首页 > 最新文献

Natural Resources Research最新文献

英文 中文
Selection of Basalt Fiber Raw Materials from an Improved Empirical Correlation 基于改进经验关联的玄武岩纤维原料选择
IF 5.4 2区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Pub Date : 2025-12-24 DOI: 10.1007/s11053-025-10606-7
Hankun Zhang, Changjiang Liu, Hongwei Wu, Hongchao Li, Letao Jiang, Chuncheng Yang, Tianlei Wang, Xiaofei Hao
{"title":"Selection of Basalt Fiber Raw Materials from an Improved Empirical Correlation","authors":"Hankun Zhang, Changjiang Liu, Hongwei Wu, Hongchao Li, Letao Jiang, Chuncheng Yang, Tianlei Wang, Xiaofei Hao","doi":"10.1007/s11053-025-10606-7","DOIUrl":"https://doi.org/10.1007/s11053-025-10606-7","url":null,"abstract":"","PeriodicalId":54284,"journal":{"name":"Natural Resources Research","volume":"4 1","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145830036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Linking Flow Units to Sequence Stratigraphy in the Permian–Triassic Carbonate Reservoir of the South Pars Gas Field, Iran 伊朗南帕尔斯气田二叠系—三叠系碳酸盐岩储层流动单元与层序地层学的联系
IF 5.4 2区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Pub Date : 2025-12-23 DOI: 10.1007/s11053-025-10605-8
Behrooz Esrafili-Dizaji
{"title":"Linking Flow Units to Sequence Stratigraphy in the Permian–Triassic Carbonate Reservoir of the South Pars Gas Field, Iran","authors":"Behrooz Esrafili-Dizaji","doi":"10.1007/s11053-025-10605-8","DOIUrl":"https://doi.org/10.1007/s11053-025-10605-8","url":null,"abstract":"","PeriodicalId":54284,"journal":{"name":"Natural Resources Research","volume":"126 1","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145830037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical Simulation of Gas Production and Geomechanical Response of Heterogeneous Gas Hydrate Reservoirs 非均质天然气水合物气藏产气及地质力学响应数值模拟
IF 5.4 2区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Pub Date : 2025-12-23 DOI: 10.1007/s11053-025-10577-9
Jiuhui Cheng, Shuitao Zhang, Linlin Wang, Guangjin Chen
{"title":"Numerical Simulation of Gas Production and Geomechanical Response of Heterogeneous Gas Hydrate Reservoirs","authors":"Jiuhui Cheng, Shuitao Zhang, Linlin Wang, Guangjin Chen","doi":"10.1007/s11053-025-10577-9","DOIUrl":"https://doi.org/10.1007/s11053-025-10577-9","url":null,"abstract":"","PeriodicalId":54284,"journal":{"name":"Natural Resources Research","volume":"28 1","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145807422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Large Language Models and Geoscience Transformers for Predictive Mapping of Canadian Critical Minerals 大型语言模型和地球科学变压器用于加拿大关键矿物的预测测绘
IF 5.4 2区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Pub Date : 2025-12-22 DOI: 10.1007/s11053-025-10564-0
Mohammad Parsa, Renato Cumani, Hossein Jodeiri Akbari Fam, Bilal Tawbe
Data-driven MPM (mineral prospectivity mapping) of critical minerals, which are elements or minerals with strategic importance and high supply chain risk, is vital for national land use planning. Recently, MPM has been practiced using supervised machine learning classification algorithms. However, applying such algorithms to Canadian critical minerals presents two major challenges. The first stems from the nature of geological knowledge, which is primarily stored in unstructured text. However, most supervised machine learning algorithms struggle to directly incorporate this textual information into predictive models. The second challenge arises from the limited number of known mineral deposits associated with many critical minerals in Canada, resulting in insufficient training labeled data for supervised classification tasks. To address the first challenge, this study employed natural language processing (NLP) techniques and large language models (LLMs) to extract and transform geoscientific knowledge embedded in geoscience text corpora into predictive features for MPM. LLMs operate based on transformer deep learning architectures that use self-attention mechanisms to capture contextual relationships within natural language. A domain-specific LLM, which was fine-tuned in this study and evaluated using geology-related inquiries, was employed for MPM. To address the second challenge, a separate transformer model was developed using a self-supervised learning approach that integrates diverse geophysical, geochronological, and textual data, eliminating the dependency on a substantial number of labeled training samples. The prospectivity model generated using the proposed transformer model significantly reduced the search space—by an average of 87%—for the targeted type of mineral deposits. The findings of this study demonstrate the effectiveness of transformer-based architectures and LLMs in overcoming key limitations of modern MPM approaches for critical mineral exploration.
关键矿物是具有战略重要性和高供应链风险的元素或矿物,其数据驱动的矿产远景图(MPM)对国家土地利用规划至关重要。最近,MPM已经使用监督机器学习分类算法进行了实践。然而,将这种算法应用于加拿大的关键矿物存在两个主要挑战。第一个问题源于地质知识的本质,它主要存储在非结构化文本中。然而,大多数监督机器学习算法很难直接将这些文本信息合并到预测模型中。第二个挑战来自加拿大与许多关键矿物有关的已知矿床数量有限,导致用于监督分类任务的训练标记数据不足。为了解决第一个挑战,本研究采用自然语言处理(NLP)技术和大型语言模型(llm)来提取地球科学文本语料库中的地球科学知识,并将其转化为MPM的预测特征。llm基于transformer深度学习架构运行,该架构使用自关注机制来捕获自然语言中的上下文关系。MPM采用了特定领域的LLM,该LLM在本研究中进行了微调,并使用与地质相关的查询进行了评估。为了解决第二个挑战,开发了一个独立的变压器模型,该模型使用了一种自监督学习方法,该方法集成了各种地球物理、地理年代和文本数据,消除了对大量标记训练样本的依赖。利用所提出的变压器模型生成的远景模型显着减少了目标矿床类型的搜索空间,平均减少了87%。这项研究的结果证明了基于变压器的架构和llm在克服现代MPM方法在关键矿产勘探中的关键局限性方面的有效性。
{"title":"Large Language Models and Geoscience Transformers for Predictive Mapping of Canadian Critical Minerals","authors":"Mohammad Parsa, Renato Cumani, Hossein Jodeiri Akbari Fam, Bilal Tawbe","doi":"10.1007/s11053-025-10564-0","DOIUrl":"https://doi.org/10.1007/s11053-025-10564-0","url":null,"abstract":"Data-driven MPM (mineral prospectivity mapping) of critical minerals, which are elements or minerals with strategic importance and high supply chain risk, is vital for national land use planning. Recently, MPM has been practiced using supervised machine learning classification algorithms. However, applying such algorithms to Canadian critical minerals presents two major challenges. The first stems from the nature of geological knowledge, which is primarily stored in unstructured text. However, most supervised machine learning algorithms struggle to directly incorporate this textual information into predictive models. The second challenge arises from the limited number of known mineral deposits associated with many critical minerals in Canada, resulting in insufficient training labeled data for supervised classification tasks. To address the first challenge, this study employed natural language processing (NLP) techniques and large language models (LLMs) to extract and transform geoscientific knowledge embedded in geoscience text corpora into predictive features for MPM. LLMs operate based on transformer deep learning architectures that use self-attention mechanisms to capture contextual relationships within natural language. A domain-specific LLM, which was fine-tuned in this study and evaluated using geology-related inquiries, was employed for MPM. To address the second challenge, a separate transformer model was developed using a self-supervised learning approach that integrates diverse geophysical, geochronological, and textual data, eliminating the dependency on a substantial number of labeled training samples. The prospectivity model generated using the proposed transformer model significantly reduced the search space—by an average of 87%—for the targeted type of mineral deposits. The findings of this study demonstrate the effectiveness of transformer-based architectures and LLMs in overcoming key limitations of modern MPM approaches for critical mineral exploration.","PeriodicalId":54284,"journal":{"name":"Natural Resources Research","volume":"22 1","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145807421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Geo CNN-Trans: A Hybrid Deep Learning Framework for 3D Mineral Prospectivity Modeling Geo CNN-Trans:用于三维矿产勘探建模的混合深度学习框架
IF 5.4 2区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Pub Date : 2025-12-22 DOI: 10.1007/s11053-025-10612-9
Miao Xie, Bingli Liu, Cheng Li, Yunhe Li
{"title":"Geo CNN-Trans: A Hybrid Deep Learning Framework for 3D Mineral Prospectivity Modeling","authors":"Miao Xie, Bingli Liu, Cheng Li, Yunhe Li","doi":"10.1007/s11053-025-10612-9","DOIUrl":"https://doi.org/10.1007/s11053-025-10612-9","url":null,"abstract":"","PeriodicalId":54284,"journal":{"name":"Natural Resources Research","volume":"73 1","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145807424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pyrite Geochemistry of the Qianchen Gold Deposit, Jiaodong Peninsula, China: An Indicator Mineral for the Spatial Evolution of Mineralization Fluid 胶东半岛前陈金矿床黄铁矿地球化学:成矿流体空间演化的指示矿物
IF 5.4 2区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Pub Date : 2025-12-21 DOI: 10.1007/s11053-025-10614-7
Hongtao Zhao, Yu Zhang, Yongjun Shao, Yuanming Pan, Ana Carolina R. Miranda, Yanbo Xu, Yuzhou Feng, Xiaoyan Chen
{"title":"Pyrite Geochemistry of the Qianchen Gold Deposit, Jiaodong Peninsula, China: An Indicator Mineral for the Spatial Evolution of Mineralization Fluid","authors":"Hongtao Zhao, Yu Zhang, Yongjun Shao, Yuanming Pan, Ana Carolina R. Miranda, Yanbo Xu, Yuzhou Feng, Xiaoyan Chen","doi":"10.1007/s11053-025-10614-7","DOIUrl":"https://doi.org/10.1007/s11053-025-10614-7","url":null,"abstract":"","PeriodicalId":54284,"journal":{"name":"Natural Resources Research","volume":"56 1","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145796235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mineral Prospectivity Mapping via Interpretable Machine Learning Techniques: A Case Study in the Tongling Ore District, China 利用可解释机器学习技术进行矿产找矿——以铜陵矿区为例
IF 5.4 2区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Pub Date : 2025-12-19 DOI: 10.1007/s11053-025-10597-5
Xiaoqiang Zhu, Yongjian Gu, Shuai Zhang, Yanwen Zhang, Cai Jia, Haiyang He
{"title":"Mineral Prospectivity Mapping via Interpretable Machine Learning Techniques: A Case Study in the Tongling Ore District, China","authors":"Xiaoqiang Zhu, Yongjian Gu, Shuai Zhang, Yanwen Zhang, Cai Jia, Haiyang He","doi":"10.1007/s11053-025-10597-5","DOIUrl":"https://doi.org/10.1007/s11053-025-10597-5","url":null,"abstract":"","PeriodicalId":54284,"journal":{"name":"Natural Resources Research","volume":"27 1","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145796257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reserve Growth Modeling and Prediction in Oil Fields of the Bohai Bay Basin, China 渤海湾盆地油田储量增长建模与预测
IF 5.4 2区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Pub Date : 2025-12-15 DOI: 10.1007/s11053-025-10598-4
Jiang Dexin, Du Xiaofeng, Liu Shixiang, Li Chunrong, Wu Yunfei, Li Yican, Yang Tianbo, Li Fanyi
{"title":"Reserve Growth Modeling and Prediction in Oil Fields of the Bohai Bay Basin, China","authors":"Jiang Dexin, Du Xiaofeng, Liu Shixiang, Li Chunrong, Wu Yunfei, Li Yican, Yang Tianbo, Li Fanyi","doi":"10.1007/s11053-025-10598-4","DOIUrl":"https://doi.org/10.1007/s11053-025-10598-4","url":null,"abstract":"","PeriodicalId":54284,"journal":{"name":"Natural Resources Research","volume":"56 1","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145752831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic Damage Law of Coals Under Stress Paths for Disaster Inoculation and Its Influence Mechanism on Outburst Risk Level 灾害孕育应力路径下煤的动态破坏规律及其对突出危险等级的影响机制
IF 5.4 2区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Pub Date : 2025-12-14 DOI: 10.1007/s11053-025-10585-9
Chaojie Wang, Chaofan Ge, Buzhuang Zhou, Xiaowei Li, Hanpeng Wang, Yanwei Zhang, Bingwei Nan, Changhang Xu
{"title":"Dynamic Damage Law of Coals Under Stress Paths for Disaster Inoculation and Its Influence Mechanism on Outburst Risk Level","authors":"Chaojie Wang, Chaofan Ge, Buzhuang Zhou, Xiaowei Li, Hanpeng Wang, Yanwei Zhang, Bingwei Nan, Changhang Xu","doi":"10.1007/s11053-025-10585-9","DOIUrl":"https://doi.org/10.1007/s11053-025-10585-9","url":null,"abstract":"","PeriodicalId":54284,"journal":{"name":"Natural Resources Research","volume":"7 1","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145753193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Aquifer Delineation in the Benxi Formation and Its Critical Impact on Deep CBM Productivity: A Case Study of the Central-Eastern Ordos Basin 本溪组含水层圈定及其对深部煤层气产能的影响——以鄂尔多斯盆地中东部为例
IF 5.4 2区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Pub Date : 2025-12-14 DOI: 10.1007/s11053-025-10613-8
Dongping Zhao, Songhang Zhang, Shuheng Tang, Wenguang Tian, Ke Zhang, Kun Zhang
{"title":"Aquifer Delineation in the Benxi Formation and Its Critical Impact on Deep CBM Productivity: A Case Study of the Central-Eastern Ordos Basin","authors":"Dongping Zhao, Songhang Zhang, Shuheng Tang, Wenguang Tian, Ke Zhang, Kun Zhang","doi":"10.1007/s11053-025-10613-8","DOIUrl":"https://doi.org/10.1007/s11053-025-10613-8","url":null,"abstract":"","PeriodicalId":54284,"journal":{"name":"Natural Resources Research","volume":"7 1","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145753183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Natural Resources Research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1