The three-dimensional (3D) stress waves of coal samples were studied using a true triaxial split Hopkinson pressure bar compression rod. The results indicate that the 3D strain of the coal samples increased gradually under vibration load. The 3D stress wave of coal samples showed attenuation characteristics, and the change amplitude of the stress wave of coal samples along the direction of dynamic load was the most obvious. The amplitude of stress wave was the largest in the axial direction constrained by pre-stressing 3 MPa, while the amplitude of stress wave in the lateral 2 MPa pre-stressing was smaller than that under the constraint of 1 MPa. The results showed that the main deformation of coal samples was along the impact direction, while the larger horizontal and vertical lateral binding forces limited the deformation of coal samples. The Fourier transform was performed on the 3D stress wave of the coal samples, and the change in the amplitude of the stress wave spectrum was correlated positively with the vibration. The spectrum amplitude of the coal samples under the pre-stressed 3 MPa constraint (axial) direction was the largest, while the spectrum amplitude of the coal samples under the lateral 2 MPa pre-stressed constraint was smaller than that under the binding 1 MPa. However, the main frequency of the three-way stress wave was distributed in 0–10 kHz. By calculating the energy consumption rate and wave velocity decay rate, it was verified that the damage of coal samples increased with increase in dynamic load. This experimental testing provides an effective testing method for studying the 3D stress waves of coal samples under complex stress medium conditions. In addition, a dynamic constitutive model of coal was constructed according to the mechanical behavior of coal and rock mass and the measured data.