We here announce the launch of the website https://hebeloma.org .
We here announce the launch of the website https://hebeloma.org .
The monotypic "bulbilliferous hyphomycete" genus Taxomyces was erected in 1993 for a fungal endophyte isolated from the Yew tree Taxus brevifolia and named Taxomyces andreanae. This fungus was reported to produce the plant-derived anti-cancer drug taxol. The original description of the fungus was not conclusive as to its taxonomic position because no sporulation or other salient morphological features were reported. Consequently, the taxonomic affinities of this fungus have remained obscure. However, a full genome sequence of this strain was generated by a German research group in 2013, in an unsuccessful attempt to detect the biosynthesis genes encoding for taxol. This prompted us to search for phylogenetic marker genes and compare those with the data that recently have become available from state-of-the-art polyphasic taxonomic studies. Surprisingly, the strain turned out to belong to the phlebioid clade of wood-destroying Basidiomycota as inferred from a comparison of its partial ITS, the 28S rDNA (LSU), the RNA polymerase II largest subunit (rpb1), the RNA polymerase II second largest subunit (rpb2), and the translation elongation factor 1-α (tef1) sequences. A multi gene genealogy based on these loci revealed that the closest relative is Ceriporiopsis (syn. Mycoacia) gilvescens. Even though such wood-destroying Basidiomycota are regularly encountered among the endophytic isolates after surface-disinfection of plant organs, the vast majority of the reported endophytic fungi belong to the Ascomycota. Nevertheless, the data available now allow for synonymizing Taxomyces with Ceriporiopsis, and the necessary new combination is made.
In the present study, we assembled and analyzed the mitogenomes of two Ramaria species. The assembled mitogenomes of Ramaria cfr. rubripermanens and R. rubella were circularized, with sizes of 126,497 bp and 143,271 bp, respectively. Comparative mitogenome analysis showed that intron region contributed the most (contribution rate, 43.74%) to the size variations of Ramaria mitogenomes. The genetic contents, gene length, tRNAs, and codon usages of the two Ramaria mitogenomes varied greatly. In addition, the evolutionary rates of different core protein coding genes (PCGs) in Phallomycetidae mitogenomes varied. We detected large-scale gene rearrangements between Phallomycetidae mitogenomes, including gene displacement and tRNA doubling. A total of 4499 bp and 7746 bp aligned fragments were detected between the mitochondrial and nuclear genomes of R. cfr. rubripermanens and R. rubella, respectively, indicating possible gene transferring events. We further found frequent intron loss/gain and potential intron transfer events in Phallomycetidae mitogenomes during the evolution, and the mitogenomes of R. rubella contained a novel intron P44. Phylogenetic analyses using both Bayesian inference (BI) and Maximum Likelihood (ML) methods based on a combined mitochondrial gene dataset obtained an identical and well-supported phylogenetic tree for Basidiomycota, wherein R. cfr. rubripermanens and Turbinellus floccosus are sister species. This study served as the first report on mitogenomes from the genus Ramaria, which provides a basis for understanding the evolution, genetics, and taxonomy of this important fungal group.
Large numbers of marine glaciers in the Qinghai-Tibet Plateau are especially sensitive to changes of climate and surface conditions. They have suffered fast accumulation and melting and retreated quickly in recent years. In 2017, we surveyed the cold-adapted fungi in these unique habitats and obtained 1208 fungal strains. Based on preliminary analysis of ITS sequences, 41 isolates belonging to the genus Cadophora were detected. As one of the most frequently encountered genera, the Cadophora isolates were studied in detail. Two phylogenetic trees were constructed: one was based on the partial large subunit nrDNA (LSU) to infer taxonomic placement of our isolates and the other was based on multi-locus sequences of LSU, ITS, TUB and TEF-1α to investigate more exact phylogenetic relationships between Cadophora and allied genera. Combined with morphological characteristics, nine Cadophora species were determined, including seven new to science. Among the new species, only C. inflata produces holoblastic conidia and all the others express phialidic conidiogenesis. All isolates have optimum growth temperature at 20 °C or 25 °C. With more species involved, the currently circumscribed genus became obviously paraphyletic. All members are clustered into two main clades: one clade mainly includes most of the Cadophora species which have phialidic conidiogenesis and we refer to as 'Cadophora s. str.'; the remaining Cadophora species have multiform conidiogenesis and are clustered in the second clade, with members of other genera in Ploettnerulaceae interspersed among the subclades. The results show a high diversity of Cadophora from marine glaciers in the Qinghai-Tibet Plateau and most of them are novel species.
Morels are highly prized edible fungi where sexual reproduction is essential for fruiting-body production. As a result, a comprehensive understanding of their sexual reproduction is of great interest. Central to this is the identification of the reproductive strategies used by morels. Sexual reproduction in fungi is controlled by mating-type (MAT) genes and morels are thought to be mainly heterothallic with two idiomorphs, MAT1-1 and MAT1-2. Genomic sequencing of black (Elata clade) and yellow (Esculenta clade) morel species has led to the development of PCR primers designed to amplify genes from the two idiomorphs for rapid genotyping of isolates from these two clades. To evaluate the design and theoretical performance of these primers we performed a thorough bioinformatic investigation, including the detection of the MAT region in publicly available Morchella genomes and in-silico PCR analyses. All examined genomes, including those used for primer design, appeared to be heterothallic. This indicates an inherent fault in the original primer design which utilized a single Morchella genome, as the use of two genomes with complementary mating types would be required to design accurate primers for both idiomorphs. Furthermore, potential off-targets were identified for some of the previously published primer sets, but verification was challenging due to lack of adequate genomic information and detailed methodologies for primer design. Examinations of the black morel specific primer pairs (MAT11L/R and MAT22L/R) indicated the MAT22 primers would correctly target and amplify the MAT1-2 idiomorph, but the MAT11 primers appear to be capable of amplifying incorrect off-targets within the genome. The yellow morel primer pairs (EMAT1-1 L/R and EMAT1-2 L/R) appear to have reporting errors, as the published primer sequences are dissimilar with reported amplicon sequences and the EMAT1-2 primers appear to amplify the RNA polymerase II subunit (RPB2) gene. The lack of the reference genome used in primer design and descriptive methodology made it challenging to fully assess the apparent issues with the primers for this clade. In conclusion, additional work is still required for the generation of reliable primers to investigate mating types in morels and to assess their performance on different clades and across multiple geographical regions.
The genus Hebeloma is renowned as difficult when it comes to species determination. Historically, many dichotomous keys have been published and used with varying success rate. Over the last 20 years the authors have built a database of Hebeloma collections containing not only metadata but also parametrized morphological descriptions, where for about a third of the cases micromorphological characters have been analysed and are included, as well as DNA sequences for almost every collection. The database now has about 9000 collections including nearly every type collection worldwide and represents over 120 different taxa. Almost every collection has been analysed and identified to species using a combination of the available molecular and morphological data in addition to locality and habitat information. Based on these data an Artificial Intelligence (AI) machine-learning species identifier has been developed that takes as input locality data and a small number of the morphological parameters. Using a random test set of more than 600 collections from the database, not utilized within the set of collections used to train the identifier, the species identifier was able to identify 77% correctly with its highest probabilistic match, 96% within its three most likely determinations and over 99% of collections within its five most likely determinations.
The considerable economic and social impact of the oomycete genus Phytophthora is well known. In response to evidence that all downy mildews (DMs) reside phylogenetically within Phytophthora, rendering Phytophthora paraphyletic, a proposal has been made to split the genus into multiple new genera. We have reviewed the status of the genus and its relationship to the DMs. Despite a substantial increase in the number of described species and improvements in molecular phylogeny the Phytophthora clade structure has remained stable since first demonstrated in 2000. Currently some 200 species are distributed across twelve major clades in a relatively tight monophyletic cluster. In our assessment of 196 species for twenty morphological and behavioural criteria the clades show good biological cohesion. Saprotrophy, necrotrophy and hemi-biotrophy of woody and non-woody roots, stems and foliage occurs across the clades. Phylogenetically less related clades often show strong phenotypic and behavioural similarities and no one clade or group of clades shows the synapomorphies that might justify a unique generic status. We propose the clades arose from the migration and worldwide radiation ~ 140 Mya (million years ago) of an ancestral Gondwanan Phytophthora population, resulting in geographic isolation and clade divergence through drift on the diverging continents combined with adaptation to local hosts, climatic zones and habitats. The extraordinary flexibility of the genus may account for its global 'success'. The 20 genera of the obligately biotrophic, angiosperm-foliage specialised DMs evolved from Phytophthora at least twice via convergent evolution, making the DMs as a group polyphyletic and Phytophthora paraphyletic in cladistic terms. The long phylogenetic branches of the DMs indicate this occurred rather rapidly, via paraphyletic evolutionary 'jumps'. Such paraphyly is common in successful organisms. The proposal to divide Phytophthora appears more a device to address the issue of the convergent evolution of the DMs than the structure of Phytophthora per se. We consider it non-Darwinian, putting the emphasis on the emergent groups (the DMs) rather than the progenitor (Phytophthora) and ignoring the evolutionary processes that gave rise to the divergence. Further, the generic concept currently applied to the DMs is narrower than that between some closely related Phytophthora species. Considering the biological and structural cohesion of Phytophthora, its historic and social impacts and its importance in scientific communication and biosecurity protocol, we recommend that the current broad generic concept is retained by the scientific community.