Pub Date : 2023-08-01DOI: 10.1089/crispr.2023.0019
Benjamín Durán-Vinet, Karla Araya-Castro, Anastasija Zaiko, Xavier Pochon, Susanna A Wood, Jo-Ann L Stanton, Gert-Jan Jeunen, Michelle Scriver, Anya Kardailsky, Tzu-Chiao Chao, Deependra K Ban, Maryam Moarefian, Kiana Aran, Neil J Gemmell
Almost all of Earth's oceans are now impacted by multiple anthropogenic stressors, including the spread of nonindigenous species, harmful algal blooms, and pathogens. Early detection is critical to manage these stressors effectively and to protect marine systems and the ecosystem services they provide. Molecular tools have emerged as a promising solution for marine biomonitoring. One of the latest advancements involves utilizing CRISPR-Cas technology to build programmable, rapid, ultrasensitive, and specific diagnostics. CRISPR-based diagnostics (CRISPR-Dx) has the potential to allow robust, reliable, and cost-effective biomonitoring in near real time. However, several challenges must be overcome before CRISPR-Dx can be established as a mainstream tool for marine biomonitoring. A critical unmet challenge is the need to design, optimize, and experimentally validate CRISPR-Dx assays. Artificial intelligence has recently been presented as a potential approach to tackle this challenge. This perspective synthesizes recent advances in CRISPR-Dx and machine learning modeling approaches, showcasing CRISPR-Dx potential to progress as a rising molecular tool candidate for marine biomonitoring applications.
{"title":"CRISPR-Cas-Based Biomonitoring for Marine Environments: Toward CRISPR RNA Design Optimization Via Deep Learning.","authors":"Benjamín Durán-Vinet, Karla Araya-Castro, Anastasija Zaiko, Xavier Pochon, Susanna A Wood, Jo-Ann L Stanton, Gert-Jan Jeunen, Michelle Scriver, Anya Kardailsky, Tzu-Chiao Chao, Deependra K Ban, Maryam Moarefian, Kiana Aran, Neil J Gemmell","doi":"10.1089/crispr.2023.0019","DOIUrl":"https://doi.org/10.1089/crispr.2023.0019","url":null,"abstract":"<p><p>Almost all of Earth's oceans are now impacted by multiple anthropogenic stressors, including the spread of nonindigenous species, harmful algal blooms, and pathogens. Early detection is critical to manage these stressors effectively and to protect marine systems and the ecosystem services they provide. Molecular tools have emerged as a promising solution for marine biomonitoring. One of the latest advancements involves utilizing CRISPR-Cas technology to build programmable, rapid, ultrasensitive, and specific diagnostics. CRISPR-based diagnostics (CRISPR-Dx) has the potential to allow robust, reliable, and cost-effective biomonitoring in near real time. However, several challenges must be overcome before CRISPR-Dx can be established as a mainstream tool for marine biomonitoring. A critical unmet challenge is the need to design, optimize, and experimentally validate CRISPR-Dx assays. Artificial intelligence has recently been presented as a potential approach to tackle this challenge. This perspective synthesizes recent advances in CRISPR-Dx and machine learning modeling approaches, showcasing CRISPR-Dx potential to progress as a rising molecular tool candidate for marine biomonitoring applications.</p>","PeriodicalId":54232,"journal":{"name":"CRISPR Journal","volume":"6 4","pages":"316-324"},"PeriodicalIF":3.7,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10494903/pdf/crispr.2023.0019.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10220671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-01DOI: 10.1089/crispr.2023.29165.mwi
Matthew R Willmann
{"title":"CRISPR and the Plant Pathologists' Holy Grail.","authors":"Matthew R Willmann","doi":"10.1089/crispr.2023.29165.mwi","DOIUrl":"https://doi.org/10.1089/crispr.2023.29165.mwi","url":null,"abstract":"","PeriodicalId":54232,"journal":{"name":"CRISPR Journal","volume":"6 4","pages":"308-309"},"PeriodicalIF":3.7,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10039496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-01DOI: 10.1089/crispr.2022.0080
Alan J Collins, Rachel J Whitaker
CRISPR-Cas systems provide immunity against mobile genetic elements (MGEs) through sequence-specific targeting by spacer sequences encoded in CRISPR arrays. Spacers are highly variable between microbial strains and can be acquired rapidly, making them well suited for use in strain typing of closely related organisms. However, no tools are currently available to automate the process of reconstructing strain histories using CRISPR spacers. We therefore developed the CRISPR Comparison Toolkit (CCTK) to enable analyses of array relationships. The CCTK includes tools to identify arrays, analyze relationships between arrays using CRISPRdiff and CRISPRtree, and predict targets of spacers. CRISPRdiff visualizes arrays and highlights the similarities between them. CRISPRtree infers a phylogenetic tree from array relationships and presents a hypothesis of the evolutionary history of the arrays. The CCTK unifies several CRISPR analysis tools into a single command line application, including the first tool to infer phylogenies from array relationships.
{"title":"CRISPR Comparison Toolkit: Rapid Identification, Visualization, and Analysis of CRISPR Array Diversity.","authors":"Alan J Collins, Rachel J Whitaker","doi":"10.1089/crispr.2022.0080","DOIUrl":"https://doi.org/10.1089/crispr.2022.0080","url":null,"abstract":"<p><p>CRISPR-Cas systems provide immunity against mobile genetic elements (MGEs) through sequence-specific targeting by spacer sequences encoded in CRISPR arrays. Spacers are highly variable between microbial strains and can be acquired rapidly, making them well suited for use in strain typing of closely related organisms. However, no tools are currently available to automate the process of reconstructing strain histories using CRISPR spacers. We therefore developed the CRISPR Comparison Toolkit (CCTK) to enable analyses of array relationships. The CCTK includes tools to identify arrays, analyze relationships between arrays using CRISPRdiff and CRISPRtree, and predict targets of spacers. CRISPRdiff visualizes arrays and highlights the similarities between them. CRISPRtree infers a phylogenetic tree from array relationships and presents a hypothesis of the evolutionary history of the arrays. The CCTK unifies several CRISPR analysis tools into a single command line application, including the first tool to infer phylogenies from array relationships.</p>","PeriodicalId":54232,"journal":{"name":"CRISPR Journal","volume":"6 4","pages":"386-400"},"PeriodicalIF":3.7,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10457644/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10101209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-01Epub Date: 2023-07-31DOI: 10.1089/crispr.2023.29161.gli
Gen Li, Yiping Qi
{"title":"CRISPR Empowers Tree Bioengineering for a Sustainable Future.","authors":"Gen Li, Yiping Qi","doi":"10.1089/crispr.2023.29161.gli","DOIUrl":"10.1089/crispr.2023.29161.gli","url":null,"abstract":"","PeriodicalId":54232,"journal":{"name":"CRISPR Journal","volume":"6 4","pages":"305-307"},"PeriodicalIF":3.7,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10394474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-01DOI: 10.1089/crispr.2022.0090
Lisa M Alexander, Daniela S Aliaga Goltsman, Jason Liu, Jyun-Liang Lin, Morayma M Temoche-Diaz, Sarah M Laperriere, Andreas Neerincx, Christien Bednarski, Philipp Knyphausen, Andre Cohnen, Justine Albers, Liliana Gonzalez-Osorio, Rodrigo Fregoso Ocampo, Jennifer Oki, Audra E Devoto, Cindy J Castelle, Rebecca C Lamothe, Gregory J Cost, Cristina N Butterfield, Brian C Thomas, Christopher T Brown
Type II Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas9 nucleases have been extensively used in biotechnology and therapeutics. However, many applications are not possible owing to the size, targetability, and potential off-target effects associated with currently known systems. In this study, we identified thousands of CRISPR type II effectors by mining an extensive, genome-resolved metagenomics database encompassing hundreds of thousands of microbial genomes. We developed a high-throughput pipeline that enabled us to predict tracrRNA sequences, to design single guide RNAs, and to demonstrate nuclease activity in vitro for 41 newly described subgroups. Active systems represent an extensive diversity of protein sequences and guide RNA structures and require diverse protospacer adjacent motifs (PAMs) that collectively expand the known targeting capability of current systems. Several nucleases showed activity levels comparable to or significantly higher than SpCas9, despite being smaller in size. In addition, top systems exhibited low levels of off-target editing in mammalian cells, and PAM-interacting domain engineered chimeras further expanded their targetability. These newly discovered nucleases are attractive enzymes for translation into many applications, including therapeutics.
{"title":"Novel and Engineered Type II CRISPR Systems from Uncultivated Microbes with Broad Genome Editing Capability.","authors":"Lisa M Alexander, Daniela S Aliaga Goltsman, Jason Liu, Jyun-Liang Lin, Morayma M Temoche-Diaz, Sarah M Laperriere, Andreas Neerincx, Christien Bednarski, Philipp Knyphausen, Andre Cohnen, Justine Albers, Liliana Gonzalez-Osorio, Rodrigo Fregoso Ocampo, Jennifer Oki, Audra E Devoto, Cindy J Castelle, Rebecca C Lamothe, Gregory J Cost, Cristina N Butterfield, Brian C Thomas, Christopher T Brown","doi":"10.1089/crispr.2022.0090","DOIUrl":"https://doi.org/10.1089/crispr.2022.0090","url":null,"abstract":"<p><p>Type II Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas9 nucleases have been extensively used in biotechnology and therapeutics. However, many applications are not possible owing to the size, targetability, and potential off-target effects associated with currently known systems. In this study, we identified thousands of CRISPR type II effectors by mining an extensive, genome-resolved metagenomics database encompassing hundreds of thousands of microbial genomes. We developed a high-throughput pipeline that enabled us to predict tracrRNA sequences, to design single guide RNAs, and to demonstrate nuclease activity <i>in vitro</i> for 41 newly described subgroups. Active systems represent an extensive diversity of protein sequences and guide RNA structures and require diverse protospacer adjacent motifs (PAMs) that collectively expand the known targeting capability of current systems. Several nucleases showed activity levels comparable to or significantly higher than SpCas9, despite being smaller in size. In addition, top systems exhibited low levels of off-target editing in mammalian cells, and PAM-interacting domain engineered chimeras further expanded their targetability. These newly discovered nucleases are attractive enzymes for translation into many applications, including therapeutics.</p>","PeriodicalId":54232,"journal":{"name":"CRISPR Journal","volume":"6 3","pages":"261-277"},"PeriodicalIF":3.7,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10278012/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9678223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Stem cells such as induced pluripotent stem cells, embryonic stem cells, and hematopoietic stem and progenitor cells are growing in importance in disease modeling and regenerative medicine. The applications of CRISPR-based gene editing to create a mélange of disease and nondisease stem cell lines have further enhanced the utility of this innately versatile group of cells in the studies of human genetic disorders. Precise base edits can be achieved using a variety of CRISPR-centric approaches, particularly homology-directed repair and the recently developed base editors and prime editors. Despite its much-touted potential, editing single DNA bases is technically challenging. In this review, we discuss the strategies for achieving exact base edits in the creation of various stem cell-based models for use in elucidating disease mechanisms and assessing drug efficacy, and the unique characteristics of stem cells that warrant special considerations.
{"title":"The Promises and Pitfalls of CRISPR-Mediated Base Editing in Stem Cells.","authors":"Poh Kuan Wong, Nurul Nadia Mohamad Zamberi, Saiful Effendi Syafruddin, Fook Choe Cheah, Norazrina Azmi, Jia Xian Law, Eng Wee Chua","doi":"10.1089/crispr.2023.0013","DOIUrl":"https://doi.org/10.1089/crispr.2023.0013","url":null,"abstract":"<p><p>Stem cells such as induced pluripotent stem cells, embryonic stem cells, and hematopoietic stem and progenitor cells are growing in importance in disease modeling and regenerative medicine. The applications of CRISPR-based gene editing to create a mélange of disease and nondisease stem cell lines have further enhanced the utility of this innately versatile group of cells in the studies of human genetic disorders. Precise base edits can be achieved using a variety of CRISPR-centric approaches, particularly homology-directed repair and the recently developed base editors and prime editors. Despite its much-touted potential, editing single DNA bases is technically challenging. In this review, we discuss the strategies for achieving exact base edits in the creation of various stem cell-based models for use in elucidating disease mechanisms and assessing drug efficacy, and the unique characteristics of stem cells that warrant special considerations.</p>","PeriodicalId":54232,"journal":{"name":"CRISPR Journal","volume":"6 3","pages":"196-215"},"PeriodicalIF":3.7,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9734043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-01DOI: 10.1089/crispr.2023.0015
Suchita P Nety, Han Altae-Tran, Soumya Kannan, F Esra Demircioglu, Guilhem Faure, Seiichi Hirano, Kepler Mears, Yugang Zhang, Rhiannon K Macrae, Feng Zhang
TnpB is a member of the Obligate Mobile Element Guided Activity (OMEGA) RNA-guided nuclease family, is harbored in transposons, and likely functions to maintain the transposon in genomes. Previously, it was shown that TnpB cleaves double- and single-stranded DNA substrates in an RNA-guided manner, but the biogenesis of the TnpB ribonucleoprotein (RNP) complex is unknown. Using in vitro purified apo TnpB, we demonstrate the ability of TnpB to generate guide omegaRNA (ωRNA) from its own mRNA through 5' processing. We also uncover a potential cis-regulatory mechanism whereby a region of the TnpB mRNA inhibits DNA cleavage by the RNP complex. We further expand the characterization of TnpB by examining ωRNA processing and RNA-guided nuclease activity in 59 orthologs spanning the natural diversity of the TnpB family. This work reveals a new functionality, ωRNA biogenesis, of TnpB, and characterizes additional members of this biotechnologically useful family of programmable enzymes.
TnpB是Obligate Mobile Element Guided Activity(OMEGA)RNA引导核酸酶家族的成员,存在于转座子中,可能在基因组中维持转座子的功能。以前,研究表明TnpB以RNA引导的方式切割双链和单链DNA底物,但TnpB核糖核蛋白(RNP)复合物的生物发生尚不清楚。使用体外纯化的apo-TnpB,我们证明了TnpB通过5'加工从其自身的mRNA中产生引导ωRNA(ωRNA)的能力。我们还揭示了一种潜在的顺式调节机制,通过该机制,TnpB mRNA的一个区域抑制RNP复合物对DNA的切割。我们通过检测跨越TnpB家族自然多样性的59个直向同源物中ωRNA加工和RNA引导的核酸酶活性,进一步扩展了TnpB的表征。这项工作揭示了TnpB的一种新功能,ωRNA生物发生,并表征了这一生物技术上有用的可编程酶家族的其他成员。
{"title":"The Transposon-Encoded Protein TnpB Processes Its Own mRNA into ωRNA for Guided Nuclease Activity.","authors":"Suchita P Nety, Han Altae-Tran, Soumya Kannan, F Esra Demircioglu, Guilhem Faure, Seiichi Hirano, Kepler Mears, Yugang Zhang, Rhiannon K Macrae, Feng Zhang","doi":"10.1089/crispr.2023.0015","DOIUrl":"10.1089/crispr.2023.0015","url":null,"abstract":"<p><p>TnpB is a member of the Obligate Mobile Element Guided Activity (OMEGA) RNA-guided nuclease family, is harbored in transposons, and likely functions to maintain the transposon in genomes. Previously, it was shown that TnpB cleaves double- and single-stranded DNA substrates in an RNA-guided manner, but the biogenesis of the TnpB ribonucleoprotein (RNP) complex is unknown. Using <i>in vitro</i> purified apo TnpB, we demonstrate the ability of TnpB to generate guide omegaRNA (ωRNA) from its own mRNA through 5' processing. We also uncover a potential <i>cis</i>-regulatory mechanism whereby a region of the TnpB mRNA inhibits DNA cleavage by the RNP complex. We further expand the characterization of TnpB by examining ωRNA processing and RNA-guided nuclease activity in 59 orthologs spanning the natural diversity of the TnpB family. This work reveals a new functionality, ωRNA biogenesis, of TnpB, and characterizes additional members of this biotechnologically useful family of programmable enzymes.</p>","PeriodicalId":54232,"journal":{"name":"CRISPR Journal","volume":"6 3","pages":"232-242"},"PeriodicalIF":3.7,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10278001/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9671763","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-01DOI: 10.1089/crispr.2023.0011
Harutyun Sahakyan, Kira S Makarova, Eugene V Koonin
Many bacterial and archaeal viruses encode anti-CRISPR proteins (Acrs) that specifically inhibit CRISPR-Cas systems via various mechanisms. The majority of the Acrs are small, non-enzymatic proteins that abrogate CRISPR activity by binding to Cas effector proteins. The Acrs evolve fast, due to the arms race with the respective CRISPR-Cas systems, which hampers the elucidation of their evolutionary origins by sequence comparison. We performed comprehensive structural modeling using AlphaFold2 for 3693 experimentally characterized and predicted Acrs, followed by a comparison to the protein structures in the Protein Data Bank database. After clustering the Acrs by sequence similarity, 363 high-quality structural models were obtained that accounted for 102 Acr families. Structure comparisons allowed the identification of homologs for 13 of these families that could be ancestors of the Acrs. Despite the limited extent of structural conservation, the inferred origins of Acrs show distinct trends, in particular, recruitment of toxins and antitoxins and SOS repair system components for the Acr function.
许多细菌和古细菌病毒编码抗crispr蛋白(Acrs),通过各种机制特异性抑制CRISPR-Cas系统。大多数Acrs是小的非酶蛋白,通过与Cas效应蛋白结合而消除CRISPR活性。由于与各自的CRISPR-Cas系统的军备竞赛,Acrs进化得很快,这阻碍了通过序列比较来阐明它们的进化起源。我们使用AlphaFold2对3693进行了全面的结构建模,并对Acrs进行了实验表征和预测,随后与protein Data Bank数据库中的蛋白质结构进行了比较。对Acr进行序列相似性聚类,得到363个高质量的结构模型,涵盖102个Acr家族。结构比较鉴定了其中13个家族的同源物,这些家族可能是Acrs的祖先。尽管结构保护程度有限,但Acr的推断起源显示出明显的趋势,特别是毒素和抗毒素的招募以及Acr功能的SOS修复系统组件。
{"title":"Search for Origins of Anti-CRISPR Proteins by Structure Comparison.","authors":"Harutyun Sahakyan, Kira S Makarova, Eugene V Koonin","doi":"10.1089/crispr.2023.0011","DOIUrl":"https://doi.org/10.1089/crispr.2023.0011","url":null,"abstract":"<p><p>Many bacterial and archaeal viruses encode anti-CRISPR proteins (Acrs) that specifically inhibit CRISPR-Cas systems via various mechanisms. The majority of the Acrs are small, non-enzymatic proteins that abrogate CRISPR activity by binding to Cas effector proteins. The Acrs evolve fast, due to the arms race with the respective CRISPR-Cas systems, which hampers the elucidation of their evolutionary origins by sequence comparison. We performed comprehensive structural modeling using AlphaFold2 for 3693 experimentally characterized and predicted Acrs, followed by a comparison to the protein structures in the Protein Data Bank database. After clustering the Acrs by sequence similarity, 363 high-quality structural models were obtained that accounted for 102 Acr families. Structure comparisons allowed the identification of homologs for 13 of these families that could be ancestors of the Acrs. Despite the limited extent of structural conservation, the inferred origins of Acrs show distinct trends, in particular, recruitment of toxins and antitoxins and SOS repair system components for the Acr function.</p>","PeriodicalId":54232,"journal":{"name":"CRISPR Journal","volume":"6 3","pages":"222-231"},"PeriodicalIF":3.7,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10285414/pdf/crispr.2023.0011.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9705259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-01Epub Date: 2023-04-11DOI: 10.1089/crispr.2022.0106
Murat Buyukyoruk, William S Henriques, Blake Wiedenheft
Clustered regularly interspaced short palindromic repeats (CRISPRs) and their associated genes (cas) are essential components of adaptive immune systems that protect bacteria and archaea from viral infection. CRISPR-Cas systems are found in about 40% of bacterial and 85% of archaeal genomes, but not in eukaryotic genomes. Recently, an article published in Communications Biology reported the identification of 12,572 putative CRISPRs in the human genome, which they call "hCRISPR." In this study, we attempt to reproduce this analysis and show that repetitive elements identified as putative CRISPR loci in the human genome contain neither the repeat-spacer-repeat architecture nor the cas genes characteristic of functional CRISPR systems.
{"title":"Clarifying CRISPR: Why Repeats Identified in the Human Genome Should Not Be Considered CRISPRs.","authors":"Murat Buyukyoruk, William S Henriques, Blake Wiedenheft","doi":"10.1089/crispr.2022.0106","DOIUrl":"10.1089/crispr.2022.0106","url":null,"abstract":"<p><p>Clustered regularly interspaced short palindromic repeats (CRISPRs) and their associated genes (<i>cas</i>) are essential components of adaptive immune systems that protect bacteria and archaea from viral infection. CRISPR-Cas systems are found in about 40% of bacterial and 85% of archaeal genomes, but not in eukaryotic genomes. Recently, an article published in <i>Communications Biology</i> reported the identification of 12,572 putative CRISPRs in the human genome, which they call \"hCRISPR.\" In this study, we attempt to reproduce this analysis and show that repetitive elements identified as putative CRISPR loci in the human genome contain neither the repeat-spacer-repeat architecture nor the <i>cas</i> genes characteristic of functional CRISPR systems.</p>","PeriodicalId":54232,"journal":{"name":"CRISPR Journal","volume":"6 3","pages":"216-221"},"PeriodicalIF":3.7,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10277986/pdf/crispr.2022.0106.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9679580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-01DOI: 10.1089/crispr.2022.0050.correx
{"title":"Correction to: <i>Clonally Selected Lines After CRISPR-Cas Editing Are Not Isogenic</i> by Panda et al. <i>The CRISPR Journal</i>, 2023;6(2):176-182; DOI: 10.1089/crispr.2022.0050.","authors":"","doi":"10.1089/crispr.2022.0050.correx","DOIUrl":"https://doi.org/10.1089/crispr.2022.0050.correx","url":null,"abstract":"","PeriodicalId":54232,"journal":{"name":"CRISPR Journal","volume":"6 3","pages":"302"},"PeriodicalIF":3.7,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10398720/pdf/crispr.2022.0050.correx.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9938137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}