,-0.013,23.492,0)\"></path></g></svg>.</span></span> We also show that our method can be applied to the periodic case.","PeriodicalId":54214,"journal":{"name":"Journal of Mathematics","volume":"165 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140125716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Convergent Legendre Spectral Collocation Method for the Variable-Order Fractional-Functional Optimal Control Problems 变阶分式函数优化控制问题的收敛 Legendre 谱配位法
IF 1.4 4区 数学 Q1 MATHEMATICS Pub Date : 2024-03-09 DOI: 10.1155/2024/3934093
Zahra Pirouzeh, Mohammad Hadi Noori Skandari, Kameleh Nassiri Pirbazari
In this paper, a numerical method is applied to approximate the solution of variable-order fractional-functional optimal control problems. The variable-order fractional derivative is described in the type III Caputo sense. The technique of approximating the optimal solution of the problem using Lagrange interpolating polynomials is employed by utilizing the shifted Legendre–Gauss–Lobatto collocation points. To obtain the coefficients of these interpolating polynomials, the problem is transformed into a nonlinear programming problem. The proposed method offers a significant advantage in that it does not require the approximation of singular integral. In addition, the matrix differentiation is calculated accurately and efficiently, overcoming the difficulties posed by variable-order fractional derivatives. The convergence of the proposed method is investigated, and to validate the effectiveness of our proposed method, some examples are presented. We achieved an excellent agreement between numerical and exact solutions for different variable orders, indicating our method’s good performance.
本文采用数值方法近似求解变阶分数函数最优控制问题。可变阶分数导数按第三类 Caputo 意义描述。通过利用移位 Legendre-Gauss-Lobatto 配点,采用拉格朗日内插多项式近似求解问题的最优解。为了获得这些内插多项式的系数,问题被转化为非线性编程问题。所提出的方法有一个显著的优点,即它不需要对奇异积分进行逼近。此外,矩阵微分计算精确高效,克服了变阶分数导数带来的困难。我们研究了所提方法的收敛性,并列举了一些实例来验证所提方法的有效性。我们在不同变阶的数值解和精确解之间取得了极好的一致性,这表明我们的方法具有良好的性能。
{"title":"A Convergent Legendre Spectral Collocation Method for the Variable-Order Fractional-Functional Optimal Control Problems","authors":"Zahra Pirouzeh, Mohammad Hadi Noori Skandari, Kameleh Nassiri Pirbazari","doi":"10.1155/2024/3934093","DOIUrl":"https://doi.org/10.1155/2024/3934093","url":null,"abstract":"In this paper, a numerical method is applied to approximate the solution of variable-order fractional-functional optimal control problems. The variable-order fractional derivative is described in the type III Caputo sense. The technique of approximating the optimal solution of the problem using Lagrange interpolating polynomials is employed by utilizing the shifted Legendre–Gauss–Lobatto collocation points. To obtain the coefficients of these interpolating polynomials, the problem is transformed into a nonlinear programming problem. The proposed method offers a significant advantage in that it does not require the approximation of singular integral. In addition, the matrix differentiation is calculated accurately and efficiently, overcoming the difficulties posed by variable-order fractional derivatives. The convergence of the proposed method is investigated, and to validate the effectiveness of our proposed method, some examples are presented. We achieved an excellent agreement between numerical and exact solutions for different variable orders, indicating our method’s good performance.","PeriodicalId":54214,"journal":{"name":"Journal of Mathematics","volume":"37 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140076157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On a Perturbed Risk Model with Time-Dependent Claim Sizes 关于索赔额随时间变化的扰动风险模型
IF 1.4 4区 数学 Q1 MATHEMATICS Pub Date : 2024-03-07 DOI: 10.1155/2024/8080309
Longfei Wei, Jia Hao, Shiyu Song, Zhenhua Bao
We consider a risk model perturbed by a Brownian motion, where the individual claim sizes are dependent on the inter-claim times. We study the Gerber–Shiu functions when ruin is due to a claim or the jump-diffusion process. Integro-differential equations and Laplace transforms satisfied by the Gerber–Shiu functions are obtained. Then, it is shown that the expected discounted penalty functions satisfy defective renewal equations. Explicit expressions can be obtained for exponential claim sizes. Finally, a numerical example is provided to measure the impact of the various dependence parameters in the risk model on the ruin probabilities.
我们考虑了一个受布朗运动扰动的风险模型,在该模型中,单个索赔规模取决于索赔间隔时间。我们研究了因索赔或跳跃扩散过程而导致破产时的格伯-修函数。我们得到了由 Gerber-Shiu 函数满足的积分微分方程和拉普拉斯变换。然后,证明预期贴现惩罚函数满足缺陷更新方程。对于指数索赔规模,可以得到明确的表达式。最后,提供了一个数值示例来衡量风险模型中各种依赖参数对毁损概率的影响。
{"title":"On a Perturbed Risk Model with Time-Dependent Claim Sizes","authors":"Longfei Wei, Jia Hao, Shiyu Song, Zhenhua Bao","doi":"10.1155/2024/8080309","DOIUrl":"https://doi.org/10.1155/2024/8080309","url":null,"abstract":"We consider a risk model perturbed by a Brownian motion, where the individual claim sizes are dependent on the inter-claim times. We study the Gerber–Shiu functions when ruin is due to a claim or the jump-diffusion process. Integro-differential equations and Laplace transforms satisfied by the Gerber–Shiu functions are obtained. Then, it is shown that the expected discounted penalty functions satisfy defective renewal equations. Explicit expressions can be obtained for exponential claim sizes. Finally, a numerical example is provided to measure the impact of the various dependence parameters in the risk model on the ruin probabilities.","PeriodicalId":54214,"journal":{"name":"Journal of Mathematics","volume":"18 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140053822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On Partial Exact Controllability of Fractional Control Systems in Conformable Sense 论可变意义上分数控制系统的部分精确可控性
IF 1.4 4区 数学 Q1 MATHEMATICS Pub Date : 2024-03-07 DOI: 10.1155/2024/9531298
Maher Jneid
In this work, we investigate the partial exact controllability of fractional semilinear control systems in the sense of conformable derivatives. Initially, we establish the existence and uniqueness of the mild solution for this type of fractional control systems. Then, by employing a contraction mapping principle, we obtain sufficient conditions for the conformable fractional semilinear system to be partially exactly controllable, assuming that its associated linear part is partially exactly controllable. To demonstrate the efficacy of the theoretical findings, a typical example is provided at the end.
在这项工作中,我们研究了保形导数意义上的分数半线性控制系统的部分精确可控性。首先,我们建立了这类分数控制系统的温和解的存在性和唯一性。然后,通过使用收缩映射原理,我们得到了可保形分数半线性系统部分精确可控的充分条件,假定其相关线性部分是部分精确可控的。为了证明理论发现的有效性,我们在最后提供了一个典型的例子。
{"title":"On Partial Exact Controllability of Fractional Control Systems in Conformable Sense","authors":"Maher Jneid","doi":"10.1155/2024/9531298","DOIUrl":"https://doi.org/10.1155/2024/9531298","url":null,"abstract":"In this work, we investigate the partial exact controllability of fractional semilinear control systems in the sense of conformable derivatives. Initially, we establish the existence and uniqueness of the mild solution for this type of fractional control systems. Then, by employing a contraction mapping principle, we obtain sufficient conditions for the conformable fractional semilinear system to be partially exactly controllable, assuming that its associated linear part is partially exactly controllable. To demonstrate the efficacy of the theoretical findings, a typical example is provided at the end.","PeriodicalId":54214,"journal":{"name":"Journal of Mathematics","volume":"10 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140053991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Distance-Based Fractional Dimension of Certain Wheel Networks 某些车轮网络基于距离的分数维度
IF 1.4 4区 数学 Q1 MATHEMATICS Pub Date : 2024-03-04 DOI: 10.1155/2024/8870335
Hassan Zafar, Muhammad Javaid, Mamo Abebe Ashebo
Metric dimension is one of the distance-based parameters which are used to find the position of the robot in a network space by utilizing lesser number of notes and minimum consumption of time. It is also used to characterize the chemical compounds. The metric dimension has a wide range of applications in the field of computer science such as integer programming, radar tracking, pattern recognition, robot navigation, and image processing. A vertex <svg height="6.1673pt" style="vertical-align:-0.2063904pt" version="1.1" viewbox="-0.0498162 -5.96091 7.39387 6.1673" width="7.39387pt" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><g transform="matrix(.013,0,0,-0.013,0,0)"></path></g></svg> in a network <svg height="8.73791pt" style="vertical-align:-0.04981995pt" version="1.1" viewbox="-0.0498162 -8.68809 12.4829 8.73791" width="12.4829pt" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><g transform="matrix(.013,0,0,-0.013,0,0)"></path></g></svg> resolves the adjacent pair of vertices <svg height="6.1934pt" style="vertical-align:-0.2324901pt" version="1.1" viewbox="-0.0498162 -5.96091 13.0048 6.1934" width="13.0048pt" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><g transform="matrix(.013,0,0,-0.013,0,0)"></path></g><g transform="matrix(.013,0,0,-0.013,6.994,0)"></path></g></svg> if <svg height="6.1673pt" style="vertical-align:-0.2063904pt" version="1.1" viewbox="-0.0498162 -5.96091 7.39387 6.1673" width="7.39387pt" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><g transform="matrix(.013,0,0,-0.013,0,0)"><use xlink:href="#g113-121"></use></g></svg> attains an unequal distance from end points of <span><svg height="6.1934pt" style="vertical-align:-0.2324901pt" version="1.1" viewbox="-0.0498162 -5.96091 13.0048 6.1934" width="13.0048pt" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><g transform="matrix(.013,0,0,-0.013,0,0)"><use xlink:href="#g113-118"></use></g><g transform="matrix(.013,0,0,-0.013,6.994,0)"><use xlink:href="#g185-40"></use></g></svg>.</span> A local resolving neighbourhood set <svg height="12.4698pt" style="vertical-align:-3.18147pt" version="1.1" viewbox="-0.0498162 -9.28833 35.7732 12.4698" width="35.7732pt" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><g transform="matrix(.013,0,0,-0.013,0,0)"></path></g><g transform="matrix(.0091,0,0,-0.0091,8.086,3.132)"></path></g><g transform="matrix(.013,0,0,-0.013,13.708,0)"></path></g><g transform="matrix(.013,0,0,-0.013,18.206,0)"><use xlink:href="#g113-118"></use></g><g transform="matrix(.013,0,0,-0.013,25.201,0)"><use xlink:href="#g185-40"></use></g><g transform="matrix(.013,0,0,-0.013,31.064,0)"></path></g></svg> is a set of vertices of <svg height="8.73791pt" style="vertical-align:-0.04981995pt" version="1.1" viewbox="-0.0498162 -8.68809 12.4829 8.73791" width="12.4829pt" xmlns="http://www.w3.org/2000/s
公制维度是基于距离的参数之一,用于在网络空间中利用较少的注释和最短的时间找到机器人的位置。它还可用于描述化合物的特征。度量维度在计算机科学领域有着广泛的应用,如整数编程、雷达跟踪、模式识别、机器人导航和图像处理。如果网络中的一个顶点与相邻的一对顶点的端点距离不相等,则该顶点解析了相邻的一对顶点。 局部解析邻域集是一个顶点集,其中解析了............的顶点。本文研究了与轮子有关的网络(如网轮网络、细分轮子网络、细分轮子网络的线网络和双轮网络)的局部分数度量维度,并检验了它们的有界性。
{"title":"Distance-Based Fractional Dimension of Certain Wheel Networks","authors":"Hassan Zafar, Muhammad Javaid, Mamo Abebe Ashebo","doi":"10.1155/2024/8870335","DOIUrl":"https://doi.org/10.1155/2024/8870335","url":null,"abstract":"Metric dimension is one of the distance-based parameters which are used to find the position of the robot in a network space by utilizing lesser number of notes and minimum consumption of time. It is also used to characterize the chemical compounds. The metric dimension has a wide range of applications in the field of computer science such as integer programming, radar tracking, pattern recognition, robot navigation, and image processing. A vertex &lt;svg height=\"6.1673pt\" style=\"vertical-align:-0.2063904pt\" version=\"1.1\" viewbox=\"-0.0498162 -5.96091 7.39387 6.1673\" width=\"7.39387pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,0,0)\"&gt;&lt;/path&gt;&lt;/g&gt;&lt;/svg&gt; in a network &lt;svg height=\"8.73791pt\" style=\"vertical-align:-0.04981995pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.68809 12.4829 8.73791\" width=\"12.4829pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,0,0)\"&gt;&lt;/path&gt;&lt;/g&gt;&lt;/svg&gt; resolves the adjacent pair of vertices &lt;svg height=\"6.1934pt\" style=\"vertical-align:-0.2324901pt\" version=\"1.1\" viewbox=\"-0.0498162 -5.96091 13.0048 6.1934\" width=\"13.0048pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,0,0)\"&gt;&lt;/path&gt;&lt;/g&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,6.994,0)\"&gt;&lt;/path&gt;&lt;/g&gt;&lt;/svg&gt; if &lt;svg height=\"6.1673pt\" style=\"vertical-align:-0.2063904pt\" version=\"1.1\" viewbox=\"-0.0498162 -5.96091 7.39387 6.1673\" width=\"7.39387pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,0,0)\"&gt;&lt;use xlink:href=\"#g113-121\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;/svg&gt; attains an unequal distance from end points of &lt;span&gt;&lt;svg height=\"6.1934pt\" style=\"vertical-align:-0.2324901pt\" version=\"1.1\" viewbox=\"-0.0498162 -5.96091 13.0048 6.1934\" width=\"13.0048pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,0,0)\"&gt;&lt;use xlink:href=\"#g113-118\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,6.994,0)\"&gt;&lt;use xlink:href=\"#g185-40\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;/svg&gt;.&lt;/span&gt; A local resolving neighbourhood set &lt;svg height=\"12.4698pt\" style=\"vertical-align:-3.18147pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 35.7732 12.4698\" width=\"35.7732pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,0,0)\"&gt;&lt;/path&gt;&lt;/g&gt;&lt;g transform=\"matrix(.0091,0,0,-0.0091,8.086,3.132)\"&gt;&lt;/path&gt;&lt;/g&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,13.708,0)\"&gt;&lt;/path&gt;&lt;/g&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,18.206,0)\"&gt;&lt;use xlink:href=\"#g113-118\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,25.201,0)\"&gt;&lt;use xlink:href=\"#g185-40\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,31.064,0)\"&gt;&lt;/path&gt;&lt;/g&gt;&lt;/svg&gt; is a set of vertices of &lt;svg height=\"8.73791pt\" style=\"vertical-align:-0.04981995pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.68809 12.4829 8.73791\" width=\"12.4829pt\" xmlns=\"http://www.w3.org/2000/s","PeriodicalId":54214,"journal":{"name":"Journal of Mathematics","volume":"171 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140025348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fractional Mixed Weighted Convolution and Its Application in Convolution Integral Equations 分数混合加权卷积及其在卷积积分方程中的应用
IF 1.4 4区 数学 Q1 MATHEMATICS Pub Date : 2024-03-04 DOI: 10.1155/2024/5375401
Rongbo Wang, Qiang Feng
The convolution integral equations are very important in optics and signal processing domain. In this paper, fractional mixed-weighted convolution is defined based on the fractional cosine transform; the corresponding convolution theorem is achieved. The properties of fractional mixed-weighted convolution and Young’s type theorem are also explored. Based on the fractional mixed-weighted convolution and fractional cosine transform, two kinds of convolution integral equations are considered, the explicit solutions of fractional convolution integral equations are obtained, and the computational complexity of solutions are also analyzed.
卷积积分方程在光学和信号处理领域非常重要。本文基于分数余弦变换定义了分数混合加权卷积,并实现了相应的卷积定理。本文还探讨了分数混合加权卷积的性质和杨氏定理。在分数混合加权卷积和分数余弦变换的基础上,考虑了两种卷积积分方程,得到了分数卷积积分方程的显式解,并分析了解的计算复杂性。
{"title":"Fractional Mixed Weighted Convolution and Its Application in Convolution Integral Equations","authors":"Rongbo Wang, Qiang Feng","doi":"10.1155/2024/5375401","DOIUrl":"https://doi.org/10.1155/2024/5375401","url":null,"abstract":"The convolution integral equations are very important in optics and signal processing domain. In this paper, fractional mixed-weighted convolution is defined based on the fractional cosine transform; the corresponding convolution theorem is achieved. The properties of fractional mixed-weighted convolution and Young’s type theorem are also explored. Based on the fractional mixed-weighted convolution and fractional cosine transform, two kinds of convolution integral equations are considered, the explicit solutions of fractional convolution integral equations are obtained, and the computational complexity of solutions are also analyzed.","PeriodicalId":54214,"journal":{"name":"Journal of Mathematics","volume":"227 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140025476","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical Solution of Burgers–Huxley Equation Using a Higher Order Collocation Method 使用高阶配位法数值求解伯格斯-赫胥黎方程
IF 1.4 4区 数学 Q1 MATHEMATICS Pub Date : 2024-02-29 DOI: 10.1155/2024/2439343
Aditi Singh, Sumita Dahiya, Homan Emadifar, Masoumeh Khademi
In this paper, the collocation method with cubic B-spline as basis function has been successfully applied to numerically solve the Burgers–Huxley equation. This equation illustrates a model for describing the interaction between reaction mechanisms, convection effects, and diffusion transport. Quasi-linearization has been employed to deal with the nonlinearity of equations. The Crank–Nicolson implicit scheme is used for discretization of the equation and the resulting system turned out to be semi-implicit. The stability of the method is discussed using Fourier series analysis (von Neumann method), and it has been concluded that the method is unconditionally stable. Various numerical experiments have been performed to demonstrate the authenticity of the scheme. We have found that the computed numerical solutions are in good agreement with the exact solutions and are competent with those available in the literature. Accuracy and minimal computational efforts are the key features of the proposed method.
本文成功地应用了以三次 B 样条为基础函数的配位法来数值求解伯格斯-赫胥黎方程。该方程是描述反应机制、对流效应和扩散传输之间相互作用的模型。准线性化被用来处理方程的非线性问题。方程的离散化采用了 Crank-Nicolson 隐式方案,所得到的系统是半隐式的。利用傅里叶级数分析(von Neumann 方法)讨论了该方法的稳定性,得出的结论是该方法是无条件稳定的。为了证明该方法的真实性,我们进行了各种数值实验。我们发现,计算出的数值解与精确解十分吻合,与文献中的数值解也不相上下。精确性和最小计算量是所提方法的主要特点。
{"title":"Numerical Solution of Burgers–Huxley Equation Using a Higher Order Collocation Method","authors":"Aditi Singh, Sumita Dahiya, Homan Emadifar, Masoumeh Khademi","doi":"10.1155/2024/2439343","DOIUrl":"https://doi.org/10.1155/2024/2439343","url":null,"abstract":"In this paper, the collocation method with cubic B-spline as basis function has been successfully applied to numerically solve the Burgers–Huxley equation. This equation illustrates a model for describing the interaction between reaction mechanisms, convection effects, and diffusion transport. Quasi-linearization has been employed to deal with the nonlinearity of equations. The Crank–Nicolson implicit scheme is used for discretization of the equation and the resulting system turned out to be semi-implicit. The stability of the method is discussed using Fourier series analysis (von Neumann method), and it has been concluded that the method is unconditionally stable. Various numerical experiments have been performed to demonstrate the authenticity of the scheme. We have found that the computed numerical solutions are in good agreement with the exact solutions and are competent with those available in the literature. Accuracy and minimal computational efforts are the key features of the proposed method.","PeriodicalId":54214,"journal":{"name":"Journal of Mathematics","volume":"170 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140010337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An RBF-LOD Method for Solving Stochastic Diffusion Equations 解决随机扩散方程的 RBF-LOD 方法
IF 1.4 4区 数学 Q1 MATHEMATICS Pub Date : 2024-02-28 DOI: 10.1155/2024/9955109
Samaneh Mokhtari, Ali Mesforush, Reza Mokhtari, Rahman Akbari
In this study, we introduce an innovative approach to solving stochastic equations in two and three dimensions, leveraging a time-splitting strategy. Our method combines radial basis function (RBF) spatial discretization with the Crank–Nicolson scheme and the local one-dimensional (LOD) method for temporal approximation. To navigate the probabilistic space inherent in these equations, we employ the Monte Carlo method, providing accurate estimates for expectations and variations. We apply our approach to tackle challenging problems, including two-dimensional convection-diffusion and Burgers’ equations, resulting in reduced computational and memory requirements. Through rigorous testing against diverse problem sets, our methodology demonstrates efficiency and reliability, underscoring its potential as a valuable tool in solving complex multidimensional stochastic equations. We have validated the method’s stability and showcased its convergence as the number of collocation points increases. These findings serve as compelling evidence of the suggested method’s convergence properties.
在本研究中,我们介绍了一种利用时间分割策略求解二维和三维随机方程的创新方法。我们的方法将径向基函数(RBF)空间离散化与用于时间逼近的 Crank-Nicolson 方案和局部一维(LOD)方法相结合。为了驾驭这些方程中固有的概率空间,我们采用了蒙特卡罗方法,为预期和变化提供精确的估计。我们采用这种方法来解决具有挑战性的问题,包括二维对流扩散方程和布尔格斯方程,从而降低了计算和内存要求。通过对各种问题集的严格测试,我们的方法展示了高效性和可靠性,凸显了其作为解决复杂多维随机方程的重要工具的潜力。我们已经验证了该方法的稳定性,并展示了其随着配位点数量的增加而收敛的特性。这些发现有力地证明了所建议方法的收敛特性。
{"title":"An RBF-LOD Method for Solving Stochastic Diffusion Equations","authors":"Samaneh Mokhtari, Ali Mesforush, Reza Mokhtari, Rahman Akbari","doi":"10.1155/2024/9955109","DOIUrl":"https://doi.org/10.1155/2024/9955109","url":null,"abstract":"In this study, we introduce an innovative approach to solving stochastic equations in two and three dimensions, leveraging a time-splitting strategy. Our method combines radial basis function (RBF) spatial discretization with the Crank–Nicolson scheme and the local one-dimensional (LOD) method for temporal approximation. To navigate the probabilistic space inherent in these equations, we employ the Monte Carlo method, providing accurate estimates for expectations and variations. We apply our approach to tackle challenging problems, including two-dimensional convection-diffusion and Burgers’ equations, resulting in reduced computational and memory requirements. Through rigorous testing against diverse problem sets, our methodology demonstrates efficiency and reliability, underscoring its potential as a valuable tool in solving complex multidimensional stochastic equations. We have validated the method’s stability and showcased its convergence as the number of collocation points increases. These findings serve as compelling evidence of the suggested method’s convergence properties.","PeriodicalId":54214,"journal":{"name":"Journal of Mathematics","volume":"17 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140009972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Mathematics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1